大数据分析PPT

合集下载

2024大数据ppt课件完整版

2024大数据ppt课件完整版
2024大数据ppt课件完整版
目录 CONTENTS
• 大数据概述与发展趋势 • 数据采集与预处理技术 • 数据存储与管理技术 • 数据分析与挖掘算法 • 数据可视化与报表呈现技巧 • 大数据安全与隐私保护策略
01
大数据概述与发展趋势
大数据定义及特点
01
数据量在TB、 PB甚至EB级别以上的数据。
,降低医疗成本。
金融科技
利用大数据技术进行风 险控制和客户管理,提 高金融业务的智能化水
平。
智能制造
通过大数据分析优化生 产流程,提高生产效率
和产品质量。
02
数据采集与预处理技术
数据来源及采集方法
互联网数据
社交媒体、新闻网站、论坛等。
企业内部数据
CRM、ERP、SCM等系统数据。
数据来源及采集方法
动态交互式报表设计思路
实时更新
通过数据接口实现报表数据的实时更 新,反映最新业务情况。
交互操作
提供筛选、排序、分组等交互功能, 方便用户按需查看和分析数据。
图表联动
实现不同图表之间的联动,当用户在 一个图表上操作时,其他相关图表也 能相应变化。
个性化定制
提供报表样式、布局等个性化定制功 能,满足不同用户的需求。
基于文本的特征提取
对文本数据进行分词、词频统计等操 作。
特征提取和降维技术
• 基于图像的特征提取:提取图像的形状、纹理等 特征。
特征提取和降维技术
主成分分析(PCA)
流形学习
通过线性变换将原始数据变换为一组 各维度线性无关的表示。
通过保持数据的局部结构来发现数据 的全局结构,如Isomap、LLE等。
• 重复值处理:删除或合并重复数据记录。

2024版大数据PPT免费

2024版大数据PPT免费

政府管理
大数据可以提高政府决策的科学性、 准确性和时效性,推动政府治理体系 和治理能力现代化。
6
02
大数据技术架构与组件
2024/1/28
7
分布式存储技术
Hadoop分布式文件系统(HDFS)
一种高度容错性的分布式文件系统,适合部署在廉价机器上,提供高吞吐量的数据访问。
HBase
一种分布式、可伸缩、大数据存储服务,支持结构化、半结构化和非结构化数据的存储。
Hale Waihona Puke 2024/1/28Cassandra
一种高度可扩展的分布式NoSQL数据库,提供高可用性和无单点故障的数据存储服务。
8
分布式计算框架
Spark
一种快速、通用的大规模数据处理引 擎,提供了Java、Scala、Python和R 等语言的API,支持批处理、流处理、 图处理和机器学习等应用。
Flink
2024/1/28
03
完善政策法规
建立健全大数据相关政策法规,保障数据安全和个人隐私,促进大数据
产业健康发展。
30
THANK YOU
2024/1/28
31
2024/1/28
4
大数据产生背景
01
02
03
互联网的发展
随着互联网的普及和深入 应用,人们产生的数据量 呈指数级增长,形成了海 量的数据资源。
2024/1/28
物联网的兴起
物联网技术的快速发展使 得各种设备产生的数据不 断汇聚,进一步推动了大 数据时代的到来。
云计算的普及
云计算提供了强大的计算 和存储能力,为大数据的 处理和分析提供了有力支 持。
建立因变量与自变量之间的线性关系,实现 预测和解释。

大数据专题(共43张PPT)

