第1章 工程材料
第1章 工程材料的分类与键合方式
周期表中I、Ⅱ、Ⅲ族元素的原子很容易丢失其价电子而 成为正离子。
被丢失的价电子为全体原子所公有,这些公有化的电子叫 做自由电子,它们在正离子之间自由运动,形成所谓电 子气。
正离子和电子气之间产生强烈的 静电吸引力,使全部离子结合起 来。这种结合力就叫做金属键。
1.1 工程材料的分类 1.2 材料的键合方式
绪论
1.3 材料的键合方式
C
• 工程材料通常是固态材料,
60
是由各种原子通过原子、离
子或分子结合的特定组合而成的。
• 原子、离子或分子之间的结合力称为结合键。
• 根据结合力的强弱,可以把结合键分为强键(离子键、 共价键及金属键)和弱键(分子键)两类。
1.1 工程材料的分类 1.2 材料的键合方式
绪论
绪论
学习要点:
1.1 材料的定义 1.2 材料的分类 1.3 材料的键合方式
绪论
1.1 材料的定义
材料:是指经过某种加工,具有一定结构、 成分和性能,并可应用于一定用途的物质。 一般把来自采掘工业和农业的劳动对象称为 “原料”,把经过工业加工的原料成为“材 料”。
绪论
1.2 材料的分类
1.2.1 金属材料 金属材料是以金属键结合为主的材 料,具有良好的导电性、导热性、延 展性和金属光泽。
绪论
金属由金属键结合,具有度系数,即随温度升高电阻增大。 ③金属不透明并呈现特有的金属光泽。 ④金属具有良好的塑性变形能力,金属材料的强韧性好。
1.1 工程材料的分类 1.2 材料的键合方式
绪论
1.3.2 离子键
当元素周期表中相隔较远的正电性元素原子和负电性元素 原子相接近时,正电性原子失去外层电子变为正离子,负 电性原子获得电子变为负离子。正负离子通过静电引力互 相吸引,当离子间的引力与斥力相等时就形成稳定的离子 键。
工程材料学知识点
工程材料学知识点第一章材料是有用途的物质。
一般将人们去开掘的对象称为“原料”,将经过加工后的原料称为“材料”工程材料:主要利用其力学性能,制造结构件的一类材料。
主要有:建筑材料、结构材料力学性能:强度、塑性、硬度功能材料:主要利用其物理、化学性能制造器件的一类材料.主要有:半导体材料(Si)磁性材料压电材料光电材料金属材料:纯金属和合金金属材料有两大类:钢铁(黑色金属)非铁金属材料(有色金属)非铁金属材料:轻金属(Ni以前)重金属(Ni以后)贵金属(Ag,Au,Pt,Pd)稀有金属(Zr,Nb,Ta)放射性金属(Ra,U)高分子材料:由低分子化合物依靠分子键聚合而成的有机聚合物主要组成:C,H,O,N,S,Cl,F,Si三大类:塑料(低分子量):聚丙稀树脂(中等分子量):酚醛树脂,环氧树脂橡胶(高分子量):天然橡胶,合成橡胶陶瓷材料:由一种或多种金属或非金属的氧化物,碳化物,氮化物,硅化物及硅酸盐组成的无机非金属材料。
陶瓷:结构陶瓷Al2O3,Si3N4,SiC等功能陶瓷铁电压电材料的工艺性能:主要反映材料生产或零部件加工过程的可能性或难易程度。
材料可生产性:材料是否易获得或易制备铸造性:将材料加热得到熔体,注入较复杂的型腔后冷却凝固,获得零件的能力锻造性:材料进行压力加工(锻造、压延、轧制、拉拔、挤压等)的可能性或难易程度的度量焊接性:利用部分熔体,将两块材料连接在一起能力第二章(详见课本)密排面密排方向fcc{111}<110>bcc{110}<111>体心立方bcc面心立方fcc密堆六方cph点缺陷:在三维空间各方向上尺寸都很小,是原子尺寸大小的晶体缺陷。
类型:空位:在晶格结点位置应有原子的地方空缺,这种缺陷称为“空位”。
间隙原子:在晶格非结点位置,往往是晶格的间隙,出现了多余的原子。
它们可能是同类原子,也可能是异类原子。
异类原子:在一种类型的原子组成的晶格中,不同种类的原子占据原有的原子位置。
工程材料第一章 工程材料简介
第二节 金属材料及钢的热处理
(4)可锻铸铁 可锻铸铁是预先浇铸成白口铸铁,再经长时 间石墨化退火完成的。 5.有色金属材料 (1)铜及铜合金 根据所含合金元素的不同,可以分为纯铜、 黄铜、青铜和白铜等。 1)纯铜。 2)加工黄铜,铜和锌的合金称为黄铜,随着含锌量增加, 颜色逐渐变为淡黄。 3)加工青铜。 4)加工白铜。
图1-13 杆件受拉时的计算简图
第四节 构件受力变形及强度条件
(2) 拉伸与压缩时的强度条件 要保证构件工作时不被破 坏,必须使工作应力小于材料的极限应力。 2.剪切
第四节 构件受力变形及强度条件
图1-14 剪切作用的特点
表1-1 洛氏硬度试验原理及应用范围
第一节 工程材料的分类及性质
图1-4 冲击强度试验原理 a)试样安装 b)冲击试验机 1、8—支座 2—冲击点 3、7—试样 4—刻度盘
5—指针 6—摆锤
第一节 工程材料的分类及性质
第一节 工程材料的分类及性质
图1-5 钢铁材料的疲劳曲线
第一节 工程材料的分类及性质
第一节 工程材料的分类及性质
4.复合材料 二、工程材料的性质
