勾股定理知识点易错点
勾股定理知识点易错点
勾股定理知识点易错点一、知识体系:二、知识点:1、直角三角形两边的平方和等于斜边的平方。
即:a 2+b 2=c 2(a 、b 为直角边,c为斜边).如图所示,我国古代把直角三角形的较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”。
注意:(1)勾股定理只有在直角三角形中才适用,如果不是直角三角形,三边就没有这种关系。
(2)勾股定理揭示的是直角三角形三边之间的数量关系:两直角边的平方和等于斜边的平方,不是任意两边的平方和都等于第三边的平方。
2、勾股定理的验证验证勾股定理的有效方法,一般遵循以下几个步3、勾股定理的逆定理:(重点)如果三角形的三边长a 、b 、c 且a 2+b 2=c 2,那么这个三角形是直角三角形。
注意:(1)证明时不能说成“在直角三角形中”,因为还没有确定是直角三角形,当然也不能说成“斜边、直角边”(2)a 2+b 2=c 2它只是一种表现形式,不能因为a 2+b 2≠c 2就说这个三角形不是直角三角形。
如a=5,b=3,c=4. a 2+b 2≠c 2但此三角形是直角三角形。
a 为斜边。
利用勾股定理判别一个三角形是不是直角三角形的方法:求出三角形中较小两边的平方和与较大边的平方进行比较,如果相等,可判断这个三角形是直角三角形,否则不是。
勾股数:满足a 2+b 2=c 2的3个正整数,且满足a 2+b 2=c 2。
1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
如果直角三角形两直角边分别为a 、b,斜边为c ,那么?222a b c +=。
强调说明:勾——最短的边、股――较长的直角边、弦――斜边2、勾股定理的逆定理:如果三角形三边a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就为直角三角形。
3、3、定理的证明方法勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c += 方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 易错点1,,,勾股定理揭示了直角三角形三边的关系,值得注意的是,只有在直角三角形中才有两边(较小的两边)的平方和等于第三边(最长的边)的平方,非直角三角形不具备这种关系。
勾股定理易错易混淆专题集训
勾股定理易错易混淆专题集训大家好呀!今天咱们聊聊一个让不少小伙伴头疼的数学问题——勾股定理。
你别看这名字听起来挺牛逼,其实它非常简单。
咱们就用生活中的例子带你走一遍,保证你听完以后,不仅能理解,还能把这玩意儿牢牢记住!不过得先说,这个定理真是让人“上天入地”的,一开始学的时候,真是“云里雾里”,但是学懂了之后,又好像突然豁然开朗了。
咱们就来看看,这个勾股定理到底有啥魔力!首先啊,勾股定理是啥呢?简单来说,就是直角三角形的三条边之间有个神奇的关系。
大家一定听说过,“直角三角形”吧?就是那种两条边垂直,形成一个直角(90度)的三角形。
根据勾股定理,直角三角形的两条直角边(我们就叫它们“脚”吧)所对应的平方和,正好等于斜边(最长的那条边,咱们叫它“斜”)的平方。
就像你拿个尺子测量,假如直角三角形的两条直角边分别是3和4,那斜边的长度就应该是5。
怎么来的呢?3² + 4² = 9 + 16 = 25,√25 = 5。
这下明了吧!好啦,听上去是不是有点抽象?别着急,咱们举个生活中的例子。
假设你家住在一栋楼上,想从阳台跳到楼下的院子里。
那院子里有一棵大树,离你家有一段距离。
你问你自己,要是你直接跳过去,会不会摔个大跟头?或者说,要跳多远才能不摔倒?这就得用到勾股定理了。
你家阳台到地面之间有一段高度,这相当于是直角三角形的一个“脚”;而院子到你阳台的水平距离,就是另一个“脚”。
这俩距离加起来的平方根,结果就告诉你,跳下去的“斜边”有多长。
哦,话说回来,别真跳啊,还是小心点,学数学能用脑,不用身体!勾股定理本身不难,难的是大家常常记错或者搞混。
比如,很多同学在算的时候,容易把“斜边”当成其中一个直角边,结果算出来的数就大错特错。
记住了,咱们的“斜边”是最重要的那条边,最远的那个,千万不要搞错。
就像开车开到一半,导航突然掉链子了,结果你偏要走岔路。
那不就麻烦了嘛!接下来再跟你们说说一些常见的易错点。
勾股定理重点知识点
勾股定理重点知识点2017精选关于勾股定理重点知识点一、勾股定理与逆定理A.勾股定理在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。
如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2。
1、勾股定理应用的前提条件是在直角三角形中。
2、勾股定理公式a2+b2=c2 的变形有:a2= c2—b2,b2=c2-a2及c2=a2+b2。
3、由于a2+b2=c2>a2 ,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边。
B.勾股定理的逆定理如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。
说明:①勾股定理的逆定理验证利用了三角形的全等。
②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形。
必须满足较小两边平方的和等于最大边的平方才能做出判断。
(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角。
然后进一步结合其他已知条件来解决问题。
注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是。
面积分割法、构造直角三角形二、实数与数轴1、实数与数轴上的点是一一对应关系。
任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数。
数轴上的任一点表示的数,不是有理数,就是无理数。
2、在数轴上,表示相反数的两个点在原点的两旁,并且两点到原点的距离相等,实数a的绝对值就是在数轴上这个数对应的点与原点的距离。
3、利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小。
三、矩形的性质1、矩形的定义:有一个角是直角的平行四边形是矩形。
2、矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形。
勾股定理(知识点+题型分类练习)
ABCabc弦股勾勾股定理(知识点)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么 a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方。
常用关系式由三角形面积公式可得:AB·CD=AC·BC2. 勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
3. 勾股数:①满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等③用含字母的代数式表示n组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
(4)如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)用勾股定理逆定理判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)5.直角三角形的性质(1)直角三角形的两个锐角互余。
可表示如下:∠C=90°⇒∠A+∠B=90°B(2)在直角三角形中,30°角所对的直角边等于斜边的一半。
勾股定理十大易错题(带答案)