大数据专题(共43张PPT)
应用
MapReduce广泛应用于大数据处理领域,如日志分析、数据挖掘、机器学习等。
分布式数据库HBase
概述
HBase(Hadoop Database)是一个高可扩展性的列存储系统,构建在Hadoop分布 式文件系统之上。它提供了对大规模结构化数据的随机、实时读写访问能力。
特点
HBase采用列式存储,支持动态扩展,具有良好的伸缩性和高性能。它支持ACID事务 ,提供了高可用性和数据一致性保证。
Hadoop的核心组件之一,为大 数据应用提供了一个高度容错、
可扩展的分布式文件系统。
架构
HDFS采用主从架构,包括一个 NameNode和多个DataNode 。NameNode负责管理文件系 统的元数据,而DataNode负责
存储实际的数据。
特点
HDFS支持大规模数据存储,具 有高度的容错性和可扩展性。它 采用流式数据访问模式,适合处
云计算发展
云计算技术的发展为大数据处理提供了强大的计 算能力和存储空间,使得大数据处理成为可能。
大数据发展趋势
数据驱动决策
未来企业将更加依赖数据进行决 策,大数据技术将发挥更加重要 的作用。
数据共享与开放
政府和企业将更加注重数据的共 享和开放,促进数据的流通和利 用,推动经济社会发展。
人工智能融合
应用
HBase适用于非结构化或半结构化数据的存储和查询,如用户画像、推荐系统、时序数 据等场景。
数据仓库Hive
01
概述
Hive是基于Hadoop的一个数据仓库 工具,可以将结构化的数据文件映射 为一张数据库表,并提供简单的SQL 查询功能。
02
特点
Hive支持类SQL查询语言HiveQL, 使得数据分析人员可以方便地使用 SQL语言对大规模数据进行查询和分 析。Hive还支持自定义函数和存储过 程等功能,增强了其数据处理能力。

大数据ppt课件

大数据ppt课件

改善社会治理和公共服务
2
• 大数据技术可以提升政府服务能力和效率 ,推动公共服务的个性化和精细化。
推动科技创新和进步
3
• 大数据技术为科学研究提供了更加高效和 准确的数据分析工具,推动了科技创新和进
步。
大数据的技术与发展
数据采集与存储技术
数据处理和分析技术
• 大数据的采集和存储需要使用分布式 文件系统、数据库等技术。
分析方法
结论与展望
• 采用自然语言处理、图像识别、情感 分析等方法,对社交媒体数据进行情感分 析,提取其中的情感词汇和情感表达。
• 通过基于社交媒体的情绪分析。我们 可以更好地了解公众对于某个事件或产品 的情感倾向
案例五:金融行业的风控大数据应用
背景与目标
• 金融行业是风险密集的行业,如何 有效地进行风险控制是金融行业的重要 任务之一
市场调研
02
• 通过大数据分析,了解市场趋势和竞争对手情况,制定
市场策略。
客户分析
03
• 通过分析客户数据,了解客户需求和行为,提供个性化
服务。
医疗健康
病患数据分析
• 通过分析病患数据,提高医疗质量和效率。
药物研发
• 通过大数据分析,加速药物研发过程。
健康管理
• 通过分析个人健康数据,提供个性化健康建议。
分析方法
• 采用数据挖掘、空间分析等方法, 对城市数据进行分类、预测、聚类等分 析。
结论与展望
• 通过基于公共数据的城市规划研究 。我们可以提高城市规划的科学性和有 效性
案例四:基于社交媒体的情绪分析
背景与目标
数据来源
• 社交媒体的普及使得人们可以在网络 上公开表达自己的情绪和意见

大数据课件ppt

大数据课件ppt

适用于大规模数据 集处理,具有高效 的数据处理能力和 内存管理。
Flink平台
详细描述
提供丰富的API和工具,如 DataStream API、DataSet API 、Table API等。
总结词:实时流数据处理引擎。
支持基于流的处理和批处理。
适用于实时数据处理和复杂事件 处理场景。
Kafka工具
要点二
发展
大数据的发展经历了三个阶段:第一个阶段是大数据技术 的萌芽期,这个阶段出现了许多大数据技术的基础组件, 如分布式存储和计算系统;第二个阶段是大数据技术的成 熟期,这个阶段出现了许多成熟的大数据产品和解决方案 ;第三个阶段是大数据技术的普及期,这个阶段大数据技 术被广泛应用于各个领域。
大数据的研究与应用
02
大数据处理技术
数据采集与预处理
01
02
03
数据采集
从各种数据源(如数据库 、网络、文件等)获取数 据的过程。
数据清洗
去除重复、无效或错误的 数据,保证数据的质量和 准确性。
数据转换
将数据从一种格式或结构 转换为另一种,以便进行 后续处理。
数据存储与管理
数据存储
使用存储设备(如硬盘、 闪存等)保存数据,以便 长期保存和使用。
数据挖掘与分析
关联规则挖掘
发现数据之间的关联和模式,揭 示潜或属性进行 分组,以便进行分类和识别。
预测分析
利用已有的数据进行预测,对未 来的趋势和结果进行预测和分析