工程材料的性质主要有强度、塑性、硬度、冲击强度 和疲劳强度等。 1.强度
图1-1 拉伸试样
第一节 工程材料的分类及性质
2.塑性 (1) 断后伸长率
第一节 工程材料的分类及性质
图1-2 低碳钢的应力应变曲线
第一节 工程材料的分类及性质
5.疲劳强度
第二节 金属材料及钢的热处理
一、常用金属材料 常用的金属材料有钢、铸铁和有色金属等。 1.钢的分类、牌号和应用 2.碳素钢
图1-6 碳元素对力学性能的影响
第二节 金属材料及钢的热处理
工程材料第一章知识点
工程材料第一章一、名词解释晶体晶格晶胞晶面晶向晶体结构各向异性各向同性合金组元二元合金相固溶体金属化合物组织工艺性能使用性能单体二、填空题1、三种常见金属的晶体结构为体心立方晶格、面心立方晶格。
和密排六方晶格。
2、体心立方晶胞中原子个数为 2 ;面心立方晶胞中原子个数为4;密排六方晶体胞中原子个数为 6 。
3、同非金属相比,金属的主要特性是良好的导电性、导热性、塑性,不透明,有光泽,正的电阻温度系数。
4、晶体与非晶体结构上的最根本的区别是晶体内部的原子是按一定几何形状规则排列的,而非晶体则不是。
5、一般可把材料的结合键分为离子键、共价键、金属键和分子键四种。
6、一般将工程材料分为金属材料、高分子材料、陶瓷材料和复合材料等四大类。
7、高分子材料种类很多,工程上通常根据机械性能和使用状态将其分为四大类工程塑料、合成纤维、合成橡胶和胶黏剂。
8、固态物质按其原子(离子或分子)的聚集状态可分为两大类:晶体和非晶体;固态金属一般情况下均是晶体。
9、晶体中的缺陷按其几何形式的特点可分为点缺陷、线缺陷和面缺陷。
10、点缺陷主要有空位、间隙原子和异类原子等;面缺陷主要有晶界和亚晶界等;线缺陷又称为错位。
11、固态金属中有两类基本相:固溶体和金属化合物。
12、按溶质原子在溶剂中的溶解度,固溶体可分为有限固溶体和无限固溶体。
13、按溶质原子在溶剂中的分布是否有规律,固溶体可分为无序固溶体和有序固溶体。
14、金属化合物主要有正常价化合物、电子化合物、间隙化合物等,这类化合物性能的特点是熔点较高、硬度高、脆性大;合金中含有金属化合物时,强度、硬度和耐磨性提高,而和塑性和韧性降低。
15、金属材料的性能包含工艺性能和使用性能两方面。
16、金属材料的工艺性能主要有铸造性能、锻造性能、焊接性能、切削加工性能、等;力学性能主要有强度、塑性、硬度、韧性、疲劳强度等。
17、大分子链可呈现几种不同几何形状,主要有线型、支化型和体型等三类。
第1章 工程 材料的种类和力学性能
传统的无机非金属材料 之一:陶瓷
陶瓷按其概念和用途不同 ,可分为两大类,即普通陶瓷 和特种陶瓷。
根据陶瓷坯体结构及其基 本物理性能的差异,陶瓷制品 可分为陶器和瓷器。
陶瓷制品
陶瓷发动机
• 普通陶瓷即传统陶瓷,是指以粘土为主要原料与其它天然矿物原料经过 粉碎混练、成型、煅烧等过程而制成的各种制品。包括日用陶瓷、卫生 陶瓷、建筑陶瓷、化工陶瓷、电瓷以及其它工业用陶瓷。
材料的强度、塑性指标是通过拉伸实验 测定的。
应力 σ=F/S0
σ (N /m2) ;
F —作用力,(N) S0—试样原始截面 积(m2)。
剪应力τ=F/SO
材料单位面积上的内力称为应力(Pa),以
σ表示。
应变ε(%) ⊿L—试样标距部分伸长量,(mm);
L0 —试样标距部分长度(mm)。ε=⊿L/L0
根据用途不同,特种玻璃分为防辐射玻璃、激光玻璃、 生物玻璃、多孔玻璃、非线性光学玻璃和光纤玻璃等。
传统的无机非金属材料 之三:水泥
水泥是指加入适量水 后可成塑性浆体,既能在 空气中硬化又能在水中硬 化,并能够将砂、石等材 料牢固地胶结在一起的细 粉状水硬性材料。
水泥的种类很多,按其用途和性能可分为: 通用水泥、专用水泥和特性水泥三大类;按其所 含的主要水硬性矿物,水泥又可分为硅酸盐水泥 、铝酸盐水泥、硫铝酸盐水泥、氟铝酸盐水泥以 及以工业废渣和地方材料为主要组分的水泥。目 前水泥品种已达一百多种。
l lO
ll lO
lO lO
l
100lO% lO
100%
剪应变 γ 剪模量 G
a h
tan
且有 G
• 弹性变形 形①的弹外性力变撤形除:后当,产变生形变随σ 即消失。
金属工艺学第1章-3
依附生长 室温相组成:F + Fe3C
组织组成物:P + Fe3CII
<金属工艺学> 38
过共析钢组织金相图
<金属工艺学>金属工艺学> 40
共晶白口铸铁
1 1' L L Ld Ld ( A Fe3C 共晶 )
Ld ( A Fe3C 共晶 Fe3CII )
AECF线——固相线
共晶点
ES线(Acm线)
PSK线(A1线)——共析线
PQ线
<金属工艺学> 26
铁 碳 合 金 相 图
α单相区
4个单相区 L单相区
γ单相区
Fe3C单相区
<金属工艺学> 27
铁 碳 合 金 相 图
5个两相区 L+γ两相区 L+Fe3C两相区
α+γ两相区
