数字电路-时序
数电基础:时序逻辑电路
数电基础:时序逻辑电路虽然每个数字电路系统可能包含有,但是在实际应⽤中绝⼤多数的系统还包括,我们将这样的系统描述为时序电路。
时序电路是由最基本的加上反馈逻辑回路(输出到输⼊)或器件组合⽽成的电路,与最本质的区别在于时序电路具有记忆功能。
1. 简介是数字逻辑电路的重要组成部分,时序逻辑电路⼜称,主要由 存储电路 和 组合逻辑电路 两部分组成。
它和我们熟悉的其他电路不同,其在任何⼀个时刻的输出状态由当时的输⼊信号和电路原来的状态共同决定,⽽它的状态主要是由存储电路来记忆和表⽰的。
同时时序逻辑电路在结构以及功能上的特殊性,相较其他种类的数字逻辑电路⽽⾔,往往具有难度⼤、电路复杂并且应⽤范围⼴的特点 。
在数字电路通常分为和时序逻辑电路两⼤类,组合逻辑电路的特点是输⼊的变化直接反映了输出的变化,其输出的状态仅取决于输⼊的当前的状态,与输⼊、输出的原始状态⽆关,⽽是⼀种输出不仅与当前的输⼊有关,⽽且与其输出状态的原始状态有关,其相当于在组合逻辑的输⼊端加上了⼀个反馈输⼊,在其电路中有⼀个存储电路,其可以将输出的状态保持住,我们可以⽤下图的框图来描述时序电路的构成。
从上⾯的图上可以看出,其输出是输⼊及输出前⼀个时刻的状态的函数,这时就⽆法⽤组合逻辑电路的函数表达式的⽅法来表⽰其输出函数表达式了,在这⾥引⼊了现态(Present state)和次态(Next State)的概念,当现态表⽰现在的状态(通常⽤Qn来表⽰),⽽次态表⽰输⼊发⽣变化后其输出的状态 (通常⽤Qn+1表⽰),那么输⼊变化后的输出状态表⽰为Qn+1=f(X,Qn),其中:X为输⼊变量。
组合电路和存储元件互联后组成了时序电路。
存储元件是能够存储信息的电路。
存储元件在某⼀时刻存储的⼆进制信息定义为该时刻存储元件的状态。
时序电路通过其输⼊端从周围接受⼆进制信息。
时序电路的输⼊以及存储元件的当前状态共同决定了时序电路输出的⼆进制数据,同时它们也确定了存储元件的下⼀个状态。
时序逻辑电路-数字部分
根据输入信号的变化进行状态的转移。常见的触发器有RS触发器、D触
发器和JK触发器等。
02
寄存器
寄存器是时序逻辑电路中的一种存储元件,它能够存储多位二进制代码,
并根据时钟信号的变化进行数据的读取和存储。常见的寄存器有移位寄
存器和计数器等。
03
组合逻辑电路
组合逻辑电路是时序逻辑电路中的一种电路形式,它由门电路组成,根
微处理器
微处理器的控制逻辑部分 通常由时序逻辑电路实现, 如指令译码器、控制逻辑 电路等。
内存控制器
内存控制器中包含时序逻 辑电路,用于协调CPU与 内存之间的数据传输。
在通信系统中的应用
调制解调器
01
调制解调器中的数据解调部分通常由时序逻辑电路实现,用于
将信号解调为原始数据。
数字信号处理器
02
数字信号处理器中包含时序逻辑电路,用于处理数字信号,如
时序逻辑电路是一种具有记忆功能的电路,它由组合逻辑电路和存储元件组成, 能够根据输入信号的变化,按照一定的时序状态进行状态转移,并产生相应的输 出信号。
时序逻辑电路的特点是具有状态记忆功能,能够根据输入信号的变化,实现状态 的转移和输出信号的变化。
时序逻辑电路的组成
01
触发器
触发器是时序逻辑电路中的基本单元,它能够存储一位二进制代码,并
据输入信号的变化进行逻辑运算,产生相应的输出信号。
时序逻辑电路的分类
同步时序逻辑电路
同步时序逻辑电路的各个状态转 移都是在同一个时钟信号的控制 下进行的。
异步时序逻辑电路
异步时序逻辑电路的状态转移不 受时钟信号的控制,而是由输入 信号的变化直接驱动。
03
时序逻辑电路的分析
数字电子技术基础-第六章_时序逻辑电路(完整版)
T0 1
行修改,在0000 时减“1”后跳变 T1 Q0 Q0(Q3Q2Q1)
为1001,然后按
二进制减法计数
就行了。T2 Q1Q0 Q1Q0 (Q1Q2Q3 )
T3 Q2Q1Q0
50
能自启动
47
•时序图 5
分 频
10 分 频c
0
t
48
器件实例:74 160
CLK RD LD EP ET 工作状态 X 0 X X X 置 0(异步) 1 0 X X 预置数(同步) X 1 1 0 1 保持(包括C) X 1 1 X 0 保持(C=0) 1 1 1 1 计数
49
②减法计数器
基本原理:对二进 制减法计数器进
——74LS193
异步置数 异步清零
44
(采用T’触发器,即T=1)
CLKi
CLKU
i 1
Qj
j0
CLKD
i 1
Qj
j0
CLK0 CLKU CLKD
CLK 2 CLKU Q1Q0 CLK DQ1Q0
45
2. 同步十进制计数器 ①加法计数器
基本原理:在四位二进制 计数器基础上修改,当计 到1001时,则下一个CLK 电路状态回到0000。
EP ET 工作状态
X 0 X X X 置 0(异步)
1 0 X X 预置数(同步)
X 1 1 0 1 保持(包括C)
X 1 1 X 0 保持(C=0)
1 1 1 1 计数
39
同步二进制减法计数器 原理:根据二进制减法运算 规则可知:在多位二进制数 末位减1,若第i位以下皆为 0时,则第i位应翻转。
Y Q2Q3
数字电路与逻辑设计第5章时序逻辑电路
(b) 74194构成扭环形计数器