勾股定理十大经典易错题1. 如图,在一棵树的10米高B 处有两只猴子,其中一只爬下树走向离树20米的池塘C ,而另一只爬到树顶D 后直扑池塘C ,结果两只猴子经过的距离相等,问这棵树有多高?露在杯子外边的长度为cm h ,则h 的取值范围为 .3. 如图,在 △ABC 中,∠C =90∘,AC =2,点 D 在 BC 上,∠ADC =2∠B ,AD =√,则 BC 的长为 .A . √3−1B . √3+1C . √5−1D . √5+1【答案】D4. 如图为一个棱长为1的正方体的展开图,A 、B 、C 是展开后小正方形的顶点,则∠ABC 的度数为( )5. ABC 的面积为 .6. 在Rt ABC ∆中,90C ∠=︒,若54a b c +==,,则ABC S ∆= .7. 如图,梯子AB 斜靠在墙面上,AC BC AC BC ⊥=,,当梯子的顶端A 沿AC 方向下滑x米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( )A .x y =B .x y >C .x y < D8.如图网格中的△ABC ,若小方格边长为1,请你根据所学的知识(1)求△ABC 的面积;(2)判断△ABC 是什么形状?并说明理由.9. 如图,在长方形纸片 ABCD 中,已知 AD =8,折叠纸片使点 B 落在对角线 AC 上的点 F 处,折痕为 AE ,且 EF =3,求 AB 的长.10. 如图,有一个长、宽、高分别为3cm 、4cm 、5cm 的长方体,有一只蚂蚁想沿着外侧壁从A 点爬到C 1处,请你帮助小蚂蚁计算出最短路线.C A2. 【答案】1112h ≤≤3. 【答案】D4. 【答案】B5. 【解析】借助网格计算面积【答案】3.5 6. 【解析】 在Rt ABC ∆中,由勾股定理得,222a b c +=.又有()2222a b ab ab +=++,∴ ()222a b c ab +-= ∴1924ABC S ab ∆==. 【答案】94ABC S ∆=7. 化简得()2220a x y x y -=+>,x y >.【答案】B8. 解:(1)△ABC 的面积=4×4-1×2÷2-4×3÷2-2×4÷2=16-1-6-4=5.故△ABC 的面积为5;(2)∵小方格边长为1,∴AB2=12+22=5,AC 2=22+42=20,BC 2=32+42=25,∴AB 2+AC 2=BC 2,∴△ABC 为直角三角形.9. 【答案】610.【解析】我们将六个面标上:正、背、左、右、上、下,蚂蚁从A 到C 至少要走两个面,①正-右②正-上③左-上④左-背⑤下-背⑥下-右, 其中④⑤⑥和前面三种是重复的,比如①④,将拉伸长方体得棱AA 1和CC 1得到长方形AA 1C 1C ,两种路径是一样的,下面分情况讨论:①正-右:7457222121=+=+=CC AC AC ;②正-上:10393222121=+=+=BC AB AC ;③左-上:54482221121=+=+=C B AB AC【答案】cm 74。
勾股定理知识点
勾股定理知识点归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定cb aHG F EDCB A bacbac cabcab a bc c baE D CBA理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:ABC30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
勾股定理易错题整理
1.直角三角形的两边长分别是6,8,那么第三边的长为〔〕A.10 B.2C.10或2D.无法确定【答案】C【解析】第三边不一定是最长边,需要分类讨论,不能按照惯性思维。
2.△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是〔〕A.2n﹣2B.2n﹣1 C.2n D.2n+1【分析】根据△ABC是边长为1的等腰直角三角形分别求出Rt△ABC、Rt△ACD、Rt△ADE的面积,找出规律即可.【解答】解:∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==21﹣2;AC==,AD==2…,∴S△ACD=××=1=22﹣2;S△ADE=×2×2=1=23﹣2…∴第n个等腰直角三角形的面积是2n﹣2.应选A.3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A2的边长为6cm,正方形B的边长为5cm,正方形C的边长为5cm,那么正方形D的面积是cm2.【分析】根据勾股定理的几何意义可直接解答.【解答】解:根据正方形的面积公式结合勾股定理,得正方形A2,B,C,D的面积和等于最大的正方形的面积,所以正方形D的面积=100﹣36﹣25﹣25=14cm2.4.如图,要将楼梯铺上地毯,那么需要米的地毯.【分析】地毯的长显然是两条直角边的和;根据勾股定理,得另一条直角边的长.【解答】解:根据勾股定理,另一直角边==3,∴3+4=7,故应填7.5.△ABC中,AB=17,AC=10,BC边上的高AD=8,那么边BC的长为〔〕A.21 B.15C.6 D.以上答案都不对【分析】高线AD可能在三角形的内部也可能在三角形的外部,此题应分两种情况进展讨论.分别依据勾股定理即可求解.【解答】解:在直角三角形ABD中,根据勾股定理,得BD=15;在直角三角形ACD中,根据勾股定理,得CD=6.当AD在三角形的内部时,BC=15+6=21;当AD在三角形的外部时,BC=15﹣6=9.那么BC的长是21或9.应选D.6.一个等腰三角形的腰长为5,底边上的高为4,这个等腰三角形的周长是〔〕A.12 B.13 C.16 D.18【分析】首先根据勾股定理和等腰三角形的性质,确定出底边的长,进而求出其周长.【解答】解:如图,作高AD,△ABC中,AB=AC=5,AD⊥BC,AD=4;Rt△ABD中,AB=5,AD=4;根据勾股定理,得:BD==3;∴BC=2BD=6;所以△ABC的周长=5+5+6=16;应选C.7.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,假设∠A:∠B:∠C=1:2:3.那么a:b:c=〔〕A.1::2 B.:1:2 C.1:1:2 D.1:2:3【解答】解:假设∠A:∠B:∠C=1:2:3,那么根据三角形的内角和定理,得∠A=30°,∠B=60°,∠C=90°.设a=x,根据30°所对的直角边是斜边的一半,得c=2x,再根据勾股定理,得b=x,那么a:b:c=1::2.应选A.8.在△ABC中,AB边上的中线CD=3,AB=6,BC+AC=8,那么△ABC的面积为7.【分析】此题考察三角形的中线定义,根据条件先确定△ABC为直角三角形,再求得△ABC的面积.【解答】解:如图,在△ABC中,CD是AB边上的中线,∵CD=3,AB=6,∴AD=DB=3,∴CD=AD=DB,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴∠1+∠3=90°,∴△ABC是直角三角形,∴AC2+BC2=AB2=36,又∵AC+BC=8,∴AC2+2AC•BC+BC2=64,∴2AC•BC=64﹣〔AC2+BC2〕=64﹣36=28,又∵S△ABC=AC•BC,∴S△ABC==7.9.如图是由4个边长为1的正方形构成的“田字格〞.只用没有刻度的直尺在这个“田字格〞中最多可以作出以格点为端点、长度为的线段8条..【分析】如图,由于每个小正方形的边长为1,那么根据勾股定理容易得到长度为的线段,然后可以找出所有这样的线段.【解答】解:如图,所有长度为的线段全部画出,共有8条.。
期末复习 《勾股定理》常考题与易错题精选(35题)(原卷版)
期末复习- 《勾股定理》常考题与易错题精选(35题)一.勾股定理(共11小题)1.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是3、5、2、3,则最大正方形E的面积是( )A.10B.13C.15D.262.如图,长方形ABCD的顶点A,B在数轴上,点A表示﹣1,AB=3,AD=1.若以点A为圆心,对角线AC长为半径作弧,交数轴正半轴于点M,则点M所表示的数为( )A.B.C.D.3.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,若AC=5,BC=12,则S△ACD :S△ABD为( )A.12:5B.12:13C.5:1 3D.13:54.图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=2,且∠AOB=30°,则OC的长度为( )A.B.C.4D.5.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为( )A.5B.7C.5或7D.6.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,则点C到直线AB的距离是( )A.B.3C.D.27.已知△ABC中,∠C=90°,AB=c,BC=a,AC=b.