γ+Fe3C两相区
α+Fe3C两相区
2 Ld ( A Fe3C 共晶 Fe3CII )
Ld '[ P ( F Fe3C 共析 ) Fe3C 共晶 Fe3CII] Ld '[ P ( F Fe3C 共析 ) Fe3C 共晶 Fe3CII]
2'
Ld '[ P ( F Fe3C 共析 Fe3CIII Fe3C 共晶 Fe3CII] )
第一章 工程材料导论
Pb与Sb在液态时完全互溶,在固态时完全不互溶
一、合金的相图
第三节 铁碳合金相图和常用钢铁材料
共晶转变 L
13%Sb
2. 共晶合金的概念
(Pb+Sb)共晶
<金属工艺学>
第一章工程材料的力学性能
第二节 材料的硬度 一、布氏硬度HBW 补充说明: (1)硬度超过HB650的材料,不能做布氏硬度试验,这是因为
所采用的压头,会产生过大的弹性变形,甚至永久变形,影 响实验结果的准确性,这时应改用洛氏和维氏硬度试验。 (2)每个试样至少试验3次。试验时应保证两相邻压痕中心的 距离不小于压痕平均直径的4倍,对于较软的金属则不得小于 6倍。压痕中心距试样边缘的距离不得小于压痕直径的2.5倍, 对于软金属则不得小于3倍
可用硬度试验机测定,常用的硬度指标有布氏硬度 HBW、 洛氏硬度(HRA、HRB、HRC等)和维氏硬度HV
第二节 材料的硬度 一、布氏硬度HBW (一)试验原理
布氏硬度试验规范
3 8
第二节 材料的硬度 一、布氏硬度HBW (二)应用范围
布氏硬度主要用于组织不均匀的锻钢和铸铁的硬度 测试,锻钢和灰铸铁的布氏硬度与拉伸试验有着较好的对 应关系。布氏硬度试验还可用于有色金属和软钢,采用小 直径球压头可以测量小尺寸和较薄材料。布氏硬度计多用 于原材料和半成品的检测,由于压痕较大,一般不用于成 品检测。
最大力伸长率(Agt):最大 力时原始标距的伸长与原 始标距之比的百分率。
最大力非比例伸长率(Ag)
二、拉伸曲线所确定的力学性能指标及意义
断后收缩率(Z):断裂后试样横截面积的最大缩减量与原始横截面 各之比的百分率。
第二节 材料的硬度
材料抵抗其他硬物压入其表面的能力称为硬度,它 是衡 量材料软硬程序的力学性能指标。
洛氏硬度计
第二节 材料的硬度 二、洛氏硬度HR (一)实验原理
第二节 材料的硬度 二、洛氏硬度HR (二)应用范围(共15个标尺) 示例:60HRBW
《工程材料》第一章第二节 材料的结合方式及工程材料键性
要以晶体形式存在。晶体具有各向异性。
下晶体和非晶体iO2的结构
非晶态
第二节 材料的结合方式 及工程材料键性
一 、结合键
● ●
原子、离子或分子之间的结合力称为结合键。 一般可把结合键分为
离子键、共价健、金属键和分子键四种。
1. 离子键 正离子和负离子由静电引力相互吸引;同时当它们 十分接近时发生排斥,引力和斥力相等即形成稳定 的离子键。NaCl、CaO、Al2O3等由离子键组成。
2. 共价键
由共用价电子对产生的结合键叫共价键。最具有代 表性的共价晶体为金刚石。属于共价晶体的还有 SiC、Si3N4、BN等化合物。
共价键的结合力很大,所以共价晶体强度高、硬 度高、脆性大、熔点高、沸点高和挥发性低。
3. 金属键
正离子和电子气之间产生强烈的静电吸引力,使
全部离子结合起来。这种结合力就叫做金属键。
二、工程材料的键性
1. 金属材料
工程应用的金属材料,原子间的结
合键基本上为金属键,皆为金属晶 体材料。
2. 陶瓷材料
存在有一定成分的共价键,但离子
键是主要的。
3. 高分子材料
大分子内的原子之间由很强的共价 键结合,而大分子与大分子之间的结 合力为较弱的范特瓦尔斯力。
三、晶体与非晶体
晶体是指原子呈规则排列的固体。常态下金属主 非晶体是指原子呈无序排列的固体。在一定条件
金属键无所谓饱和性和方向性。
金属键的特性
1. 良好的导电性和导热性。 2. 正的电阻温度系数。
绝大多数金属具有超导性,即 在温度接近于绝对零度时电阻 突然下降,趋近于零。
3.良好的塑性变形能力,金属材料的强韧性好。
第一章工程材料中的原子排列
第一章1.作图表示立方晶系中的(123)、)210(、(421)晶面和[]021、]112[、[346]晶向。
2.分别计算面心立方结构与体心立方结构的{100},{110}和111晶面族的面间距,并指出面间距最大的晶面(设两种结构的点阵常数均为a).3.分别计算fcc和bcc中的{100},{110},{111}晶面族的原子面密度和<100>,<110>,<111>晶向族的原子线密度,并指出两种结构的差别.(提示:晶面原子密度为单位面积中的原子数;晶向原子密度为单位长度上的原子数)4.在10)[2晶向。
111(0面上绘出3]5.在六方晶系中画出以下常见晶向[0001],]0112[、]0111[、]0121[等。
[、]01026.若将一块铁进行加热至850度,然后快速冷却到20度的热处理,试计算处理前后空位数应增加多少倍。