03
大数据平台与工具
Hadoop平台
总结词:分布式存储和计算平台,适合 大规模数据处理。
特点
大数据通常具有四个特点,即4V:体量(Volume)指数据 的大小、速度(Velocity)指数据生成或处理的快慢、多样 性(Variety)指数据的种类、真实性(Veracity)指数据的 准确性和可信度。

大数据ppt(数据有关文档)共30张

大数据ppt(数据有关文档)共30张
实时数据采集
利用流处理技术,实时采集数据源中的数 据。
网络爬虫技术
通过编写爬虫程序,从互联网上抓取指定 网站的数据。
API接口调用
通过调用第三方提供的API接口,获取相 关数据。
数据清洗与预处理
数据清洗
去除重复数据、处理缺失值、异常值 检测与处理、文本清洗(如去除停用 词、特殊符号等)。
数据转换
将数据转换成适合分析的格式,如将 文本数据转换为数值型数据。
常见的NoSQL数据库 列举几种常见的NoSQL数据库,如MongoDB、 Cassandra、Redis等,并简要介绍它们的特点 和应用场景。
NoSQL数据库的选择与使用 探讨如何根据实际需求选择合适的NoSQL数据 库,并给出使用NoSQL数据库的一般步骤和注 意事项。
数据仓库与数据挖掘技术
数据仓库概述
Tableau
专业的数据可视化工具,支持拖拽式操作和 丰富的图表类型。
Python可视化库
如Matplotlib、Seaborn等,提供强大的数 据可视化功能,可定制化程度高。
05
大数据在各领域应用案例
金融行业应用案例
01
风险管理与合规
利用大数据分析技术,金融机构可以更准确地评估和管理风险,提高合
的后盾支持。
大数据发展趋势
实时性要求更高
随着业务需求的不断变化,对大数据实时 性要求越来越高。
数据安全备受关注
大数据的快速增长使得数据安全问题日益 凸显,如何保障数据安全成为重要议题。
与人工智能深度融合
大数据与人工智能技术的深度融合将推动 智能化应用的快速发展。
行业应用不断拓展
大数据在各行各业的应用将不断拓展,为 行业转型升级提供有力支持。

大数据分析讲稿ppt教案

大数据分析讲稿ppt教案

一致性
不同来源的数据是否 能够相互匹配和验证 。
03 大数据分析技术
CHAPTER
数据预处理
01
02
03
数据清洗
去除重复、异常、缺失数 据,确保数据质量。
数据转换
将数据从一种格式或结构 转换为另一种格式或结构 ,以便于分析。
数据集成
将多个数据源的数据整合 到一个统一的数据仓库中 。
数据分析方法
特点
大数据分析具有数据量大、处理速度 快、数据类型多样等特点,能够为企 业提供更精准、全面的数据分析结果 ,帮助企业做出更好的决策。
大数据分析的重要性
提高决策效率
大数据分析能够快速处理大量数 据,为企业提供及时、准确的分 析结果,从而提高决策效率和准
确性。
发现潜在机会
通过对数据的深入挖掘和分析,企 业可以发现隐藏在数据中的机会和 趋势,从而制定更具针对性的市场 策略。
大数据伦理、法律与社会责任
总结词
大数据的伦理、法律和社会责任是大数 据发展中不可忽视的重要问题。
VS
详细描述
随着大数据技术的广泛应用,数据隐私、 信息安全、算法公正等问题也日益凸显。 因此,在大数据的发展过程中,需要关注 和解决这些伦理、法律和社会责任问题。 例如,加强数据隐私保护、建立数据安全 标准、推动算法公正等,以确保大数据技 术的健康发展。
以更好地了解客户需求,提高客户满意度和忠诚度,降低营销成本。
03
精准营销工具
精准营销工具包括用户画像、推荐系统、A/B测试等,可以帮助企业实
现个性化推荐、优化广告投放等。
风险管理与控制
风险管理概述
风险管理工具
风险管理是指对企业面临的各种风险 进行识别、评估、控制和监控的过程 。