(1)如果a=7,b=24,求c;(2)如果a=12,c=13,求b.8.如图,Rt△ABC中,∠C=90°(1)若AB=,AC=,求BC2(2)若AB=4,AC=1,求AB边上高.9.如图,在四边形ABCD中,∠B=90°,∠BCA=60°,AC=2,DA=1,CD=3.求四边形ABCD 的面积.10.如图,每个小正方形的边长都为1.求出四边形ABCD的周长和面积.11.如图,在△ABC中,BC=6,AC=8,DE⊥AB,DE=7,△ABE的面积为35.(1)求AB的长;(2)求△ACB的面积.二.勾股定理的证明(共3小题)12.如图,直角三角形ACB,直角顶点C在直线l上,分别过点A、B作直线l的垂线,垂足分别为点D和点E.(1)求证:∠DAC=∠BCE;(2)如果AC=BC.①求证:CD=BE;②若设△ADC的三边分别为a、b、c,试用此图证明勾股定理.13.【阅读理解】我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a、b,斜边长为c.图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×ab,即(a+b)2=c2+4×ab,所以a2+b2=c2.【尝试探究】美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE,其中△BCA≌△ADE,∠C=∠D=90°,根据拼图证明勾股定理.【定理应用】在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边长分别为a、b、c.求证:a2c2+a2b2=c4﹣b4.14.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,也可以用面积法来证明勾股定理,请完成证明过程.(提示:BD和AC都可以分割四边形ABCD)三.勾股定理的逆定理(共8小题)15.下列各组中的三条线段,能构成直角三角形的是( )A.7,20,24B.,,C.3,4,5D.4,5,616.三角形的三边长分别为a、b、c,则下面四种情况中,不能判断此三角形为直角三角形的是( )A.a=3,b=4,c=5B.a=8,b=15,c=17C.a=5,b=12,c=13D.a=12,b=15,c=1817.如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.18.如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产量.小明测得AB=3m,AD=4m,CD=12m,BC=13m,又已知∠A=90°.求这块土地的面积.19.如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,DA=1.(1)求∠DAB的度数;(2)求四边形ABCD的面积.20.如图,在△ABC中,AD、BE分别为边BC、AC的中线,分别交BC、AC于点D、E.(1)若CD=4,CE=3,AB=10,求证:∠C=90°;(2)若∠C=90°,AD=6,BE=8,求AB的长.21.如图,在△ABC中,AD为BC边上的高,若BD=4,DC=5,AD=2,判断△ABC的形状,并说明理由.22.如图,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求∠ACB的度数.四.勾股数(共3小题)23.下列四组数中不是勾股数的是( )A.3,4,5B.2,3,4C.5,12,13D.8,15,1724.下列各组数中,是勾股数的为( )A.,2,B.8,15,17C.,D.32,42,5225.观察下列各组勾股数有哪些规律:3,4,5;9,40,41;5,12,13;……;7,24,25;a,b,c.请解答:(1)当a=11时,求b,c的值;(2)判断21,220,221是否为一组勾股数?若是,请说明理由.五.勾股定理的应用(共10小题)26.我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠B=90°,AB=6m,BC=8m,CD=24m,AD=26m.(1)求出空地ABCD的面积;(2)若每种植1平方米草皮需要350元,问总共需投入多少元?27.由四条线段AB、BC、CD、DA所构成的图形,是某公园的一块空地,经测量∠ADC=90°,CD=3m、AD=4m、BC=12m、AB=13m.现计划在该空地上种植草皮,若每平方米草皮需200元,则在该空地上种植草皮共需多少元?28.如图,某校攀岩墙AB的顶部A处安装了一根安全绳AC,让它垂到地面时比墙高多出了2米,教练把绳子的下端C拉开8米后,发现其下端刚好接触地面(即BC=8米),AB⊥BC,求攀岩墙AB的高度.29.如图,甲、乙两船从港口A同时出发,甲船以16海里/时的速度向北偏东42°方向航行,乙船向南偏东48°方向航行,0.5小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距17海里,问乙船的航速是多少?30.“儿童散学归来早,忙趁东风放纸鸢”.又到了放风筝的最佳时节.某校八年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE(如图),他们进行了如下操作:①测得水平距离BD的长为8米;②根据手中剩余线的长度计算出风筝线BC的长为17米;③牵线放风筝的小明的身高为1.5米.(1)求风筝的垂直高度CE;(2)如果小明想风筝沿CD方向下降9米,则他应该往回收线多少米?31.森林火灾是一种常见的自然灾害,危害很大,随着中国科技、经济的不断发展,开始应用飞机洒水的方式扑灭火源.如图,有一台救火飞机沿东西方向AB,由点A飞向点B,已知点C为其中一个着火点,且点C与直线AB上两点A,B的距离分别为600m和800m,又AB=1000m,飞机中心周围500m以内可以受到洒水影响.(1)着火点C受洒水影响吗?为什么?(2)若飞机的速度为10m/s,要想扑灭着火点C估计需要13秒,请你通过计算判断着火点C能否被扑灭?32.一架云梯长25m,如图所示斜靠在一面墙上,梯子底端C离墙7m.(1)这个梯子的顶端A距地面有多高?(2)如果梯子的顶端下滑了4m,那么梯子的底部在水平方向滑动了多少米?33.在一条东西走向的河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原由C 到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=1.5千米,CH=1.2千米,HB=0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求原来的路线AC的长.34.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面3米,问:发生火灾的住户窗口距离地面BD有多高?35.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的)。
勾股定理常见错例剖
勾股定理常见错例剖勾股定理是数学中非常重要的一个定理,不仅在初中数学中经常被使用,同时在高中和大学中也是非常常见的数学工具之一。
然而,由于勾股定理的使用过程比较复杂,因此在实际解题中也很容易出现一些错误。
下面将就勾股定理常见错例剖做以介绍。
首先,勾股定理最常见的错误是计算公式出错。
勾股定理的表示方法为:a²+b²=c²,其中a、b分别为直角边,c为斜边。
然而,很多学生在计算时会出现计算公式的错误,导致最终得到的结果不正确。
例如,一道常见的题目为:已知一个等腰直角三角形的直角边为3cm,求它的斜边长。
根据勾股定理,可以得到:3²+3²=c²,简化后可得:c=3√2,即斜边长为3√2cm。
然而,如果计算公式出错,可能会得到不正确的答案。
其次,勾股定理的使用条件也是一个比较容易出问题的地方。
勾股定理只能用于直角三角形,如果使用在非直角三角形中,就会导致错误的结果。
有些学生在解题时不加思考地使用勾股定理,导致得出的结果不符合实际。
因此,在使用勾股定理时,一定要首先确定这个三角形是否为直角三角形,否则勾股定理就不能生效。
第三,勾股定理的使用方法也是一个容易出错的地方。
很多学生在使用勾股定理时,并没有对a、b两条直角边进行正确的辨别,导致最终结果的错误。
此外,还可能会出现勾股定理与勾三股四五倍角、三弦定理等其他定理的混淆,导致最终结果的错误。