(设铁中形成1mol空位所需要的能量为104600J)7.在一个简单立方二维晶体中,画出一个正刃型位错和一个负刃型位错.试求:(1)用柏氏回路求出正、负刃型位错的柏氏矢量.(2)若将正、负刃型位错反向时,说明其柏氏矢量是否也随之反向.(3)具体写出该柏氏矢量的方向和大小.(4)求出此两位错的柏氏矢量和.8.设图1-72所示立方晶体的滑移面ABCD平行于晶体的上、下底面,该滑移面上有一正方形位错环.如果位错环的各段分别与滑移面各边平行,其柏氏矢量b//AB,试解答:(1)有人认为”此位错环运动离开晶体后,滑移面上产生的滑移台阶应为4个b”,这种看法是否正确?为什么?(2)指出位错环上各段位错线的类型;并画出位错移出晶体后,晶体的外型、滑移方向及滑移量。
(设位错环线的方向为顺时针方向)9.设图1-73b所示立方晶体中的滑移面ABCD平行于晶体的上、下底面,晶体中有一位错线fed,de段在滑移面上并平行于AB,ef段垂直于滑移面,位错的柏氏矢量b与de平行而与ef垂直。
工程材料的分类性能及应用范围
工程材料的分类性能及应用范围第一章一、工程材料的分类、性能及应用范畴;工程材料可分为金属材料(黑色金属及有色金属)、非金属材料(高分子材料及无机非金属材料)和复合材料等。
(一)金属材料1 .黑色金属( 1 )生铁、铁合金。
生铁分炼钢生铁和铸造生铁。
铁与任何一种金属或非金属的合金都叫做铁合金。
( 2 )铸铁。
具有优良的铸造性能和良好的耐磨性、消震性及低的缺口敏锐性。
还具有良好的耐热性和耐腐蚀性。
铸铁包括:灰口铸铁、孕育铸铁、可锻铸铁、球墨铸铁、合金铸铁。
(3 )钢。
①钢的分类如下: A .按化学成分分类,可将钢分为碳素钢和合金钢。
B .按冶炼质量分类,可将钢分为一般钢、优质钢和高级优质钢。
C .按用途分类,可将钢分为结构钢、工具钢、专门性能钢等。
D .按冶炼方法分类,可将钢分为平炉钢、转炉钢、电炉钢。
E .按脱氧程度分类,可将钢分为冷静金刚、半冷静钢和沸腾钢。
F .按金相组织分类,在退火状态下,可将钢分为亚共析钢、共析钢、过共析钢;在正火状态下,可将钢分为珠光体钢、贝氏体钢、奥氏体钢。
G .按供应时的保证条件分类,可将钢分为甲类钢、乙类钢和特类钢。
②钢的牌号表示方法。
依照牌号能够看出钢的类别、含碳量、合金元素及其含量、冶炼质量以及应该具备的性能和用途。
例如甲类钢牌号用“A”字加上阿拉伯数字0 、1 、2 、3 、4 、5 、6 、7 表示。
又如20 号钢号,表示平均含碳量为0.20% 的钢。
再如9Cr18 表示平均含碳量为0.9% 、含Cr 量为18% 的不锈钢。
③国外钢的牌号的要紧特点方(略)。
④几种常用钢的要紧特点及用途。
A .一般碳素钢分甲类钢和乙类钢两种。
甲类钢多用于建筑工业使用的钢筋,机械制造中使用的一般螺钉、螺母、垫圈、轴套等,也能轧成板材、型材(如工字钢、槽钢、角钢等);乙类钢的用途与相同数字的甲类钢相同。
B .一般低合金钢是在一般碳素钢的基础上。
加入了少量的合金元素,不仅具有耐腐蚀性、耐磨损等优良性能,还具有更高的强度和良好的力学性能。
材料科学基础第一章
5)晶体中原子的堆垛方式
39
40
6)晶体结构的多晶型性
多晶型性:有些金属(如Fe, Mn,Ti,Co,Sn,Zr等) 固 态下在 不同温 度或不 同 范 围内具 有不同 的晶体 结 构的性质。 同素异构转变:多晶型的金属在温度或压力变 化时,由一种结构转变为另一种结构的过程称 为多晶型性转变,也称为同素异构转变。
晶胞-空间点阵中反映晶格特征的最小的几何 单元。
10
通常是在晶格中取一个最小的平行六面体作为 晶胞。 晶胞参数: 点阵常数晶胞大小 晶轴夹角晶胞形状
11
晶胞选取原则:
a 能够充分反映空间点阵的对称性;
b 相等的棱和角的数目最多;
c 具有尽可能多的直角;
d 体积最小。
12
结构晶胞:构成了晶体结构中有代表性的部分 的晶胞。 特点:空间重复堆垛,就得到晶体结构。
44
SiC型:类似于金刚石型 SiO2型:面心立方 点阵,1个硅原子 被4个氧原子所包 围,每个氧原子则 介于两个硅原子之 间,起着连接两个 四面体的作用。单 胞共有24个原子。
45
第三节 原子的不规则排列
原子的不规则排列产生晶体缺陷(在晶体中所 占比例低)。 晶体缺陷:晶体中原子偏离其平衡位置而出现 不完整性的区域。 晶体缺陷是以一定的形态存在,按一定的规律 产生、发展、运动和交互作用,对晶体的性能 和物理化学变化有重要的影响。
53
2)螺型位错 screw dislocation
模型:滑移面//位错线。(位错线//晶体滑移方 向,位错线┻位错运动方向,晶体滑移方向┻位 错运动方向。) 分类:左螺型位错,右螺型位错。 左螺型位错和右螺型位错有着本质的区别。 无论位置如何摆放也不会改变其类型。 螺型位错特征:滑移方向//位错线
工程材料基础知识 课后习题答案