大数据分析ppt课件完整版

大数据分析ppt课件完整版

数据质量与可信度问题
数据质量问题
大数据中包含了大量不准确、不完整或格式不统一的 数据,如何保证数据质量是数据分析的关键。
数据可信度挑战
虚假数据、误导性信息等可能影响数据分析结果的准 确性,如何提高数据可信度是重要议题。
数据治理与标准化
通过建立数据治理机制和标准化流程,提高数据质量 和可信度,保证数据分析结果的准确性。
数据仓库
构建数据仓库,实现数据的整合、管理和优化,提供统一的数据视图。
数据湖
利用数据湖技术,实现多源异构数据的集中存储和管理。
数据安全与隐私保护
制定数据安全策略,采用加密、脱敏等技术手段保护数据安全与隐私。
数据分析与挖掘
描述性分析
运用统计学方法对数据进行描述性分析,如数据 分布、集中趋势、离散程度等。
NoSQL数据库
如HBase、Cassandra等 ,适用于非结构化数据存 储和大规模数据处理。
云存储服务
如AWS S3、阿里云OSS 等,提供高可用、高扩展 性的在线存储服务。
数据挖掘算法
分类算法
如决策树、随机森林等,用于预测离 散型目标变量。
聚类算法
如K-means、DBSCAN等,用于发 现数据中的群组结构。
诊断性分析
通过数据挖掘技术,如关联规则挖掘、聚类分析 等,发现数据中的异常和模式。
ABCD
预测性分析
运用回归分析、时间序列分析等方法对数据进行 预测性分析,揭示数据间的潜在关系。
处方性分析
基于诊断结果,提供针对性的解决方案和优化建 议。
数据可视化呈现
数据可视化工具
运用Tableau、Power BI等数据可视化工具 ,将数据以图表、图像等形式呈现。

埃森哲大数据分析的方法ppt课件

埃森哲大数据分析的方法ppt课件

为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益

2024版大数据分析PPT模板

2024版大数据分析PPT模板

02
03
Spark
Flink
一个快速、通用的大规模数据处 理引擎,提供了Java、Scala、 Python等多种编程语言的API。
一个流处理和批处理的开源框架, 支持实时数据流分析和处理。
8
数据存储技术
03
Hadoop HDFS
一个分布式文件系统,用于存储大规模数 据集,提供高吞吐量访问和容错能力。
临床试验数据分析
对临床试验数据进行深入挖掘和分析,发现新的治疗方法和药物作用 机制,推动医学研究的进步。
2024/1/26
29
其他领域的大数据分析应用
2024/1/26
智慧城市
利用大数据分析技术,对城市交通、环境、能源等领域的 数据进行全面分析,提高城市管理的智能化水平。
教育领域 通过分析学生的学习数据、教师的教学数据等,发现教育 过程中的问题和不足,优化教学方法和策略,提高教育质 量。
大数据分析PPT模板
2024/1/26
1
目录
2024/1/26
• 大数据分析概述 • 大数据技术基础 • 大数据分析方法 • 大数据分析流程 • 大数据分析工具与平台 • 大数据分析实践案例
2
01
大数据分析概述
2024/1/26
3
大数据的定义与特点
数据量大
大数据通常指数据量在TB、PB甚至EB级 别以上的数据。
金融
信用评分、风险管 理、投资策略等。
2024/1/26
政府
城市规划、交通管 理、公共安全等。
制造业
生产优化、故障预 测、供应链管理等。
6
02
大数据技术基础
2024/1/26
7
分布式计算技术