因此,在使用勾股定理时,一定要先仔细观察题目,分析其解题思路,尽可能准确地使用勾股定理。
最后,勾股定理的实际应用也是一个容易出错的地方。
在实际使用中,勾股定理经常用于计算斜杠长度和斜坡长度等问题。
然而,在实际问题中,所涉及的条件比较复杂,可能存在多种解决方法。
因此,在应用勾股定理时,一定要充分了解问题的背景和条件,避免出现不恰当的使用。
综上所述,勾股定理是数学学习中非常重要的一个定理,但在实际解题中也容易出现一些错误。
勾股定理常考题型整理
勾股定理易错题型整理:易错点1:错误理解勾股数例1:下列条件中,不能判断△ABC为直角三角形的是()A、a2:b2:c2=1:2:3B、a:b:c=3:4:5C、∠A+∠B=∠CD、∠A:∠B:∠C=3:4:5易错点2:求最短距离时展开图数据错误或展开错误例1:在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,求一只蚂蚁从点A处,到达C处需要走的最短路.例2:如图①是一个长方体盒子,长AB=4,宽BC=2,高CG=1.(1)一只蚂蚁从盒子下底面的点A沿盒子表面爬到点G,那么它所行走的最短路线的长是______.(2)这个长方体盒子内能容下的最长木棒的长度为______.例3:如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是()A.20cm B.14cm C.10cm D.无法确定易错点3:忽略分类讨论或多解例1:直角三角形两边长分别是3和4,则第三边长为______.例2:直角三角形两直角边长分别是3和4,则第三边长为______.例3:直角三角形两边长分别是3和4,则最长边为______.易错题型3:作图错误例1:如图所示,铁路上A,B两站(视为直线上两点)相距14km,C,D为两村庄(可看为两个点),DA⊥AB于A,CB⊥AB于B,已知DA=8km,CB=6km,现要在铁路上建一个土特产品收购站E,使C,D两村到E站的距离相等,则E站应建在距A站多少km处?例2:如图,牧童在A处放牛,其家在C处,A、C到河岸l的距离分别为AB=2km,BD=8km,且CD=4km。
(1)牧童从A处将牛牵到河边P处饮水后再回到家C,试确定P在何处,所走路程最短?请在图中画出饮水的位置(保留作图痕迹),不必说明理由。
(2)求出(1)中的最短路程。
(6分)必考知识点1:最短距离问题例1:如图3,在Rt△ABC中,∠ACB=90°,CD是高,AC=5,BC=12,求CD的长度。
勾股定理的题型与解题方法
勾股定理的题型与解题方法一、知识点1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2) 2、勾股定理的逆定理:如果三角形的三边长:a 、b 、c 有关系a 2+b 2=c 2,那么这个三角形是直角三角形。
3、满足222c b a =+的三个正整数,称为勾股数。
二、典型题型题型1、求线段的长度例1、如图,在△ABC 中,∠ACB=90º, CD ⊥AB ,D 为垂足,AC=6cm,BC=8cm. 求① △ABC 的面积; ②斜边AB 的长;③斜边AB 上的高CD 的长。
练习1、等腰三角形的,腰长为25,底边长14,则底边上的高是________,面积是_________。
2、一个直角三角形的三边长为连续偶数,则它的各边长为________。
3、一根旗杆在离地9米处断裂,旗杆顶部落在离旗杆底部12米处,旗杆折断之前有多高为_________。
4、直角三角形两直角边分别为5厘米、12厘米,那么斜边上的高是( )A 、6厘米;B 、 8厘米;C 、 80/13厘米;D 、 60/13厘米;5、直角三角形中两条直角边之比为3:4,且斜边为20cm ,求(1)两直角边的长(2)斜边上的高线长题型2、判断直角三角形例2、如图己知13,12,4,3,====⊥AD CD BC AB BC AB 求四边形ABCD 的面积DABC1.下列各组线段中,能构成直角三角形的是( )A .2,3,4B .3,4,6C .5,12,13D .4,6,72. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A .a :b :c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c) D . a :b :c =13∶5∶12 3. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A . 等边三角形B . 钝角三角形C . 直角三角形D . 锐角三角形.4、已知:如图,四边形ABCD 中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°。
八上数学 第一章勾股定理知识点归纳+易错题精选(含答案)
八年级数学上册 第一章 勾股定理知识点+易错题精选1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
勾股定理 易错题精选一.选择题1.以下列各组线段为边作三角形,能构成直角三角形的是( )A .2,3,4B .6,8,10C .5,8,13D .12,13,142.用四个边长均为a 、b 、c 的直角三角板,拼成如图中所示的图形,则下列结论中正确的是( )A .c 2=a 2+b 2B .c 2=a 2+2ab+b 2C .c 2=a 2﹣2ab+b 2D .c 2=(a+b )2.3.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D ,E ,F ,G ,H ,I 都是矩形KLMJ 的边上,则矩形KLMJ 的面积为( )A.360 B.400 C.440 D.4844.如图,甲是第七届国际数学教育大会(简称ICME~7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的其中OA1=A1A2=A2A3=…=A7A8=1,如果把图乙中的直角三角形继续作下去,那么OA1,OA2,…OA25这些线段中有多少条线段的长度为正整数()A.3 B.4 C.5 D.65.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c26.如图,在正方形网格中,每个小正方形的方格的边长均为1,则点A到边BC的距离为()A. B.C. D.37.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2 B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:158.某中学旁边有一块三角形空地,为了保持水土,美化环境,全校师生一齐动手,在空地的三条边上栽上了树苗(如图).已知三边上的树苗数分别为50、14、48,空地的三个角均有一棵树,且每条边上的树苗株距均为1米,那么这块空地的形状为()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.长方形门框ABCD中,AB=2m,AD=1.5m.现有四块长方形薄木板,尺寸分别是:①长1.4m,宽1.2m;②长2.1m,宽1.7m;③长2.7m,宽2.1m;④长3m,宽2.6m.其中不能从门框内通过的木板有()A.0块 B.1块 C.2块 D.3块10.如图铁路上A,B两点相距40千米,C,D为两村庄,DA⊥AB,CB⊥AB,垂足分别为A 和B,DA=24千米,CB=16千米.现在要在铁路旁修建一个煤栈E,使得C,D两村到煤栈的距离相等,那么煤栈E应距A点()A.20千米B.16千米C.12千米D.无法确定二.填空题11.已知直角三角形的三边分别为6、8、x,则x= .12.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.13.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为.14.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a= ,b= ,c= .15.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形的形状是三角形.16.已知一个三角形的三条边的长分别为、和,那么这个三角形的最大内角的大小为度.17.如图,在四边形ABCD中,∠C=90°,AB=12cm,BC=3cm,CD=4cm,AD=13cm.求四边形ABCD的面积= cm2.18.