第一章工程材料根底知识参考答案1.金属材料的力学性能指标有哪些?各用什么符号表示?它们的物理意义是什么?答:常用的力学性能包括:强度、塑性、硬度、冲击韧性、疲劳强度等。
强度是指金属材料在静荷作用下抵抗破坏〔过量塑性变形或断裂〕的性能。
强度常用材料单位面积所能承受载荷的最大能力〔即应力σ,单位为Mpa〕表示。
塑性是指金属材料在载荷作用下,产生塑性变形〔永久变形〕而不被破坏的能力。
金属塑性常用伸长率δ和断面收缩率ψ来表示:硬度是指材料抵抗局部变形,特别是塑性变形、压痕或划痕的能力,是衡量材料软硬程度的指标,是一个综合的物理量。
常用的硬度指标有布氏硬度〔HBS、HBW〕、洛氏硬度〔HRA、HRB、HRC等〕和维氏硬度〔HV〕。
以很大速度作用于机件上的载荷称为冲击载荷,金属在冲击载荷作用下抵抗破坏的能力叫做冲击韧性。
冲击韧性的常用指标为冲击韧度,用符号αk表示。
疲劳强度是指金属材料在无限屡次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。
疲劳强度用σ–1表示,单位为MPa。
2.对某零件有力学性能要求时,一般可在其设计图上提出硬度技术要求而不是强度或塑性要求,这是为什么?答:这是由它们的定义、性质和测量方法决定的。
硬度是一个表征材料性能的综合性指标,表示材料外表局部区域内抵抗变形和破坏的能力,同时硬度的测量操作简单,不破坏零件,而强度和塑性的测量操作复杂且破坏零件,所以实际生产中,在零件设计图或工艺卡上一般提出硬度技术要求而不提强度或塑性值。
3.比拟布氏、洛氏、维氏硬度的测量原理及应用范围。
答:〔1〕布氏硬度测量原理:采用直径为D的球形压头,以相应的试验力F压入材料的外表,经规定保持时间后卸除试验力,用读数显微镜测量剩余压痕平均直径d,用球冠形压痕单位外表积上所受的压力表示硬度值。
实际测量可通过测出d值后查表获得硬度值。
布氏硬度测量范围:用于原材料与半成品硬度测量,可用于测量铸铁;非铁金属〔有色金属〕、硬度较低的钢〔如退火、正火、调质处理的钢〕〔2〕洛氏硬度测量原理:用金刚石圆锥或淬火钢球压头,在试验压力F 的作用下,将压头压入材料外表,保持规定时间后,去除主试验力,保持初始试验力,用剩余压痕深度增量计算硬度值,实际测量时,可通过试验机的表盘直接读出洛氏硬度的数值。
工程材料 第一章 材料的性能及应用意义
HR = (0.2 - △h) / 0.002 (mm),
其中 △h = h1 - h0
一、力学性能
§1.2 材料的使用性能
一、力学性能
§1.2 材料的使用性能
一、力学性能
§1.2 材料的使用性能
洛氏硬度计
一、力学性能
3. 维氏硬度(HV) GB4342 -1984
(1)金刚石正四棱锥压头,精确 操作复杂,适用于科学研究。 (2)压力可选5~120Kg间的特定 值,适用各种硬度值的测量。 (3)压痕小,可测表面硬化层。
冲击吸收功AK
1 2
3
TK
温度T
三种不同冷脆倾向的材料
1—面心立方晶格的金属 2—中、低强度体心立方晶格的金属 3—高强度材料
一、力学性能
§1.2 材料的使用性能
冲击吸收功的测定
一、力学性能
不同材料的冲击抗力:
§1.2 材料的使用性能
冲击能量A
A'
A" N'
K 1
2
N"
冲击破断次数 lgN
1—高强度低韧性材料 2—低强度高韧性材料
§1.2 材料的使用性能
一、力学性能
§1.2 材料的使用性能
一、力学性能
§1.2 材料的使用性能
(六)韧性——材料在塑性变形和断裂的全过程中吸收能量的能 力,它是材料强度和塑性的综合表现。
韧性不足可用脆性来表达。 韧性高低决定是韧性断裂,还是脆性断裂。
一、力学性能
§1.2 材料的使用性能
1. 冲击韧度 Ak ——材料抵抗冲击载荷的能力
二、物理性能
§1.2 材料的使用性能
(一)密度 (二)热学性能:熔点、热容、热膨胀、热传导等。 (三)电学性能:电阻率、电阻温度系数、介电性。 (四)磁学性能:磁导率、饱和磁化强度和磁矫顽力。
第一章 工程材料中的原子排列课件
不依靠电子的转移 或共享,靠原子间 的偶极吸引力结合
4
一次键 价电子转移或共用电子云
包括
离子键
价电子的转移 正负离子相互吸引 键合很强 无方向性 熔点高,硬度高 固态不导电 导热差
NaCl、CrO2、Al2O3
共价键
相邻原子 共用电子对 键合强 有方向性 熔点高,硬度高 不导电 导热性有好有差 金刚石、SiO2
金属键
自由电子为 所有阳离子共有 键合较强 无方向性
熔点、硬度有高有低
导电性好 导热性好
Fe、Al、Cu、Hg
5
二次键 原子间的偶极吸引力结合
包括
分子键
分子或分子团的 弱电性相互吸引 键合很弱 无方向性 熔点低、硬度低 不导电 导热性差 塑料、石蜡
氢键
类似分子键 氢原子起关键作用
键合弱 有方向性 熔点、硬度低 不导电 导热性好 水、冰、DNA
1
总目的
有效使用现有材料,发展新型材料
需要