Q and A Q :电路是否具备自启动特性?请检验。
77
➢ 检验扭环形计数器的自启动特性
模值M=2n=2×4=8 状态利用率稍高;环 形计数器和扭环形计 数器都具有移存型的 状态变化规律,但它 们都不具有自启动性
10
分析工具 常见电路
状态转移真值表 状态方程 状态转移图 时序图
数码寄存器 移位寄存器 同步计数器 异步计数器
11
5.2.1 时序逻辑电路的分析步骤
12
例1:分析图示时序逻辑电路
解 ➢ 1. 写激励方程:
13
➢ 2. 写状态方程和输出方程:
根据JK触发器特性方程:Qn1 J Qn K Qn
LD
置入控制输入
CP
时钟输入
CR
异步清0输入
CTT ,CTP 计数控制输入
输出端子
Q0~Q3 数据输出
CO
进位输出
CO
Q3n
Q
n 2
Q1n
Q0n
26
➢ 功能表:
27
2.十进制同步计数器(异步清除)74160
➢ 逻辑符号: ➢ 功能表:
CO Q3n Q0n
28
3.4位二进制同步计数器(同步清除)74163
51
1.二-五-十进制异步计数器7490
52
CT7490: 2-5-10进制异步计数器
4个触发器(CP1独立触发FF0实现二分频,
CP2独立触发FF1、FF2、FF3构成的五分频计数器)
异步清0输入 R01、 R02
异步置9输入 S91、S92
可实现 8421BCD 和 5421BCD计数
数电-时序逻辑电路 计数器
——依照一般同步时序电路的设计步骤
例题
用D触发器设计同步十进制加法计数器 用JK触发器设计同步六进制减法计数器
(1)异步二-十进制计数器 74HC/HCT390
FF0 二进制计数器 CP0输入,Q0输出
FF1——FF3
异步五进制计 数器(P277)
CP1输入,Q3、Q2、Q1输出
CP1 1
1000~1111 8进制
异步计数器
方法二 整体反馈清0法实现72进制加法计数器
1 CP
××××
CR D0 D1 D2 D3
CET
CEP 74161(0) TC CP Q0 Q1 Q2 Q3 PE 1
××××
CR D0 D1 D2 D3
CET
CEP 74161(1) TC
CP Q0 Q1 Q2 Q3 PE 1
TC
CEP
74161
PE
>CP Q0 Q1 Q2 Q3
CR: 异步清零端
CP:
有效
PE: 同步并行置数使能端
D0 - D3 :预置数据输入端 CET、CEP: 计数使能端
TC:进位输出端,用于级连(TC = CET·Q3·Q2·Q1·Q0)
74161逻辑功能表
输入
输出
清预 零置
使能
时 钟
预置数据输入
连接方式1 Q2 Q1 Q0 000 001 010 011 100 101 110 111 000 001
(5421码)
连接方式2 Q0 Q3 Q2 Q1 0 000 0 001 0 010 0 011 0 100 1 000 1 001 1 010 1 011 1 100
二-五-十进制加法计数器
数字电路时序设计
数字电路时序设计时序设计是数字电路设计中的重要部分,它负责处理和控制电路中的时序信号。
时序设计不仅涉及到时钟信号的产生和传播,还包括时序逻辑电路的设计和时序约束的建立。
本文将介绍数字电路时序设计的基本原理和常用技术手段。
一、时序设计的基本原理时序设计是指在数字电路中,通过合理地控制信号的时间顺序和时机,实现对电路的各种操作和功能的精确控制。
其基本原理包括以下几点:1. 时钟信号的产生和传播:时钟信号是数字电路中重要的时序信号,它的产生和传播需要考虑到时钟频率、时钟相位、时钟的稳定性等因素。
时钟信号的产生可以通过晶体振荡器、计数器等电路来实现;时钟信号的传播则需要通过时钟树网络和时钟分配策略来保证时钟信号的稳定性和准确性。
2. 时序逻辑电路的设计:时序逻辑电路是指在数字电路中,根据时钟信号的触发沿或边沿来控制电路中的状态变化和信号传输的电路。
时序逻辑电路的设计需要考虑到寄存器、计数器、状态机等电路的选择和配置,以及触发器的使用和时序逻辑的优化等方面。
3. 时序约束的建立:时序约束是指在时序设计中,对时钟信号的频率、占空比、时钟关系等要求进行具体规定和约束。
时序约束的建立需要根据实际应用需求和电路特性来确定,以确保电路的时序性能符合设计要求,例如保证数据的正确性、减少功耗等。
二、常用的时序设计技术手段1. 同步时序设计:同步时序设计是指通过时钟信号来同步电路的工作,即电路中的状态变化和信号传输仅在时钟边沿或触发沿上发生。
同步时序设计具有时钟稳定性好、抖动较小、电路布局布线灵活等优点,适用于大多数数字电路设计。
2. 异步时序设计:异步时序设计是指电路中的状态变化和信号传输在时钟信号之外的其他条件下发生,不依赖于时钟信号的同步控制。
异步时序设计适用于对响应时间要求较高或者对功耗控制较为重要的应用场景,但也存在着电路复杂、设计布线难度大、状态和信号的稳定性难以保证等缺点。
3. 管脚映射和物理布局:在时序设计中,管脚映射和物理布局是影响时序性能的重要因素。
数字电路第6章(1时序逻辑电路分析方法)
数字电路第6章(1时序逻辑电路分析方法)1、第六章时序规律电路本章主要内容6.1概述6.2时序规律电路的分析方法6.3若干常用的时序规律电路6.4时序规律电路的设计方法6.5时序规律电路中的竞争-冒险现象1.时序规律电路的特点2.时序规律电路的分类3.时序规律电路的功能描述方法§6.1概述一、时序规律电路的特点1、功能:任一时刻的输出不仅取决于该时刻的输入;还与电路原来的状态有关。