大数据分析与数据驱动决策PPT

大数据分析与数据驱动决策PPT

电商行业的数据驱动决策
案例:阿里巴巴的智能客服
案例:京东的物流优化
案例:亚马逊的推荐系统
案例:拼多多的用户画像分 析
金融行业的数据驱动决策
风险管理:通过大数据分析识别和评估潜在的金融风险,如信贷违约、市场波动等。
投资策略:利用大数据分析市场趋势,制定更有效的投资策略和资产配置方案。
建立数据治理体系:制定数据管理 政策和流程,确保数据的合规性和 安全性。
添加标题
添加标题
添加标题
添加标题
制定明确的数据战略:明确数据来 源、质量和标准,确保数据的准确 性和可靠性。
持续改进和优化:不断监测和评估 数据驱动决策的效果,及时调整和 优化决策过程。
Part Seven
未来展望与总结
大数据分析技术的发展趋势
客户分析:通过大数据分析客户的行为和偏好,提供个性化的金融服务和产品推荐。
欺诈检测:利用大数据分析识别和预防金融欺诈行为,保护客户资金安全。
物流行业的数据驱动决策
案例背景:随着电商的快速发展,物流行业面临巨大的挑战和机遇 数据来源:通过大数据技术,收集和分析物流运输过程中的各种数据 决策应用:利用数据驱动决策,提高物流效率,降低成本 实践效果:实现更快速、准确、智能的物流服务,提升客户满意度
医疗行业的数据驱动决策
案例:精准医疗
案例:流行病预测
案例:个性化治疗
案例:远程医疗
Part Six
数据驱动决策的挑 战与对策
数据质量与可信度问题
数据质量:数据准确性和可靠性的问题,直接影响决策的正确性。 数据来源:不同来源的数据可能存在差异和冲突,需要验证和整合。 数据处理:数据清洗、去重、归一化等处理方式,影响数据的可信度。 数据误用:滥用、误读、误导等行为,导致数据失去可信度。

数据分析(培训完整)ppt课件

数据分析(培训完整)ppt课件

市场营销
03
在市场营销中,数据可视化可以帮助企业了解 消费者行为和市场趋势,制定更有针对性的营
销策略。
项目管理
04
在项目管理中,数据可视化可以帮助团队更好 地了解项目进度和资源使用情况,提高项目管
理效率。
05
数据分析在业务中的应用
客户细分与精准营销
客户细分
通过数据分析,将客户群体细分 为具有相似需求和行为的子群体 ,以便更好地理解客户需求并提 供定制化的产品和服务。
准确反映数据
数据可视化应准确地反映数据的特点 和变化趋势,避免误导观众。
可交互性
数据可视化应突出关键信息,使观众 能够快速找到重点。
常见的数据可视化工具
Excel
Excel是一款常用的办 公软件,也提供了数据 可视化的功能,如图表
、表格等。
Tableau
Tableau是一款功能强 大的数据可视化工具, 支持多种数据源,能够 快速创建交互式图表和
详细描述
通过建立回归分析、时间序列分析、决策树、随机森林等预测模型,对未来的趋 势和结果进行预测和分析。同时,运用模型评估和优化技术,提高预测的准确性 和可靠性。
04
数据可视化
数据可视化的原则
直观易懂
数据可视化应清晰、直观,避免过多 的视觉干扰,使观众能够快速理解数 据。
突出关键信息
数据可视化应具备可交互性,使观众 能够与数据进行互动,深入探索数据 。
探索性分析
总结词
深入挖掘数据之间的关系和潜在模式,为进一步的数据分析提供方向和思路。
详细描述
通过相关性分析、因子分析、聚类分析等方法,探索数据之间的关联和规律。 同时,运用数据可视化技术,如热力图、网络图等,揭示数据之间的复杂关系 和模式。

大数据分析PPT(共73张)