了解决定材料性能的本质(内在)因素
即
了解材料内部的微观结构
首先掌握
本章目的 晶体结构——键合、原子排列方式及相互作用
2
材料的性能
取决于
内部结构包括
显微组织
晶 体
包括
非晶体
完整
不完整
3
原子键合
分为
一次键
即
二次键
即
价电子转移或 共用电子云达 到稳定结构
9
陶瓷材料 ——— 共价键+离子键
天然蓝宝石 MgSO4晶须
Al2O3晶体
蓝宝石头罩
镁铝尖晶石MgAl2O4
10
2. 两种或多种键合独立存在
气体 ——分子内为共价键,分子间为分子键 高分子材料 ——分子内为共价键,分子间为分子键或氢键
工程材料学_第一章-金属学基础知识
晶向(crystal direction) :
通过晶体中任意两个原子中心连线来表示晶体结构的空间的各 个方向。 晶胞原子数:一个晶胞内包含的原子数目。
原子半径:晶胞中原子密度最大的方向上相邻两原子之间
平衡距离的一半,与晶格常数有一定的关系。 配位数:晶格中任一原子处于相等距离并相距最近原子数
的性能、塑性变形及其组织 转变均有极为重要的作用 。
通过冷塑性变形,提高位错
密度使得金属强度、硬度提
高的方法称为加工硬化。
面缺陷-晶界与亚晶界
大角度晶界---晶界
小角度晶界---亚晶界
大角度晶界---晶界
小角度晶界---亚晶界
小角度晶界---亚晶界
大角度晶界---晶界
金属的晶体结构
合金与合金的相结构
•单相合金组织(homogeneous structure )与多相合金组织 (Heterogenous structure):显微组织为单相的称为单相组织,为 多相的称为多相组织。
•合金组织的相:构成合金组织的各个相称为合金组织的相。 • 相结构:相组成物的晶体结构称为合金的相结构
二、合金的相结构
点位置的异类原子
线缺陷
位错( dislocation ):晶格的一部分相对
于另一部分发生的局部滑移现象,或者说 局部原子发生有规律的位置错排现象
面缺陷
晶界( grain boundary ) 亚晶界( sub-boundary )
点缺陷
置换原子
间隙原子
化合物离子晶体两种常见的缺陷
晶格空位
(1)晶面(crystal face)和晶向( crystal directions ):
晶向指数(indices of directions)和晶面指数(indices of crystal-plane)是分
第一章工程材料课后习题
第一章 绪 论
题号 页码
1-3 (1)
1-4 (1)
(也可通过左侧题号书签直接查找题目与解)
1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为max σ=100MPa ,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C 点为截面形心。
题1-3图
解:由题图所示正应力分布可以看出,该杆横截面上存在轴力N F 和弯矩z M ,其大小分别为
200kN N 10002m)0400m 1000()m
N 10100(2121526max N =×=××××==
...A σF m kN 333m N 10333m)1000(N)10200(6
161)32(33N N ⋅=⋅×=×××==−=...h F h h F M z
1-4 板件的变形如图中虚线所示。
试求棱边AB 与AD 的平均正应变以及A 点处直角BAD 的切应变。
题1-4图
解:平均正应变为 3-31000.1m
100.0m 100.1−×=×==x AB εε
331000.2m 100.0m 102.0−−×=×==y AD εε 由转角 rad 100020.100m
m 102033−−×=×=..αAD rad 100010.100m m 101033−−×=×=..αAB
得A 点处直角BAD 的切应变为
rad 100013−×=−==.ααAB AD BAD A γγ。
第一章工程材料的分类与性能指标
如果材料的屈服强度很低而断裂韧度很高,即
使材料中存在裂纹,则在外载荷作用下,材料先发
ห้องสมุดไป่ตู้
生塑性变形,使进一步的破坏为韧性断裂,例如:
中、小截面的中、低强度材料就属于这种情况。这
时断裂韧度就不适合作为材料断裂抗力的主要指标。
当模具的截面尺寸很大或模具材料的强度很高
时,发生裂纹失稳扩展快速断裂的倾向性增加。截 面尺寸大,可能包含的裂纹缺陷就多,而且易造成 硬性的平面应变状态,材料的韧性不能发挥作用, 裂纹前端的应力场强度大,材料的强度高,其塑性 和韧性往往较低,较小的裂纹尺寸即可导致快速断 裂。因此,在这种情况下,为防止低应力脆性断裂, 应该对材料的断裂韧度值提出一定的要求。
(3)疲劳抗力指标 疲劳曲线和疲劳极限:
疲劳曲线
疲劳曲线是疲劳应力与 疲劳寿命(-N)的关系 曲线,也称维勒曲线。