例:串行加法器:两个多位数从低位到高位逐位相加一、时序规律电路的特点2.电路结构①包含存储电路和组合电路,且存储电路必不行少;②存储电路的输出状态必需反馈到组合电路输入端,与输入变量共同确定组合规律的输出。
yi:输出信号xi:输2、入信号qi:存储电路的状态zi:存储电路的输入可以用三个方程组来描述:Z=G(X,Q)二、时序电路的分类1.依据存储电路中触发器的动作特点不同时序电路存储电路里全部触发器有一个统一的时钟源;触发器状态改变与时钟脉冲同步.同步:异步:没有统一的时钟脉冲,电路中要更新状态的触发器的翻转有先有后,是异步进行的。
二、时序电路的分类2.依据输出信号的特点不同时序电路输出信号不仅取决于存储电路的状态,而且还取决于输入变量。
Y=F(X,Q)米利(Mealy)型:穆尔(Moore)型:输出状态仅取决于存储电路的状态。
犹如步计数器Y=F(Q)三、时序规律电路的功能描述方法描述方法3、规律方程式状态转换表状态转换图时序图三、时序规律电路的功能描述方法(1)规律方程式:写出时序电路的输出方程、驱动方程和状态方程。
输出方程反映电路输出Y与输入X和状态Q之间关系表达式;驱动方程反映存储电路的输入Z与电路输入X和状态Q之间的关系状态方程反映时序电路次态Qn+1与驱动函数Z和现态Qn之间的关系三、时序规律电路的功能描述方法(2)状态〔转换〕表:反映输出Z、次态Qn+1和输入X、现态Qn间对应取值关系的表格。
(3)状态〔转换〕图:(4)时序图:反映时序规律电路状态转换规律及相应输入、输出取值关系的有向图形。
数字电子技术时序逻辑电路PPT
写驱动方程: J 0 K 0 1
J1 J2
Q3 K2
1
K1
1
J 3 Q1Q2
K3 1
写状态方程:
Q0n1 QQ1n2n11
n
Q0
Q3
n
Q2
n
Q1
(CP0 下降沿动作) (Q0 下降沿动作) (Q1下降沿动作)
Q3n 1
Q1Q2
画时序图: 该电路能够自启动。
5.1.2 异步时序逻辑电路的分析方法
异步时序电路的分析步骤:
① 写时钟方程; ② 写驱动方程; ③ 写状态方程; ④ 写输出方程。
[例5-2]试分析图示时序逻辑电路的逻辑功能,列出状态转换 表,并画出状态转换图。
解:图5-7所示电路为1个异步摩尔型时序逻辑电路。 写时钟方程:
Q3n(Q0
下降沿动作)
列状态转换表:
画状态转换图:
5.2 若干常用的时序逻辑电路 5.2.1寄存器
1. 基本寄存器
图5-2 双2位寄存器74LS75的逻辑图
图5-2所示为双2位寄存器74LS75的逻辑图。当 CPA = 1时,
送到数据输入端的数据被存入寄存器,当CPA =0时,存入
寄存器的数据将保持不变。
2n-1 M 2n
然后给电路的每一种状态分配与之对应的触发器状态组合。
4)确定触发器的类型,并求出电路的状态方程、驱动方程 和输出方程。 确定触发器类型后,可根据实际的状态转换图求出电路的状 态方程和输出方程,进而求出电路的驱动方程。
5)根据得到的驱动方程和输出方程,画出相应的逻辑图。
6) 判断所设计的电路能否自启动。
1.同步计数器 1)同步二进制计数器
数字集成电路(时序逻辑电路)
目录
• 引言 • 时序逻辑电路的基本概念 • 数字集成电路的组成 • 时序逻辑电路的分析方法
目录
• 引言 • 时序逻辑电路的基本概念 • 数字集成电路的组成 • 时序逻辑电路的分析方法
目录
• 时序逻辑电路的设计方法 • 时序逻辑电路的应用 • 时序逻辑电路的发展趋势和挑战
逻辑门
01
逻辑门是数字集成电路的基本组成单元,用于实现逻辑运算(如AND、 OR、NOT等)。
02
常见的逻辑门有TTL(Transistor-Transistor Logic)和CMOS (Complementary Metal-Oxide Semiconductor)等类型。
03
逻辑门通常由晶体管组成,通过不同的组合和连接方式实现各种逻辑 功能。
目录
• 时序逻辑电路的设计方法 • 时序逻辑电路的应用 • 时序逻辑电路的发展趋势和挑战
01
引言
01
引言
主题简介
数字集成电路
数字集成电路是利用半导体技术将逻 辑门、触发器等数字逻辑单元集成在 一块衬底上,实现数字信号处理功能 的集成电路。
时序逻辑电路
时序逻辑电路是一种具有记忆功能的 电路,其输出不仅取决于当前的输入 ,还与电路的先前状态有关。常见的 时序逻辑电路有寄存器、计数器等。
时序图
通过图形方式表示时序逻辑电路的输入和输出随时间变化的规律,能够直观地展 示电路的工作过程。
逻辑方程和时序图
逻辑方程
描述时序逻辑电路输入和输出关系的数学表达式,通常由触发器的状态方程和输 出方程组成。
时序图
通过图形方式表示时序逻辑电路的输入和输出随时间变化的规律,能够直观地展 示电路的工作过程。
数字电路 第七章 时序逻辑电路
/0 001
/0
010 /0
101
100 /1 /0
011
结论:该电路是一个同步五进制( ⑥ 结论:该电路是一个同步五进制(模5)的加 法计数器,能够自动启动, 为进位端. 法计数器,能够自动启动,C为进位端.