大数据分析PPT(共73张)
分布式计算架构
Master-Slave架构、 MapReduce架构、DAG架构 等
分布式计算编程模型
MapReduce编程模型、BSP编 程模型、Dryad编程模型等
分布式计算资源调度
资源调度策略、任务调度算法 、容错机制等
存储技术
01
分布式文件系统
HDFS、GFS、Ceph等
02
03
04
NoSQL数据库
针对性和有效性。
医疗行业应用
1 2 3
个性化医疗
通过大数据分析,对患者的基因、生活习惯、病 史等信息进行综合分析,为患者提供个性化的治 疗方案和健康建议。
精准医疗
运用大数据分析技术,对疾病的发生、发展、转 归等过程进行深入研究,为精准诊断和治疗提供 科学依据。
医疗资源管理
通过大数据分析,对医疗资源的分布、利用、需 求等进行实时监测和预测,提高医疗资源的配置 效率和管理水平。
特点
大数据具有5V特点,即Volume(大量)、Velocity(高速)、Variety(多样 )、Value(低价值密度)、Veracity(真实性)。
大数据发展历程
萌芽期
成熟期
20世纪90年代至2008年,大数据概 念开始萌芽,主要关注数据存储和计 算能力的提升。
2013年至今,大数据技术逐渐成熟, 应用领域不断扩大,同时大数据产业 也开始形成。
未来发展趋势预测
人工智能与大数据融合
人工智能技术将进一步提高大数据处 理和分析的效率和准确性。
数据驱动决策
大数据将更广泛地应用于企业决策、 政府治理等领域,提高决策的科学性 和有效性。
跨界融合与创新
大数据将与云计算、物联网、区块链 等技术相结合,推动跨界融合和创新 发展。

《大数据分析》课件

《大数据分析》课件
《大数据分析》PPT课件
为了帮助大家更深入了解大数据分析,我将为你们带来一场精彩的课程。我 们将探讨大数据分析的意义、基础知识、常用方法和工具,以及它的应用场 景和发展前景。
什么是大数据分析
大数据分析是通过对海量数据进行收集、清洗、处理和分析,来发现模式、 关联和趋势,从而获得深入见解和决策支持的过程。
大数据分析的意义和价值
大数据分析能够帮助企业发现商业机会、降低风险、提高效率、优化决策, 从而在竞争激烈的市场中保持竞争优势。
大数据分析的基础知识
了解数据的类型、特征和处理方法,以及相关的统计学和数学基础,是进行大数据分析的基础。
大数据分析的分类和流程
大数据分析可以分为描述性、诊断性、预测性和决策性分析,而分析过程通 常包括数据收集、数据清洗、数据处理和模型建立。
大数据分析可以应用于市场营销、金融风控、医疗健康、常用方法和技术
大数据分析常用的方法和技术包括数据挖掘、机器学习、自然语言处理等, 这些技术能够帮助提取有价值的信息和知识。
大数据分析的工具和软件
大数据分析可以使用各种工具和软件,如Hadoop、Spark、Python、R等,它 们提供了强大的数据处理和分析能力。
大数据分析的应用场景和案例

大数据ppt课件

大数据ppt课件

数据清洗的主要技术包括去重技 术、异常值处理、缺失值处理等

数据清洗需要考虑数据清洗的质 量和效率。
数据挖掘
数据挖掘是大数据处理流程中 最为核心的部分,主要目的是 从海量数据中提取有用的信息
和知识。
数据挖掘的主要技术包括关 联分析、聚类分析、分类和
预测等。
数据挖掘需要考虑数据挖掘的 准确性和可解释性。
数据可视化
1
数据可视化是大数据处理流程中的重要环节,主 要目的是将复杂的数据以直观的方式呈现给用户 。
2
数据可视化的主要技术包括图表、地图、动画等 。
3
数据可视化需要考虑数据可视化的易用性和美观 性。Biblioteka 03大数据的应用场景
商业智能
总结词
通过大数据技术,企业可以收集、整合和分析海量数据,从而做出更明智的商业决策。
大数据在物联网中的应用
物联网设备产生的大量数据为大数据提供了丰富的数据源,有助于更好地了解用户 需求和行为。
大数据在物联网中的应用包括智能家居、智能交通、智能医疗等领域,将提高生活 和工作的便利性和安全性。
大数据在物联网中的应用将促进各行业的数字化转型,提高生产效率和降低成本。
大数据在云计算中的发展
大数据面临的挑战与解决方案
数据安全与隐私保护
数据安全风险
随着大数据的广泛应用,数据泄 露和恶意攻击的风险也随之增加

隐私保护挑战
如何在收集和使用大数据的同时保 护个人隐私,是一个亟待解决的问 题。
解决方案
采用加密技术、访问控制和审计机 制等手段,确保数据安全和隐私权 益。
数据质量与准确性问题
数据来源多样
数据存储
01
数据存储是大数据处理流程中的重要环节,主要解 决如何高效地存储和管理海量数据的问题。