疲劳曲线与疲劳极限 (-1)的测定参阅 国家标准GB4337-84。 (旋转弯曲疲劳实验, 正弦波对称循环条件 下)
对于σb ≤1300MPa的中低强度钢和铸铁材料-N曲线出现水平部分。
疲劳断裂的特点:
· 失效抗力低,应力水平低于材料的抗拉强度, 甚至低于屈服强度。
不论是脆性材料还是韧性材料,均表现为突然 脆性断裂,断口处无明显的宏观塑性变形。
对材料表面及内部缺陷高度敏感。(零件表面 应力集中部位、加工和使用过程中造成的表面损伤、 材料本身的冶金缺陷等均易成为疲劳源。尤其是表 面存在较大拉应力时,疲劳裂纹多萌生于表面应力 集中处。)
无裂纹材料的断裂抗力
一般中、小截面尺寸的中、低强度材料,可
以认为是均匀连续的,没有宏观裂纹存在(即使有
微小裂纹,对断裂过程也不产生重要影响)。
第1章工程材料的基本知识
第1章工程材料的基本知识第1章工程材料的基本知识主要内容:1.1 金属材料1.2 非金属材料的力学性能一、工程材料的种类:工程材料:金属材料、非金属材料和复合材料;1、金属材料:黑色金属、有色金属2、非金属材料:高分子材料、陶瓷材料3、复合材料:金属基复合材料、非金属基复合材料1、使用性能:力学性能、物理性能、化学性能;2、工艺性能:铸造性能、锻造性能、焊接性能、切削加工性能、热处理性能;二、工程材料的主要性能:1.1 金属材料金属材料的力学性能也称机械性能,指金属材料在外载荷1.1.1 金属材料的力学性能作用下,其抵抗变形和破坏的能力;注意:材料在不同的外部条件和载荷作用下,会呈现出不同的特性;如:常温状态下和高、低温状态下金属材料的力学性能就不一样;静载荷和动载荷作用下金属材料的力学性能也不一样;常见的金属材料的力学性能有:强度、塑性、硬度、韧性、疲劳强度等;1、强度和塑性(1)强度强度是指金属材料在外(静)载荷作用下抵抗塑性变形和断裂的能力。
强度指标一般用单位面积所承受的载荷(即力)表示,符号为σ,单位为MPa。
工程中常用的强度指标有屈服强度和抗拉强度。
屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。
抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用σb表示。
对于大多数机械零件(如压力容器),工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件(如螺栓),而用抗拉强度作为其强度设计的依据。
(2)塑性塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力。
工程中常用的塑性指标有伸长率和断面收缩率。
伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号δ表示。
断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用表示。
伸长率和断面收缩率越大,其塑性越好;反之,塑性越差。
良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品课件
上一页 下一页 返回
2)维氏1.硬1度试金验的属优缺材点料的力学性能
维氏硬度试验的优点是不存在布氏硬度试验时要求载荷与 压头直径之间所规定条件的约束.也不存在洛氏硬度试验时不 同标尺的硬度值无法统一的弊端。维氏硬度试验时不仅载荷 可任意选取.而且压痕测量的精度较高.硬度值较为精确。唯 一的缺点是硬度值需要通过测量压痕对角线长度后才能进行 计算或查表.因此工作效率比洛氏硬度试验低得多。
精品课件
上一页 下一页 返回
1.1 金属材料的力学性能
3.维氏硬度及显微硬度
1)维氏硬度试验原理
维氏硬度的试验原理与布氏硬度的相同.也是根据压痕单位 面积所承受的载荷来计算硬度值。所不同的是.维氏硬度试验 的压头不是球体.而是两相对面夹角为136°的正四棱锥体金 刚石. 压头在载荷F(kg)的作用下.保持一定时间后卸除载荷. 将在试样表面压出一个正四棱锥形的压痕.测量出试样表面压 痕对角线长度d(mm)用以计算硬度值。维氏硬度和压痕表面积 除载荷的商成比例.
精品课件
上一页 下一页 返回
1.1 金属材料的力学性能
2.洛氏硬度 1)洛氏硬度试验原理 洛氏硬度试验是以顶角为120°的 金刚石圆锥体为压头.在规定的载荷下.垂直地压人被测金属 材料表面.卸载后依据压人深度h.由刻度盘上的指针直接指示 出硬度值。 2)常用洛氏硬度标尺 采用不同的压头和载荷.可组合成几种不同的洛氏硬度标尺。 每一种标尺用一个字母在HR后注明。我国最常用的标尺的有 A,B, C3种.其硬度值的符号分别用HRA, HRB及HRC表示。用 不同标尺测得的硬度值彼此没有联系.不能直接进行比较。
1.屈服强度 屈服强度是指拉伸试样产生屈服现象时的应力. 2.抗拉强度 抗拉强度是指金属材料在拉断前所能承受的最大应力.