§7.3 计数器
7.3.1 计数器的功能和分类
1. 计数器的作用
记忆输入脉冲的个数;用于定时,分频, 记忆输入脉冲的个数;用于定时,分频,产 生节拍脉冲及进行数字运算等等. 生节拍脉冲及进行数字运算等等.
1 0 1 0 1 0 1 0
3. 还可以用波形图显示状态转换表. 还可以用波形图显示状态转换表.
CP Q0 Q1 Q2
思考题: 思考题:试设计一个四位二进制同步加法计数 器电路,并检验其正确性. 器电路,并检验其正确性.
7.3.4 任意进制计数器的分析
例:
Q2 J2 Q2 K2 Q1 J1 Q1 K1 Q0 J0 Q0 K0
第七章 时序逻辑电路
§7.1 概述 §7.2 时序逻辑电路的分析方法 §7.3 计数器 §7.4 寄存器和移位寄存器 §7.5 计数器的应用举例
§7.1Байду номын сангаас概述
在数字电路中, 在数字电路中,凡是任一时刻的稳定 输出不仅决定于该时刻的输入,而且还和 输出不仅决定于该时刻的输入,而且还和 电路原来的状态有关者 电路原来的状态有关者,都叫做时序逻辑 电路,简称时序电路 时序电路. 电路,简称时序电路. 时序电路的特点:具有记忆功能. 时序电路的特点:具有记忆功能.
下面将重点 讨论蓝颜色 电路—移位 电路 移位 寄存器的工 寄存器的工 作原理. 作原理. D0 = 0 D1 = Q0 D2 = Q1 D3 = Q2
数字电子技术课件第六章 时序逻辑电路(调整序列码)0609
(3)移入数据可控的并行输入移位寄存器
Z
M
Z D3 X Q3MX Q3NX
N 0 1 0 1
Q3n+1 置0 Q3不变 Q3计翻 置1
0 0 1 1
X 0, Z D3 同步(并行)置数 X 1, Z M Q3 NQ3 右移
右移数据由MN组合而定
3、双向移位寄存器 加选通门构成。
t1
t2
t3
存1 个 数 据 占 用1 个 cp
D1 D2 D3、 Q1 Q2 Q3波形略
二、移位寄存器
移位:按指令(cp),触发器状态可 向左右相邻的触发器传递。 功能:寄存,移位。
构成:相同的寄存单元(无空翻触发器)
共用统一的时钟脉冲(同步工作) 分类:单向、双向
1、单向移位寄存器(4位,右移为例,JK触发器构成) (1)电路:4个相同寄存单元(4个JK触发器); 同步cp为移位指令; 移1(即: Qn+1 =1) → J=1,K=0 移0(即: Qn+1 =0) → J=0,K=1
1
4个脉冲以后 可从Q3~Q0并 行输出1101
2、并行输入移位寄存器
可预置数的移 位寄存器
(1)选通门——与或逻辑,2选1数据选择器 A B X X:控制信号 F=AX+BX X=1,F=A X=0,F=B
1
&
≥1
F
(2)电路(4位,右移,JK触发器构成)
X控制信号:X=0,置数; X=1,右移。 Dr右移数据输入端。 D3~D0并行数据输入端。
X控制信号:X=0,左移,DL左移数据输入端。 X=1,右移,Dr右移数据输入端;
双向移位寄存器示例,X控制信号:X=0,左移, X=1,右移,
数字电路中的时序逻辑设计原理
数字电路中的时序逻辑设计原理时序逻辑是数字电路中的重要概念,通过有序的时钟信号来控制电路的行为。
在数字系统中,时序逻辑电路扮演着重要的角色,用于处理和存储数据。
本文将介绍数字电路中的时序逻辑设计原理,包括时钟信号、触发器、状态机以及时序逻辑设计的方法。
1. 时钟信号时钟信号在数字电路中起到同步和定时的作用。
它通过周期性的信号波形,使得电路中的操作在特定的时间点发生。
时钟信号通常表示为高电平和低电平的变化,这些变化用于触发电路中的不同操作。
时钟频率表示时钟信号的周期,单位为赫兹(Hz)。
2. 触发器触发器是时序逻辑电路中常用的元件,用于存储和传输数据。
它基于时钟信号来触发输入数据的存储,并且在时钟信号的上升沿或下降沿改变输出。
触发器一般分为 D 触发器、JK 触发器、SR 触发器等不同类型,根据需求选择适当的触发器类型。
3. 状态机状态机是一种时序逻辑电路,用于描述系统的行为和状态转换。
它由状态和状态之间的转移组成,通过输入信号的变化触发状态转移。
状态机可以是同步的或异步的,同步状态机与时钟信号同步,而异步状态机不需要时钟信号。
4. 时序逻辑设计方法时序逻辑设计需要遵循以下步骤:a) 分析需求:明确设计的目标和功能,确定所需的输入和输出信号。
b) 设计状态图:根据需求设计状态机的状态和状态转移。
c) 确定触发器类型:选择合适的触发器类型来实现状态机的功能。
d) 实现电路:根据设计的状态机和触发器类型,搭建电路并连接输入输出信号。