大数据分析概述PPT课件

大数据分析概述PPT课件
比;文本情感分析 • 数据挖掘:关联规则分析;分类;聚类 • 模型预测:预测模型;机器学习;建模仿真
➢ 大数据技术:
• 结构化数据: 海量数据的查询、统计、更新等操作效率低 • 非结构化数据 图片、视频、word、pdf、ppt等文件存储 不利于检索、查询和存储 • 半结构化数据 转换为结构化存储 按照非结构化存储
网络架构、数据中心、运维的挑战:
人们每天创建的数据量正呈爆炸式增长,但就数据 保存来说,我们的技术改进不大,而数据丢失的可 能性却不断增加。
如此庞大的数据量首先在存储上就会是一个非常严 重的问题,硬件的更新速度将是大数据发展的基石。
一些相关技术
➢ 分析技术:
➢ 存储
• 数据处理:自然语言处理技术 • 统计和分析:A/B test; top N排行榜;地域占
• 数据众包
和半结构化数据
(CrowdSouring) • 分布式文件系统
• 关系数据库
• 非关系数据库
(NoSQL)
• 数据仓库
• 云计算和云存储
• 实时流处理
计算结果展示
分布式文件系统
分布式文件系统(Distributed File System)是指文件系统管理 的物理存储资源不一定直接连接在本地节点上,而是通过计算机 网络与节点相连。
非结构化数据
相对于结构化数据而言,不方便用数据库二维逻辑表来表现 的数据即称为非结构化数据,包括所有格式的办公文档、文 本、图片、XML、HTML、各类报表、图像和音频/视频信息等
等。
Velocity 速度
• 1s 是临界点.
• 对于大数据应用而言,必须要在1秒钟内形成答案,否则处 理结果就是过时和无效的.
• 实时处理的要求,是区别大数据引用和传统数据仓库技术, BI技术的关键差别之一.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
全球每秒钟发送 2.9 百万封电子邮件,一分钟读一篇的话, 足够一个人昼夜不息的读5.5 年… 每天会有 2.88 万个小时的视频上传到Youtube,足够一个 人昼夜不息的观看3.3 年… 推特上每天发布 5 千万条消息,假设10 秒钟浏览一条信息, 这些消息足够一个人昼夜不息的浏览16 年… 每天亚马逊上将产生 6.3 百万笔订单… 每个月网民在Facebook 上要花费7 千亿分钟,被移动互联 网使用者发送和接收的数据高达1.3EB… Google 上每天需要处理24PB 的数据…
“大数据”的显著特征,或者说,只有具备这些特点的数据,才是大数据。
8
Value 价值
• 挖掘大数据的价值类似沙里淘金,从海量数据中挖掘稀疏但珍贵的信息. • 价值密度低,是大数据的一个典型特征.
9
• 2010年海地地震,海地人散落在全国各地,援助人员为 弄清该去哪里援助手忙脚乱。传统上,他们只能通过飞往 灾区上空来查找需要援助的人群。
• 一些研究人员采取了一种不同的做法:他们开始跟踪 海地人所持手机内部的SIM卡,由此判断出手机持有人所 处的位置和行动方向。正如一份联合国(UN)报告所述,此 举帮助他们“准确地分析出了逾60万名海地人逃离太子港 之后的目的地。”后来,当海地爆发霍乱疫情时,同一批 研究人员再次通过追踪SIM卡把药品投放到正确的地点, 阻止了疫情的蔓延。
覆性的价值
15
指数型增长的海量数据
所有研究都表明,未来数年数据量会呈现指数增长。根据麦肯 锡全球研究院(MGI)估计,全球企业2010年在硬盘上存储了 超过7EB(1EB等于10亿GB)的新数据,而消费者在PC和笔 记本等设备上存储了超过6EB新数据。1EB数据相当于美国国 会图书馆中存储的数据的4000多倍。事实上,我们如今产生如 此多的数据,以至于根本不可能全部存储下来。例如,医疗卫 生提供商会处理掉他们所产生的90%的数据(比如手术过程中 产生的几乎所有实时视频图像)。
17
大数据的技术与应用
16
大数据的构成
大数据包括: 交易数据和交互数据 集在内的所有数据集
大数据 = 海量数据 + 复杂类型的数据
海量交易数据: 企业内部的经营交易信息主要包括联机交易数据 和联机分析数据,是结构化的、通过关系数据库 进行管理和访问的静态、历史数据。通过这些数 据,我们能了解过去发生了什么。
海量交互数据: 源于各种网络和社交媒体。它包括了呼叫详细记 录、设备和传感器信息、GPS和地理定位映射数 据、通过管理文件传输协议传送的海量图像文件、 Web文本和点击流数据、评价数据、科学信息、 电子邮件等等。可以告诉我们未来会发生什么。
10
Variety 多样性
•企业内部的经营交易信息;物联网世界中商品,物流信息;互联 网世界中人与人交互信息,位置信息等是大数据的主要来源. •文本/图片/视频 等非结构化/半结构化数据 •能够在不同的数据类型中,进行交叉分析的技术,是大数据的 核心技术之一.语义分析技术,图文转换技术,模式识别技术,地 理信息技术等,都会在大数据分析时获得应用.
5
大数据时代的背景
数据量增加
数据结构日趋复杂
大量新数据源的出现则导致了非结构化、 半结构化数据爆发式的增长
根据IDC 监测,人类产生的数据量正在呈指数级 增长,大约每两年翻一番,这个速度在2020 年之 前会继续保持下去。这意味着人类在最近两年产生 的数据量相当于之前产生的全部数据量。
TB
PB
EB
11
非结构化数据
相对于结构化数据而言,不方便用数据库二维逻辑表来表现的 数据即称为非结构化数据,包括所有格式的办公文档、文本、 图片、XML、HTML、各类报表、图像和音频/视频信息等等