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为米(精确到0.1m).19.上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B 处,从A、B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,海岛B与灯塔C之间的距离是海里.20.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯米.二.解答题21.如图,你能用它验证勾股定理吗?(提示:以斜边为边长的正方形的面积+四个三角形的面积=外正方形的面积)22.如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13.试判断△ACD的形状,并说明理由.23.问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图1,图2都是8×8的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.操作发现:小颖在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C,A,她借助此图求出了△ABC的面积.(1)在图1中,小颖所画的△ABC的三边长分别是AB= ,BC= ,AC= ;△ABC的面积为.解决问题:(2)已知△ABC中,AB=,BC=2,AC=5,请你根据小颖的思路,在图2的正方形网格中画出△ABC,并直接写出△ABC的面积.24.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.25.某研究性学习小组进行了探究活动.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?(3)亮亮在活动中发现无论梯子怎么滑动,在滑动的过程中梯子上总有一个定点到墙角O 的距离始终是不变的定值,会思考问题的你能说出这个点并说明其中的道理吗?26.如图,圆柱形容器高12cm,底面周长24cm,在杯口点B处有一滴蜂蜜,此时蚂蚁在杯外壁底部与蜂蜜相对的A处,(1)求蚂蚁从A到B处吃到蜂蜜最短距离;(2)若蚂蚁刚出发时发现B处的蜂蜜正以每秒钟1cm沿杯内壁下滑,4秒钟后蚂蚁吃到了蜂蜜,求蚂蚁的平均速度至少是多少?参考答案一.选择题1.【分析】只要验证两小边的平方和等于最长边的平方即可判断是直角三角形.【解答】解:A、22+32=13≠42,不能构成直角三角形,故本选项错误;B、62+82=100=102,能构成直角三角形,故本选项正确;C、52+82=89≠132,不能构成直角三角形,故本选项错误;D、122+132=313≠142,不能构成直角三角形,故本选项错误;故选:B.2.【分析】四个一样的直角三角板围成的四边形为正方形,其中小四边形也为正方形,大正方形的面积可以由边长的平方求出,也可以由四个直角三角形的面积与小正方形面积之和来求,两种方法得出的面积相等,利用完全平方公式展开,合并后即可得到正确的等式.【解答】解:由题意得到四个完全一样的直角三角板围成的四边形为正方形,其边长为c,里边的小四边形也为正方形,边长为b﹣a,则有c2=ab×4+(b﹣a)2,整理得:c2=a2+b2.故选:A.3.【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,所以,四边形AOLP是正方形,边长AO=AB+AC=6+8=14,所以,KL=6+14=20,LM=8+14=22,因此,矩形KLMJ的面积为20×22=440.故选:C.4.【分析】OA1=1,OA2==,OA3==,找到OA n=的规律即可计算OA1到OA25中长度为正整数的个数.【解答】解:找到OA n=的规律,所以OA1到OA25的值分别为,,……,故正整数为=1, =2, =3, =4, =5.故选:C.5.【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选:C.6.【分析】首先利用勾股定理求出三角形的边长,然后得到三角形是等腰三角形,进而利用勾股定理求出AD的长即可.【解答】解:根据勾股定理可知:AB==,AC==,BC==,则△ABC是等腰三角形,过点A作AD⊥BC,垂足为D,即BD=CD=BC=,AD===,即点A到BC的距离为.故选:C.7.【分析】根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【解答】解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.8.【分析】根据三边上的树苗的数分别求得三边的长为13、47、49,根据三边的长判断三角形的形状即可.【解答】解:∵三边上的树苗数分别为50、14、48,空地的三个角均有一棵树,且每条边上的树苗株距均为1米,∴三边的长分别为13米、47米、49米,假设为直角三角形且直角三角形的最长边为x,则:x2=132+472=2378,∵492=2401>2378,∴该三角形为钝角三角形.故选:B.9.【分析】求出长方形门框的对角线长,宽小于或等于长方形门框的对角线的长的木板就可通过.【解答】解:门框的对角线长是: =2.5m.宽小于或等于2.5m的有:①②③.故选:B.10.【分析】根据题意利用勾股定理得出AD2+AE2=BE2+BC2,进而求出即可.【解答】解:设AE=xkm,则BE=(40﹣x)km,∵DA⊥AB,CB⊥AB,C,D两村到煤栈的距离相等,∴AD2+AE2=BE2+BC2,故242+x2=(40﹣x)2+162,解得:x=16,则煤栈E应距A点16km.故选:B.二.填空题11.【分析】根据勾股定理的内容,两直角边的平方和等于斜边的平方,分两种情况进行解答.【解答】解:分两种情况进行讨论:①两直角边分别为6,8,由勾股定理得x==10,②一直角边为6,一斜边为8,由勾股定理得x==2;故答案为:10或2.12.【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB﹣BF.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.13.【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=,在Rt△ADC中,DC===1,∴BC=+1.故答案为: +1.14.【分析】由n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5;n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10;n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…得出a=2n,b=n2﹣1,c=n2+1,满足勾股数.【解答】解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…∴勾股数a=2n,b=n2﹣1,c=n2+1.故答案为:2n,n2﹣1,n2+1.15.【分析】根据题目中的式子和勾股定理的逆定理可以解答本题.【解答】解:∵2ab=(a+b)2﹣c2,∴2ab=a2+2ab+b2﹣c2,∴a2+b2=c2,∵三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,∴此三角形是直角三角形,故答案为:直角.16.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形,进而可得答案.【解答】解:∵()2+()2=()2,∴三角形为直角三角形,∴这个三角形的最大内角度数为90°,故答案为:9017.【分析】连接BD,根据勾股定理求出BD,根据勾股定理的逆定理求出△CBD是直角三角形,分别求出△ABD和△CBD的面积,即可得出答案.【解答】解:连结BD,在△ABD中,∵∠A=90°,BC=3cm,DC=4cm,∴BD==5(cm),S△BCD=BC•DC=×3×4=6(cm2),在△ABD中,∵AD=13cm,AB=12cm,BD=5cm∴BD2+AB2=AD2,∴△ABD是直角三角形,∴S△ABD=AB•BD=×12×5=30(cm2),∴四边形ABCD的面积=S△ABD+S△BCD=6+30=36(cm2).故答案为:36.18.