e) 验证和调试:通过模拟和测试验证电路的正确性,修复可能存在的问题。
总结:时序逻辑设计原理在数字电路中起着重要的作用。
时钟信号作为同步和定时的基准,触发器用于存储和传输数据,状态机描述系统行为和状态转换。
时序逻辑设计需要分析需求、设计状态图、选择合适的触发器类型、搭建电路并进行验证和调试。
通过了解和应用这些原理,可以有效设计和实现复杂的数字电路系统。
数字电路时序分析
数字电路时序分析数字电路时序分析是指对数字电路中各个信号的时序关系进行分析和处理的过程。
在现代电子设备中,数字电路扮演着至关重要的角色。
了解数字电路的时序分析能够帮助我们有效地设计和优化电子设备,提高其性能和可靠性。
一、时序和时钟信号时序是指在数字电路中各个信号按照一定的时间顺序发生和传递的规则。
时序信号是指用来控制和同步数字电路中各个元件操作和数据传输的信号。
其中,时钟信号是最核心的时序信号,它在数字电路中起到非常重要的作用。
时钟信号确定了数字电路中各个时刻的起点和终点,决定了元件的状态和信号的传输。
二、时序分析的基本概念1. 时序图:时序图是用来描述数字电路中各个信号之间的时间关系和传输顺序的图形工具。
通过时序图,我们可以清楚地了解各个信号之间的关系,从而进行分析和调试。
2. 时序约束:时序约束是指在设计数字电路时,对其时序性能提出的要求,包括最大延迟、最小延迟、时钟频率等等。
时序约束的严格满足与否直接影响着电路的正确性和可靠性。
3. 时序敏感路径:时序敏感路径是指数字电路中传输延迟最长的路径。
在时序分析中,我们需要特别关注这些路径,确保其传输时间满足时序约束。
4. 时序错误:时序错误是指由于信号传输延迟、时钟频率等因素导致的数字电路功能上的错误。
通过时序分析,我们可以及时发现和排除这些错误,提高电路的可靠性和性能。
三、时序分析的方法和工具1. 时间图分析:时间图是时序分析中最基本的工具之一。
通过绘制信号的时序波形图,我们可以更直观地观察各个信号之间的时间关系,进而进行分析。
2. 逻辑仿真:逻辑仿真是一种通过计算机模拟数字电路的运行过程,以验证其时序性能的方法。
通过逻辑仿真,我们可以模拟不同的输入条件和时钟频率,分析电路的输出是否满足要求。
3. 时序约束验证:时序约束验证是通过使用专业的时序验证工具,对设计的数字电路进行时序约束的验证。
这些工具可以帮助我们全面、准确地分析电路的时序特性,提高设计的可靠性和性能。
数字逻辑电路教程PPT第5章时序逻辑电路
示意图、功能表
74161功能表
74161符号
波形图
012 34 56 7
VCC QCC Q0 Q1 Q2 Q3 T LD 16 15 14 13 12 11 10 9
74LS161
1 2 34 56 7 8
Cr CP D0 D1 D2 D3 P GND
T4161(74LS161)的外引脚图
例5-5 试用74161构成八位二进制加法计数 器。
状态表 状态图
驱动方程 特性方程
状态方程
CP触发沿 时序图
概括逻辑功能
[例5-1]试分析图5-2所示时序电路的逻 辑功能。
⑴根据图5-2所示逻辑图写出的驱动方程为: 写出的输出方程为:
⑵将上式代入JK触发器的特性方程 ⑶求得状态方程:
求状态转换表和状态转换图,画波形图。 设电路的初始状态
代入状态方程和输出方程得
若无效状态在CP作用下不能进入有效循环,则表明电路 不能自启动。
[例5-2]试分析图5-5所示时序电路的逻辑功能。
图5-5
解:⑴根据图5-5写出的驱动方程如下:
图5-5
状态方程、输出方程如下:
⑵列状态转换表(表5-2),画出状态转换图(图5-6)
3、确定逻辑功能:X=0,回 到00状态,且F=0;只有连续 输入四个或四个以上个1时, 才使F=1否则F=0。故该电路 称作1111序列检测器。
预置数与CP同步,清零与CP异步。
Q1
Q2
Q3
Q4
Qcc
T Q Cr LD CP
寄存器
➢ 在数字系统和计算机中,经常要把一些数据信 息暂时存放起来,等待处理。
➢ 寄存器就是能暂时寄存数码的逻辑器件。 ➢ 寄存器内部的记忆单元是触发器。 ➢ 一个触发器可以存储一位二进制数,N个触发
数字电路设计中的时序分析与优化
数字电路设计中的时序分析与优化数字电路设计是现代电子技术领域中的重要一环,它关系到整个系统的性能和可靠性。
时序分析与优化是数字电路设计中非常重要的一部分,它涉及到电路时序的正确性和性能优化。
本篇文章将从基础概念、时序分析方法和时序优化方法三个方面详细探讨数字电路设计中的时序分析与优化。