精品课件
下一页 返回
1.1 金属材料的力学性能
1.1.2塑性
塑性是指在外力作用下金属材料产生永久变形而不被破坏 的能力。塑性指标也是由拉伸试验测得的.在测定金属材料的 强度时.可以同时测定它们的塑性。常用的塑性指标是延伸率 和断面收缩率。
2)小能量多次冲击试验
机器零件在实际工作中承受冲击载荷.很少是在大能量下 一次冲击而破坏的.大多是受到小能量多次重复冲击而破坏的. 因此.在大能量、一次冲断条件下来测定冲击韧度.虽然方法 简便.但对大多数在工作中承受小能量、重复冲击的机器零件 来说就不一定适合。
实践表明一次冲击韧度高的金属材料.在小能量多次冲击试 验条件下其抗力却不一定高.反过来也一样。
试验研究表明.金属材料受大能量的冲击载荷作用时.其冲 击抗力主要取决于冲击韧度的大小.而在冲击载荷不太大的情 况下.金属材料承受多次重复冲击的能力.主要取决于金属材 料的强度.而不要求过高的冲击韧度.
精品课件
上一页 下一页 返回
1.1 金属材料的力学性能
3)优缺点
洛氏硬度试验的优点是操作简便迅速.硬度值可直接读出. 压痕较小.可在工件上直接进行试验.采用不同标尺可测定各 种软硬不同的金属材料和厚薄不一的试样的硬度.因而广泛用 于热处理质量的检验。其缺点是压痕较小.代表性差.由于金 属材料中有偏析及组织不均匀等缺陷.致使所测硬度值重复性 差.分散度大。
里氏硬度试验法有其独特的优点.它主要用于大型金属产品 及部件的硬度检验.特别适用于其他硬度计难以胜任的、不易 移动的大型工件和不易拆卸的大型部件及构件的硬度检验。 其缺点是试验结果的准确性受人为因索影响较大.硬度测量精 度较低。
精品课件
上一页 下一页 返回
1.1 金属材料的力学性能
1.1.4冲击韧性与疲劳强度
1.1.3硬度
硬度是衡量金属材料软硬程度的一种性能。金属材料的硬 度是通过硬度试验来测定的.目前测定金属材料硬度的方法有 很多种.基本上可分为压人法和刻划法两大类。在压人法中. 根据加载速率不同又可分为静载压人法和动载压人法。
精品课件
上一页 下一页 返回
1.1 金属材料的力学性能
1.布氏硬度
1)布氏硬度的测定原理
3)显微硬度
显微硬度试验实质上就是小载荷的维氏硬度试验.其原理和 维氏硬度试验一样.所不同的是载荷以克计量.压痕对角线以 μm计量.显微硬度符号用HM表示。主要用来测定各种组成相 的硬度和表面硬化层的硬度分布。
精品课件
上一页 下一页 返回
1.1 金属材料的力学性能
4.里氏硬度
里氏硬度是一种动载荷试验方法。其基本原理是用规定质 量的冲击体(碳化钨球冲头)在弹力作用下以一定速度冲击试 样表面.用冲头在距试样表面1mm处的回弹速度vR与冲击、速 度vA的比值计算硬度值。
使用一定直径为D(mm)的淬火钢球或硬质合金球为压头.施 以一定的载荷F(kg).将其压人试样表面.经规定保持时间t(S) 后卸除载荷.然后测量试样表面压痕直径d(mm).用压痕表面积 S除载荷F所得的商值即为布氏硬度值.
精品课件
上一页 下一页 返回
1.1 金属材料的力学性能
2)应用及优缺点 布氏硬度试验时一般采用直径较大的压头.因而所得压痕面 积较大。压痕面积大的一个优点是其硬度值能反映金属材料 在较大范围内各组成相的平均性能.而不受个别组成相及微小 不均匀性的影响。因此.布氏硬度试验特别适用于测定灰铸铁、 轴承合金等具有粗大晶粒或组成相的金属材料的硬度。压痕 较大的另一个优点是试验数据稳定.重复性好。布氏硬度试验 的缺点是对不同金属材料需要更换不同直径的压头和改变载 荷.压痕直径的测量也较麻烦.因而用于自动检测时受到限制; 当压痕较大时不宜在成品上进行试验。
第1章 工程材料
1.1 金属材料的力学性能 1.2 铁碳合金 1.3 钢的热处理 1.4 常用金属材料 1.5 其他材料简介
精品课件
1.1.1强1.度1 金属材料的力学性能
强度是金属材料在力的作用下.抵抗塑性变形和断裂的能力。 强度有多种判据.工程上以屈服强度和抗拉强度最为常用。屈 服强度和抗拉强度可用拉伸试验测定。
1.冲击韧性
金属材料抵抗冲击载荷作用而不破坏的能力称为冲击韧性。
1)冲击试验的原理
冲击韧性通常采用摆锤式冲击试验机测定。测定时一般是 将带缺日的标准冲击试样放在试验机上.然后用摆锤将其一次 冲断.并以试样缺口处单位截面积上所吸收的冲击功表示其冲 击韧性。
精品课件
上一页 下一页 返回
1.1 金属材料的力学性能