【分析】根据已知条件得到∠BAC=90°,AB=150米,AC=120米,由勾股定理即可得到结论.【解答】解:根据题意得:∠BAC=90°,AB=150米,AC=120米,在Rt△ABC中,BC=≈192.2米,故答案为:192.219.【分析】根据方位角可知船与海岛、灯塔的方向正好构成了直角.然后根据路程=速度×时间,再根据勾股定理,即可求得海岛B与灯塔C之间的距离.【解答】解:因为∠BAC=60°,点C在点B的正西方向,所以△ABC是直角三角形,∵AB=15×2=30海里,∠BAC=60°,∴AC=60海里,∴BC==30(海里)故答案为:3020.【分析】利用直角三角形中30°角对的直角边等于斜边的一半求出BC的长,再根据勾股定理求出AB的长,进而可得出结论.【解答】解:∵△ABC是直角三角形,∠A=30°,斜边AC是4米,∴BC=AC=2米,∴AB===2(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=(2)米.故答案为:2+2三.解答题(共6小题)21.【分析】根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.【解答】解:根据题意,中间小正方形的面积;化简得a2+b2=c2,即在直角三角形中斜边的平方等于两直角边的平方和.22.【分析】先根据勾股定理求出AC的长,在△ACD中,再由勾股定理的逆定理,判断三角形的形状.【解答】解:△ACD是直角三角形.理由是:∵∠B=90°,AB=3,BC=4,∴AC2=AB2+BC2=9+16=25,∴AC=5,又∵AC2+CD2=25+144=169,AD2=169,∴AC2+CD2=AD2,∴△ACD是直角三角形.23.【分析】根据勾股定理、矩形的面积公式、三角形面积公式计算.【解答】解:(1)AB==5,BC==,AC==,△ABC的面积为:4×4﹣×3×4﹣×1×4﹣×3×1=,故答案为:5;;;;(2)△ABC的面积:7×2﹣×3×1﹣×4×2﹣×7×1=5.24.【分析】如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB 的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.25.【分析】(1)在Rt△AOB中利用勾股定理求得AO的长即可;(2)在梯子长度不变的情况下,求出DO的长后减去BO的长求得BD即可作出判断;(3)由直角三角形斜边上的中线的性质回答问题.【解答】解:(1)∵AO⊥DO,∴AO=,=,=12m,∴梯子顶端距地面12m高;(2)滑动不等于4m,∵AC=4m,∴OC=AO﹣AC=8m,∴OD=,=,∴BD=OD﹣OB=,∴滑动不等于4m.(3)AB上的中点到墙角O的距离总是定值,因为直角三角形斜边上的中线等于斜边的一半.26.【分析】(1)先将圆柱的侧面展开,再根据勾股定理求解即可;(2)根据勾股定理得到蚂蚁所走的路程,于是得到结论.【解答】解:(1)如图所示,∵圆柱形玻璃容器,高12cm,底面周长为24cm,∴AD=12cm,∴AB===12(cm).答:蚂蚁要吃到食物所走的最短路线长度是12cm;(2)∵AD=12cm,∴蚂蚁所走的路程==20,∴蚂蚁的平均速度=20÷4=5(cm/s).。
初中数学:勾股定理全章知识点总结大全及重点题型
初中数学:勾股定理全章知识点总结⼤全及重点题型基础知识点1:勾股定理 直⾓三⾓形两直⾓边a、b的平⽅和等于斜边c的平⽅。
(即:a2+b2=c2)要点诠释:勾股定理反映了直⾓三⾓形三边之间的关系,是直⾓三⾓形的重要性质之⼀,其主要应⽤:(1)已知直⾓三⾓形的两边求第三边(2)已知直⾓三⾓形的⼀边与另两边的关系,求直⾓三⾓形的另两边(3)利⽤勾股定理可以证明线段平⽅关系的问题2:勾股定理的逆定理如果三⾓形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三⾓形是直⾓三⾓形。
要点诠释:勾股定理的逆定理是判定⼀个三⾓形是否是直⾓三⾓形的⼀种重要⽅法,它通过“数转化为形”来确定三⾓形的可能形状,在运⽤这⼀定理时应注意:(1)⾸先确定最⼤边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直⾓的直⾓三⾓形(若c2>a2+b2,则△ABC是以∠C为钝⾓的钝⾓三⾓形;若c2<a2+b2,则△ABC为锐⾓三⾓形)。
3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直⾓三⾓形的性质定理,⽽其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直⾓三⾓形有关。
4:互逆命题的概念 如果⼀个命题的题设和结论分别是另⼀个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中⼀个叫做原命题,那么另⼀个叫做它的逆命题。
5:勾股定理的证明 勾股定理的证明⽅法很多,常见的是拼图的⽅法 ⽤拼图的⽅法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,⾯积不会改变②根据同⼀种图形的⾯积不同的表⽰⽅法,列出等式,推导出勾股定理规律⽅法指导1.勾股定理的证明实际采⽤的是图形⾯积与代数恒等式的关系相互转化证明的。
2.勾股定理反映的是直⾓三⾓形的三边的数量关系,可以⽤于解决求解直⾓三⾓形边边关系的题⽬。
3.勾股定理在应⽤时⼀定要注意弄清谁是斜边谁直⾓边,这是这个知识在应⽤过程中易犯的主要错误。
勾股定理专题复习课
详细描述
根据勾股定理,直角三角形的面积可以通过两条直角边的长度和斜边的高来计算。面积 = (1/2) × 直角边1 × 直角边2 = (1/2) × 斜边 × 高。
示例
在直角三角形ABC中,已知直角边a=3和b=4,斜边c=5,斜边上的高h可以通过面积公式计 算为h=12/5。
等。
05 勾股定理的易错点解析
勾股定理适用条件的误解
总结词
理解不准确
01
总结词
应用范围限制
03
总结词
忽视前提条件
05
02
详细描述
勾股定理适用于直角三角形,但学生常常误 以为它适用于所有三角形,导致在解题时出 现错误。
04
详细描述
勾股定理只适用于直角三角形,对于 非直角三角形,需要使用其他定理和 公式进行计算。
06
详细描述
勾股定理的前提是三角形必须是直角三角形, 如果忽视这个前提,会导致计算结果不准确。
勾股定理计算中的常见错误
在此添加您的文本17字
总结词:计算错误
在此添加您的文本16字
详细描述:学生在使用勾股定理进行计算时,常常因为粗 心或对公式理解不准确而出现计算错误。
在此添加您的文本16字
总结词:单位不统一
勾股定理与三角函数的关系
总结词
勾股定理与三角函数之间存在密 切关系,可以通过三角函数来求 解相关问题。
详细描述
在解决与直角三角形相关的三角 函数问题时,勾股定理常常被用 来计算边长或角度。例如,在求 解三角函数的实际应用问题时, 可以使用勾股定理来计算相关物 体的长度或距离。
示例
在解决与航海、测量和几何学相 关的实际问题时,常常需要使用 勾股定理和三角函数来求解角度 和距离。
勾股定理知识点及典型例题
勾股定理知识点及典型例题一、勾股定理:勾股定理定义为:直角三角形两直角边的平方和等于斜边的平方,即a²+b²=c²,其中a和b是直角三角形的两条直角边,c是斜边。
勾股定理的逆定理为:如果三角形的三边长a,b,c满足a+b=c,那么这个三角形是直角三角形。
勾股数是满足a²+b²=c²的三个正整数a,b,c。
注意,若a,b,c为勾股数,那么ka,kb,kc同样也是勾股数。
常见的勾股数有3,4,5;6,8,10;9,12,15;5,12,13.判断直角三角形的方法有两种:一是如果三角形的三边长a、b、c满足a+b=c,那么这个三角形是直角三角形。
二是如果有一个角为90°或两个角互余,那么这个三角形是直角三角形。
具体判断方法是确定最大边(不妨设为c),若c=a+b,则为直角三角形;若a+bc,则为锐角三角形。
直角三角形斜边上的中线等于斜边的一半,在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
勾股定理的作用有四个:一是已知直角三角形的两边求第三边;二是已知直角三角形的一边,求另两边的关系;三是用于证明线段平方关系的问题;四是利用勾股定理,作出长为a,b,c的直角三角形。
二、勾股定理的证明:勾股定理的证明方法有很多种,其中常见的是拼图的方法。
具体证明过程如下:在直角三角形ABC中,以BC为底边,作等腰直角三角形ABD,连接AD,则AD=AB,BD=BC。