一、基础概念时序是数字电路中各个时钟信号及其相关时序条件之间的相互关系,也就是时序控制关系和限制条件。
该限制条件通常包括时钟时序、输入数据时序和输出数据时序等,这些时序条件必须满足,否则电路将无法正常工作。
在进行数字电路设计时,必须对电路的时序进行深入分析和优化,以保证电路的可靠性和性能。
二、时序分析方法时序分析方法主要有两种,分别是时序模拟和时序验证。
时序模拟是将某一个电路实现的时序模型进行仿真,通过模拟来验证电路的正确性和性能。
而时序验证则是使用一种正式的验证方法来检查电路的时序正确性和性能。
在时序模拟中,我们通常使用射线法或设置时间步长法进行仿真。
射线法是以时序图中的时钟线为坐标轴建立坐标系,然后利用一条射线沿时间坐标轴方向递增来表示仿真的过程。
而设置时间步长法则是根据特定的时间步长在不同时钟周期中进行仿真。
比较常用的设置时间步长法是单步仿真法和激励响应法。
在时序验证中,我们通常使用时序正逆仿真法或时序验证工具来进行验证。
时序正逆仿真法是利用仿真方法验证电路的正确性,通过正向仿真、逆向仿真、定长结构仿真和步长控制仿真等手段来验证电路的时序正确与否。
而时序验证工具则是使用专业的验证工具,如Cadence的Verilog-XL和Mentor的Modelsim等,来进行电路的验证。
三、时序优化方法时序优化方法主要有两种,分别是加载优化和逻辑优化。
加载优化主要是指通过试图缩短延迟和提高时钟频率来优化电路的时序性能。
而逻辑优化则是通过改进电路的逻辑实现,来提高电路的时序性能。
在加载优化中,我们通常通过缩短线路长度、选择更优的器件类型和减小线路电阻等手段来改善电路性能。
数字电子线路时序逻辑电路的设计与分析
CP是触发器的特殊输入信号,只控制输入信号对触发 器输出端产生作用的时间(或时刻),不影响触发器的逻 辑功能。CP信号对触发器产生控制作用称为触发。受CP信 号控制的输入信号称为同步输入信号。
CP信号的控制方式有电平触发和边沿触发两种类型。
CP信号线加标“∧”符号表示边沿触发,无此符号为 电平触发。
• R0(无效态)、S1(有效态)时,无论触发 器的现态Qn为何值,次态都为1,Qn11,称 为触发器置1(又叫置位SET)。
• R0,S0(两信号都无效)时,两个与非门相 互锁定,保持触发器的原来状态,Qn1Qn, 称为触发器的保持态。
• R1,S1(两个信号都有效)时,两个与非门 输出都为1,为异常的不定态。显然这种情况 是不允许出现的,在使用中要注意约束。
第1节 时序电路的记忆单元——触发器
• 触发器是具有记忆功能的基本单元,是构成时序逻辑电路 的主体。
• 在理论上触发器应设有两个互补输出端:Q、 (实用中可 按需要选其中一个),以Q端的状态代表触发器的状态, Q=1为触发器的1态,Q=0为触发器的0态。若两个输出端 出现同时为1或同时为0的状态时,则称为触发器的异常 (不确定)状态,是不允许出现(应该约束)的状态。
表4-6 D触发器逻辑功能表
D
逻辑功能
0
置0(Qn1=0)
1
置1(Qn1=1)
图4-10 D触发器构成及符号
Qn1 Qn
D触发器的特性方程:
2、J-K触发器 表4-7 J-K触发器的逻辑功能表
JK
逻辑功能
00
保持(Qn1=Qn)
01
置0(Qn1=0)
10
置1(Qn1=1)
11
翻转( )
J-K触发器的功能可用D触发器转换实现,转换逻辑是:
清华数字电路课件第六章-时序逻辑电路
YF(Q)
仅取决于电路
6.2.时序逻辑电路的分析方法
6.2.1 同步时序逻辑电路的分析方法
时序逻辑电路的分析:就是给定时序电路,找出该的 逻辑功能,即找出在输入和CLK作用下,电路的次态和 输出。由于同步时序逻辑电路是在同一时钟作用下, 故分析比较简单些,只要写出电路的驱动方程、输出 方程和状态方程,根据状态方程得到电路的状态表或 状态转换图,就可以得出电路的逻辑功能。
6.2.时序逻辑电路的分析方法
(4)状态转换表:
Q Q12n n 1 1 D D12Q A1Q1Q2
A=0时
Y [ A Q 1 ( Q 2 ) ( A Q 1 Q 2 ) ] A Q 1 Q 2 A Q 1 Q 2 A=1时
Q2 Q1 Q2* Q1* Y
00 0 1 0 01 1 0 0 10 1 1 0 11 0 0 1
J3 Q1Q2,
K3 Q2
6.2.时序逻辑电路的分析方法
(2) 状态方程:
JK触发器的特性方程
Q *JQ KQ
将驱动方程代入JK触发器的特性方程中,得出电 路的状态方程,即
J1 (Q2Q3), K1 1
J2 Q1,
K2 (Q1Q3)
J3 Q1Q2,
K3 Q2