12
Velocity 速度
• 1s 是临界点.
• 对于大数据应用而言,必须要在1秒钟内形成答案,否则处理 结果就是过时和无效的.
大数据分析
——大数据引领我们走向数据智能化时代
1
大数据的定义理解
2
大数据的定义理解
ห้องสมุดไป่ตู้
1
大数据时代的背景
什么是大数据 2
大数据的“4V”特征
3
大数据的构成
3
大数据时代的背景
半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到 了一个开始引发变革的程度。它不仅使世界充斥着比以往更多的信息,而且其 增长速度也在加快。互联网(社交、搜索、电商)、移动互联网(微博)、物 联网(传感器,智慧地球)、车联网、GPS、医学影像、安全监控、金融(银 行、股市、保险)、电信(通话、短信)都在疯狂产生着数据。
价值密度Value
• 大量的不相关信息 • 对未来趋势与模式的可预测分析 • 深度复杂分析(机器学习、人工智能Vs传统商务
智能(咨询、报告等)
速度Velocity
实时分析而非批量式分析 • 数据输入、处理与丢弃 • 立竿见影而非事后见效
“大量化(Volume)、多样化(Variety)、快速化(Velocity)、价值密度低(Value)”就是
ZB
▪ 这些由我们创造的信息背后产生的这些数据早已经远远超越了目前人力所能处理 的范畴
▪ 大数据时代正在来临…
6
大数据时代的背景
20世纪90年代,数据仓库之父的Bill Inmon就经常 提及Big Data。
2011年5月,在“云计算相遇大数据”为主题的EMC World 2011 会议中,EMC 抛出了Big Data概念。
• 实时处理的要求,是区别大数据引用和传统数据仓库技术, BI技术的关键差别之一.
13
Volume 数据量
PB是大数据層次的临界点. KB->MB->GB->TB->PB->EB->ZB->YB->NB ->DB
14
大数据不仅仅是“大”
多大? PB 级
比大更重要的是 数据的复杂性, 有时甚至大数据 中的小数据如一 条微博就具有颠
7
大数据的4V特征 体量Volume
多样性Variety
非结构化数据的超大规模和增长 •占总数据量的80~90% •比结构化数据增长快10倍到50倍 •是传统数据仓库的10倍到50倍
大数据的异构和多样性 • 很多不同形式(文本、图像、视频、机器数据) • 无模式或者模式不明显 • 不连贯的语法或句义
相关文档
最新文档