因此,AB²=AD²+BD²=AD²+BC²,即a²=b²+c²。
1.一个无盖的正方体盒子内有两只昆虫,昆虫甲在顶点C1处,昆虫乙在棱BB1的中点E处。
昆虫乙要在最短时间内捕捉到昆虫甲,可以沿着路径A→E→C1爬行。
勾股定理知识点及复习题
四个直角三角形的面积与小正方形面积的和为 S = 4 - ab c^ 2ab c 22大正方形面积为 S =(a - b)2=a 22ab - b 2化简可证方法三:S 弟形=-(a b) (a b)2S 弟形1 1=2S ADE • S ABE =2 — ab — C 2,化简得证3 .勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所适用于直角三角形,对于锐角三角形和钝角 这一特征,因而在应用勾股定理时,必须明存在的数量关系,它只 三角形的三边就不具有 了所考察的对象是直角勾股定理的复习—、勾股定理的内容1、 内容:直角三角形两直角边的平方和等于斜边的平方;2、 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么a 2亠b 2 =c 23、 证明:勾股定理的证明方法很多,常见的是用拼图的方法验证勾股定理思路:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式推导出勾股定理4 1 ab (b -a)2=c 2,化简可证: a? - b =c 22方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.三角形4 .勾股定理的应用 ①已知直角三角形的任意两边长,求第三边。
在AABC 中, /C=90,贝V c = . a 2■ b 2, b = ,c 2—a 2, a = .c 2-b 2②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题(注:在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜 边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线), 构造直角三角形,以便正确使用勾股定理进行求解.)5、在数轴上作出表示、n (n 为正整数)的点.ab易错点:(1)已知直角三角形中两边长,求第三边长,要弄清哪条边是斜边,哪条边是直角边,不能确定时,要分类讨论.(2)另外不论是否是直角三角形就用勾股定理;使用勾股定理的前提是直角三角形;(2)在求解问题的过程中,常列方程或方程组来求解;例3.若(二)、例题解析 考点一:已知两边求第三边 例1 .在 ABC 中,.C =90 . ⑴已知 AC =6, BC =8 .求AB 的长 ⑵已知AB =17, AC =15,求BC 的长例4:在Rt △ ABC 中, a , b , c 分别是三条边, 求边长c . 剖析:由于审题不仔细,容易忽视了/B=90°错把c 当成了斜边.温馨提示:运用勾股定理时,一定分清斜边和直角边,不能机械套用 c2=a2+b2例2.如图,由Rt △ ABQ 的三边向外作正方形,若最大正方形的边长为8cm,则正方形M 与正方形N 的面积之和为 ______________ cm 2a 、b 、c, a 2 =144,b 2 =25,则c 2 二 ______________例5:已知一个Rt △ ABC 的两边长分别为3和4,则第三边长的平方是 剖析:此题并没有告诉我们已知的边长 4一定是直角边,而4有可能是斜边,因此要分类讨论.温馨提示:在用勾股定理时,当斜边没有确定时,应进行分类讨论.例6:已知a,b,c 为/ ABC 三边,a=6, b=8, b<c ,且c 为整数,则c= 剖析:此题并没有告诉你/ ABC 为直角三角形,因此不能乱用勾股定理.正解:由b<c ,结合三角形三边关系得 8vcv6+8,即8vcv14,又因c 为整数,故c 边 长为 9、10、11、12、13.温馨提示:只有在直角三角形中,才能用勾股定理,因此解题时一定注意已知条件中 是否为直角三角形.例2.已知两线段的长为6cm 和8cm 当第三条线段取 ___________________ 时,这三条线段能组 成一个直角三角形。
《勾股定理》易错题集用
《勾股定理》易错题集选择题1、工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A、80cmB、错误!未找到引用源。
C、80cm或错误!未找到引用源。
D、60cm考点:勾股定理的应用。
分析:可将截取的钢条做为直角边或斜边,然后根据勾股定理,计算出钢条的长度,看其是否符合题意.解答:解:将钢条看作直角边,则钢条长度l2+3600=10000,得到l=80(cm),将钢条看作斜边,则l2=3600+10000,所以l=错误!未找到引用源。
>90cm,不合题意;故选A.点评:本题主要考查对于勾股定理的应用,要注意钢条的长度是否符合题意.2、现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()A、错误!未找到引用源。
米B、错误!未找到引用源。
米C、错误!未找到引用源。
米或错误!未找到引用源。
米D、错误!未找到引用源。
米考点:勾股定理的应用。
专题:分类讨论。
分析:分两种情况讨论:①第三根铁棒的长为斜边;②第三根铁棒的长为直角边.解答:解:①第三根铁棒为斜边时,其长度为:错误!未找到引用源。
=错误!未找到引用源。
米;②第三根铁棒的长为直角边时,其长度为:错误!未找到引用源。
=错误!未找到引用源。
米.故选C.点评:本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.3、现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为()A、30厘米B、40厘米C、50厘米D、以上都不对考点:勾股定理的应用。
分析:由于不明确直角三角形的斜边,故应分两种情况讨论.解答:解:此题要分两种情况:(1)当50是直角边时,所需木棒的长是错误!未找到引用源。
=10错误!未找到引用源。
;(2)当50是斜边时,所需木棒的长是30.故选D.点评:解答此题的关键是运用勾股定理解答,注意此题的两种情况.4、(2005•贵阳)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A、6cmB、12cmC、13cmD、16cm考点:平面展开-最短路径问题。
勾股定理易错题
勾股定理易错题一、折叠1、如图是一张直角三角形的纸片,两直角边 AC=6cm BC=8cm 现将△ ABC 折叠,使点B 与 点A 重合,折痕为DE 贝U BE 的长为 ________________ cm2、如图,折叠直角三角形纸片的直角,使点 C 落在AB 上的点E 处,已知AC=6 / B=30°, 则DE 的长是 _________________ 。
3、如图,Rt △ ABC 中, AB=9,BC=6 / B=90°,将厶ABC 折叠,使A 点与BC 的中点重合,折4、如图,长方形纸片 ABCD 沿对角线AC 折叠,设点D 落在D '处,BC 交AD 于点E, AB=6crm BC=8cryi 求阴影部分的面积。
5、如图,已知矩形ABCDft 着直线BD 折叠,使点C 落在C'处,BC 交AD 于 E ,AE F痕为MN 则线段BN 的长为E. ABAD=8,AB=4贝U DE 的长为6如图,长方形ABCD 中, AB=3cm AD=9cm 将此长方形折叠,使点 B 与点D 重合,折痕为 EF ,则厶ABE 的面积为 ______________11、如图,在Rt △ ABC 中,/ B=90°,AB=3 BC=4将厶ABC 折叠,使点B 恰好落在边 AC 上,与点B '重合,AE 为折痕,则EB' = __________________ .7、如图,有一个直角三角形纸片,两直角边 折叠,使它落在斜边AB 上,且与AE 重合, AC=18cm BC=24cm 现将直角边 AC 沿直线AD 你能求出BD 的长吗?8、如图,在 Rt △ ABC 中,AB=9,BC=6,/ B=90°, 将厶ABC 折叠,使A 点与BC 的中点D 重合,折痕为MNOAB 其中/ AOB=90,OA=2 OB=4如图,将该纸片放置在平面直角坐标0B 交于点C,与边AB 交于点D 。
应用勾股定理时常见错误剖析