(3)输出方程:
QQ2*1*Q(1QQ22Q3)Q1QQ31Q2 Q3*Q1Q2Q3 Q2Q3
YQ2Q3
6.2.时序逻辑电路的分析方法
6.2.2时序逻辑电路的状态转换表、状态转换图、状态 机流程图和时序图
从例题可以看出,逻辑电路的三个方程应该说已 经清楚描述一个电路的逻辑功能,但却不能确定电路 具体用途,因此需要在时钟信号作用下将电路所有的 的状态转换全部列出来,则电路的功能一目了然
数字电路教案-阎石-第七章-时序逻辑电路
第7章 时序逻辑电路7.1 概述时序电路在任何时刻的稳定输出,不仅与该时刻的输入信号有关,而且还与电路原来的状态有关。
图7.1.1 时序逻辑电路的结构框图2、时序电路的分类 (1) 根据时钟分类同步时序电路中,各个触发器的时钟脉冲相同,即电路中有一个统一的时钟脉冲,每来一个时钟脉冲,电路的状态只改变一次。
异步时序电路中,各个触发器的时钟脉冲不同,即电路中没有统一的时钟脉冲来控制电路状态的变化,电路状态改变时,电路中要更新状态的触发器的翻转有先有后,是异步进行的。
(2)根据输出分类米利型时序电路的输出不仅与现态有关,而且还决定于电路当前的输入。
穆尔型时序电路的其输出仅决定于电路的现态,与电路当前的输入无关;或者根本就不存在独立设置的输出,而以电路的状态直接作为输出。
7.2 时序逻辑电路的分析方法时序电路的分析步骤:电路图 时钟方程、输出方程、驱动方程 状态方程 计算 状态表(状态图、时序图) 判断电路逻辑功能 分析电路能否自启动。
7.2.1 同步时序电路的分析方法 分析举例:[例7.2.1]7.2.2 异步时序电路的分析方法 分析举例:[例7.2.3] 7.3 计数器概念:在数字电路中,能够记忆输入脉冲CP 个数的电路称为计数器。
计数器累计输入脉冲的最大数目称为计数器的“模”,用M 表示。
计数器的“模”实际上为电路的有效状态。
计数器的应用:计数、定时、分频及进行数字运算等。
计数器的分类:(1)按计数器中触发器翻转是否同步分:异步计数器、同步计数器。
(2)按计数进制分:二进制计数器、十进制计数器、N 进制计数器。
(3)按计数增减分:加法计数器、减法计数器、加/减法计数器。
7.3.1 异步计数器X X Y 1Y m输入输出一、异步二进制计数器1、异步二进制加法计数器分析图7.3.1 由JK触发器组成的4位异步二进制加法计数器。
分析方法:由逻辑图到波形图(所有JK触发器均构成为T/触发器的形式,且后一级触发器的时钟脉冲是前一级触发器的输出Q),再由波形图到状态表,进而分析出其逻辑功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q1n
T1n
X
Q1n
Xn Q1n X Q nQ1n1n Xn Q1n
Q2n1 T2n Q2n T2nQ2n
T Qn 将T1n、 T2n代入X则n得Q到1n Q2n X nQ1nQ2n
两个触发器的状态方程
填同3.作表步出方电法时路:序的状电现态入TT路描转转12nn述换Z换==分n输关表现XX=析入系nn及X态Q与的n状1Qn状表输发态2n现态格入器转Q控:的换1输态QnQ制输输图出及12入入入nn:组++1信及1=触合号现X次发输Xn、态n器出Q态触量1Qn的ZQ1n2次nn 现XnQ输1n出Q2n
同
写各触发器的控讲制义函数 如T、J、K、D。
步
写电路的输出函P数334 组合电路的输出
时
序 电
写触描发述器输的入状与态状方态程 转换关系的表格
特性方程
路
的
作状态转换表及状态转换图
分
画出时钟脉冲作用下
析
作时序波形图 的输入、输出波形图
方
法
描述电路的逻辑功能
同步时序电路分析
例 1: 某同步逻辑系统的逻辑模型如图5-3-4所示,试确定该系统
与电路的前一时刻的状态无关。
2. 时序电路:
电路在某一给定时刻的输出
取决于该时刻电路由的触输发入器保存 还取决于前一时刻电路的状态
时序电路: 组合电路 + 触发器
电路的状态与时间顺序有关
第一节 时序电路概述
时序电路的结构 输入信号
输出信号
输出方程:
X1
Z(tn) = F[X(tn),Y(tn)]Xn
的逻辑行为特性。
解: 根据时序逻辑的基本分析概念
&
Z
可知,分析时序逻辑系统时应先根 X 据电路模型建立逻辑模型,也就是
&
不考虑内部电路特性,只关系电路 的逻辑关系。然后根据逻辑模型列
1 &
1 Y
写出系统激励方程、输出方程和状
Q
态方程等。
Q
1D
C1
CP
(1)列写系统激励方程和输出方程。
激励方程为 Y XQ n XQ n X Q n
电路属于米莱型、可控模4计数器电路。
例3:PLA和D触发器组成的同步时序电路如图所示,要求: (1)写出电路的驱动方程、输出方程。 (2)分析电路功能,画出电路的状态转换图。
第六章 时序逻辑电路
第一节 时序电路概述 第二节 同步时序电路的分析 第三节 同步时序电路的设计 第四节 异步时序电路 小结
第六章 时序逻辑电路
本章学习重点
1. 掌握同步时序逻辑电路的分析方法 2. 掌握同步时序逻辑电路的设计方法
第一节 时序电路概述
组合电路与时序电路的区别
P333
1. 组合电路: 电路的输出只与电路的输入有关,
0
0
1
Z
1 Y
1D
C1
CP
同步时序电路分析
(4)绘制状态转换图
输入 现态 次态 控制 输出
0/0 0
1/0 1 0/0
1/1 (X/Z)
X
Qn
Qn+1
Y
Z
0
0
0
0
0
0
1
1
1
0
1
0
1
1
0
1
1
0
0
1
(5)逻辑行为分析
分析可得到结论,该电路是模2计数器,由输入信 号控制计数器的工作。输入信号为1开始计数工作,否 则保持原态。
组合电路
状态方次程态:或新状态
现态Y,K或Y原1 状态
Y(tn+1)= G[W(tn),Y(tn)] 控制方程:
存储电路
Z1 Zn
W1 Wh 控制信号
W(tn) = H[X(tn),Y(tn)] 输出状态 式中:tn、tn+1表示相邻的两个离散时间
时钟信号 未注明
第一节 时序电路概述
时序电路的分类
Xn Q2n Q1n 所有组合
Xn Q2n Q1n T2n T1n Q2n+1 Q1n+1 Zn
0T1n = 0Xn 0 0 0 0 0
0
求T1nT2nZn
0T2n
0
Z=n01X=nQX101nnQ2n0Q0 1n
0 0
0 1
1 0
0 0
由状态方程 0 1 1 0 0 1 1
0
求Q2n+1 Q1n+1
1. 输出Z(tn)与现态Y(tn)及输入X(tn)的关系分:
Z(tn) =
F[Y(tn)]
穆尔型(Moore)电路
F[X(tn),Y(tn)] 米莱型(Mealy)
2. 从控制时序状态的脉冲源来分:
同步: 存储电路里所有触发器由一个统一
时序电路
的时钟脉冲源控制
异步:没有统一的时钟脉冲
第二节 同步时序电路分析 输入端的表达式,
同步时序电路分析
例2:已知某同步时序电路的逻辑图,试分析其逻辑功能。
解:1.写出各触发器的控制函数和电路的输出函数。
控制函数: T1n = Xn T2n = XnQ1n
输出函数: Zn = XnQ2nQ1n
2.写状态方程
T触发器的状态 方程为:
Qn1 TQn TQn
Q Q1n
1nQX12nΒιβλιοθήκη T1n同步时序电路分析
0/0
5. 逻辑功能描述(逻辑行为分析)
0/0
Xn/Zn
由状态图得电路的逻辑功能:
1/0
00
01
电路是一个可控模4计数器。
X端是控制端,时钟脉冲
1/1
1/0
作为计数脉冲输入。 X=1 初态为00时,
11
10
1/0
实现模4加计数;
0/0
0/0
X=0时 保持原 态。
输出不仅取决于电路本身的状态,而且也与输入变量X有关。
1 1
00 0 1 0 1 01 1 1 1 0
0 0
1 10 0 1 1 1
0
1 11 1 1 0 0
1
同步时序电路分析
0/0
0/0
转换条件 由状态转电表换路绘方状出向态状态图
Xn/Zn
0/0
1/0
00
01
1/1
1/0
11
10
1/0
0/0
现 入 现 态 现控制入 次 态 现输出
Xn Q2n Q1n T2n T1n Q2n+1 Q1n+1 Zn 0 0 0 0 00 0 0 0 0 1 0 00 1 0 0 1 00 01 0 0 0 1 1 0 01 1 0 1 0 0 0 10 1 0 1 0 1 1 11 0 0 1 1 0 0 11 1 0
输出方程为
Z XQ n
同步时序电路分析
(2)列写触发器的状态方程
X
根据D触发器的特征方程有:
Qn1 D Y X Qn
(3)根据激励方程、输出方程和状 态方程列写系统状态转换表。
&
& 1
& Q Q
输入 现态 次态 控制 输出
Z XQ n
X
Qn
Qn+1
Y
Z
0
0
0
0
0
0
1
1
1
0
1
0
1
1
0
1
1
1 1 1 1 10 0 1
同步时序电路分析
4初.作始时状序态波Q形2n图Q1n为00,输入X加=X计1模的数4序列为1111100111。
对于一些时 序电路,从 波形图更容 易判断电路 的逻辑功能
X=1模4
X=0
加计数
保持原态
1 0101 01 10 0 00 10 0
11 0 0 01 0 00