应用勾股定理时常见错误剖析作者:程蒙来源:《电子乐园·上旬刊》2019年第01期摘要:勾股定理是极为重要的定理,其应用十分广泛。
同学们在运用这个定理解题时,常出现这样或那样的错误,为帮助同学们掌握好勾股定理,现将乎时容易出现的错误加以归类剖析,供参考。
关键词:勾股定理;常见错误;错解;剖析;正解一、不能正确分辨勾股定理中的直角边与斜边致错例1 在RTΔABC中,∠B=900,a=6,b=8,求c边的长。
∠错解由勾股定理:a222,得剖析由∠B=90°知b为斜边,a、c为直角边,上述解题过程中没有弄清勾股定理的实质是斜边的平方等于两直角边的平方和,因而是错误的。
正解∵∠B=90°,∴b为斜边由2a22,得二、忽略勾股定理成立的条件致错例2 △ABc的边长都为整数,已知AB>AC,AC=8cm,BC=3cm,求AB边的长。
错解∵AB>AC,AC=8,BC=3∴AB>AC>BC∴AB剖析勾股定理成立的条件是直角三角形,题目中告知的三角形没有明确是直角三角形,而是一般三角形,因而不能用勾股定理求解,只能用一般三角形的三边关系求解。
正解∵AB>AC>BC ∴8∵AB为整数∴AB=9或AB=10三、受思维定式的影响考虑问题不周全致错例3 在RTAABC中,a=6,b=2,则c边的长为_______。
错解由勾股定理:a222,得c剖析由于受勾股定理表面形式的影响,将c默认为斜边,因而造成漏解。
事实上本题没有指名三边大小关系,因而c可能是斜边,也可能是直角边,因此应该分两种情况讨论。
正解当c为斜边时,同上得;当c为直角边时,∵a>b,∴a为直角边综上所诉四、忽略对问题的分类讨论致错例4 在ΔABC中,AB=15,AC=13,高AD=12,求BC的长。
错解如图1,∵AD⊥BC∴△ADB和△ADC为直角三角形∴BC=BD+DC=16解析上述解题只注意了高在三角形内部,而忽略了高在三角形外部的情况,因而产生了漏解,应当分类讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理知识点易错点
一、知识体系:
二、知识点:
1、直角三角形两边的平方和等于斜边的平方。
即:a2+b2=c2(a、b为直角边,c为斜边).如图所示,我国古代把直角三角形的较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”。
注意:(1)勾股定理只有在直角三角形中才适用,如果不是直角三角形,三边就没有这种关系。
(2)勾股定理揭示的是直角三角形三边之间的数量关系:两直角边的
平方和等于斜边的平方,不是任意两边的平方和都等于第三边的平方。
2、勾股定理的验证
验证勾股定理的有效方法,一般遵循以下几个步
3、勾股定理的逆定理:(重点)
如果三角形的三边长a 、b 、c 且a 2
+b 2
=c 2
,那么这个三角形是直角三角形。
注意:(1)证明时不能说成“在直角三角形中”,因为还没有确定是直角三角形,当然也不能说成“斜边、直角边”
(2)a 2
+b 2
=c 2
它只是一种表现形式,不能因为a 2
+b 2
≠c 2
就说这个三角形不是直角三角形。
如a=5,b=3,c=4. a 2
+b 2
≠c 2
但此三角形是直角三角形。
a 为斜边。
利用勾股定理判别一个三角形是不是直角三角形的方法:求出三角形中较小两边的平方和与较大边的平方进行比较,如果相等,可判断这个三角形是直角三角形,否则不是。
勾股数:满足a 2
+b 2
=c 2
的3个正整数,且满足a 2
+b 2
=c 2。
1、勾股定理:直角三角形两直角边a 、
b
的平方和等于斜边
c 的平方。
如果直角三角形两直角边分别为a 、b,斜边为c ,那么 222a b c += 。
强调说明:勾——最短的边、股――较长的直角边、弦――斜边
2、勾股定理的逆定理:如果三角形三边a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就为直角三角形。
3、3、定理的证明方法
勾股定理的证明方法很多,常见的是拼图的方法
用拼图的方法验证勾股定理的思路是
①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ①根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:
方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2
ab b a c ⨯+-=,化简可证.
方法二:
四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422
S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=
方法三:1()()2
S a b a b =+⋅+梯形,2112S 222
ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证
c
b
a
H
G F E
D
C
B
A
b
a
c
b
a
c c
a
b
c
a
b
易错点
1,,,勾股定理揭示了直角三角形三边的关系,值得注意的是,只有在直角三角形中才有两边(较小的两边)的平方和等于第三边(最长的边)的平方,非直角三角形不具备这种关系。
因此,在非直角三角形中或者是在不知道三角形是不是直角三角形的情况下,不能盲目地使用勾股定理。
另一方面,若已知三角形中有直角,使用勾股定理时也需谨慎,不能机械地把它记为222c b a =+,这只是
o C 90=∠时的情形。
当o A 90=∠时,有222a c b =+;当o B 90=∠时,有222b c a =+
2,,注意隐含条件
已知直角三角形的两边长分别为3cm ,4cm ,求第三边的长
由于思考不周全,忽略隐含条件,误认为一边是3cm ,一边是4cm ,所以第三边就应该是5cm ,实际上,题目隐含着两种情况 3,注意应用的区别
在直角的三角形中需要用到三边关系时用勾股定理,而已知三边长想用勾股定理进行有关计算或推理时,则需先用勾股定理的逆定理判定它是不是直角三角形。
4,注意遇到求高问题常考虑用勾股定理解决
a b
c
c b
a
E D C
B
A
一:勾股定理
直角三角形两直角边a、b的平方和等于斜边c的平方。
(即:a2+b2=c2)
要点诠释:
勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:
(1)已知直角三角形的两边求第三边
(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边
(3)利用勾股定理可以证明线段平方关系的问题
二:勾股定理的逆定理
如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。
要点诠释:
用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:
(1)首先确定最大边,不妨设最长边长为:c;
(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以△C为直角的直角三角形
(若c2>a2+b2,则△ABC是以△C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形)。
三:勾股定理与勾股定理逆定理的区别与联系
区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;
联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
四:互逆命题的概念
如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
规律方法指导
1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。
2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。
3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯
的主要错误。
4. 勾股定理的逆定理:如果三角形的三条边长a,b,c有下列关系:a2+b2=c2,△那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法.
5.△应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.。