变频器元器件-IGBT
变频器IGBT模块损坏的原因、检测方法和维修过程
变频器IGBT模块损坏的原因、检测方法和维修过程导语:变频器在运转中突然发出爆炸声响,同时外接保险烧毁,拆机发现变频器的igbt模块损坏。
经过对相关板卡的测试,发现igbt触发线路损坏,测量其他板块正常。
1、IGBT模块因散热不良导致其损坏变频器在运转中突然发出爆炸声响,同时外接保险烧毁,拆机发现变频器的igbt模块损坏。
经过对相关板卡的测试,发现igbt触发线路损坏,测量其他板块正常。
在拆卸变频器板卡时发现其电源板和电流检测板上有很多的油污和灰尘。
打开变频器的散热片风机,看到散热片上也粘满了油污和杂物,将变频器的散热通道完全堵死。
由此推断变频器的IGBT模块因散热不良导致其损坏。
维修过程:首先将变频器完全拆开,将散热通道的散热片拆下,用空压气体将散热片清理干净,同时将变频器内部结构件和板卡全部清理干净。
安装igbt模块,安装igbt模块时候要按照模块的要求,顺序安装,力矩适度。
修理触发线路,然后依次安装其他器件。
安装结束后进行静态的测试,静态测试结果良好后进行通电测试和带负载试验。
带负载试验合格,顺利完成维修。
经验总结:综合不同型号和不同的使用环境中的数台变频器维修情况,总结出变频器igbt模块损坏的主要原因是使用环境的恶劣,使得门极驱动卡上电子元件损坏以及变频器的散热通道堵塞导致。
最容易损坏的器件是稳压管及光耦。
检查驱动电路是否有问题,可在断电时比较一下各路触发端电阻是否一致。
通电开机可测量触发端的电压波形。
但是有的变频器不装入模块不能开机,这时在模块p端串入假负载防止检查时误碰触发端或其他线路引起烧坏模块。
2、IGBT模块的简单测量方法变频器输出电压不平衡表现为马达抖动,转速不稳,一般没有经验是很难判定是哪路驱动有问题,这时可启动变频器2hz,用万用表直流电压档分别测:p-u、p-v、p-w及u-n、v-n、w-n的电压值,这6路电压这时也会不一样,那一路偏高则这一路有问题,其原理大家可自己画图分析一下。
变频器IGBT选型
IGBT如何选型四大步轻松搞定北极星电力网新闻中心 2014-3-18 12:06:32 我要投稿北极星电源网讯:逆变技术对IGBT的参数要求并不是一成不变的,逆变技术已从硬开关技术,移相软开关技术发展到双零软开关技术,各个技术之间存在相辅相成的纽带关系,同时具有各自的应用电路要求特点,因而,对开关器件的IGBT的要求各不相同。
而IGBT正确选择与使用尤为重要。
图:逆变器中IGBT模块伴随科学技术的发展和低碳经济的要求,逆变器在各行各业中应用飞速发展,而IGBT是目前逆变器中使用的主流开关器件,也在逆变结构中起核心作用。
采用IGBT进行功率变换,能够提高用电效率,改善用电质量。
新型IGBT逆变技术是推动我国低碳经济发展战略的突破口,同时缓解能源,资源和环境等方面的压力,加快转变经济增长方式,促进信息化带动工业化,提高国家经济安全性,起着重要作用,因此,IGBT在逆变器中的正确选择与使用,有着举足轻重的作用。
逆变技术对IGBT 的参数要求并不是一成不变的,逆变技术已从硬开关技术,移相软开关技术发展到双零软开关技术,各个技术之间存在相辅相成的纽带关系,同时具有各自的应用电路要求特点,因而,对开关器件的IGBT的要求各不相同。
而IGBT正确选择与使用尤为重要。
1、IGBT额定电压的选择三相380V输入电压经过整流和滤波后,直流母线电压的最大值:在开关工作的条件下,IGBT 的额定电压一般要求高于直流母线电压的两倍,根据IGBT规格的电压等级,选择1200V电压等级的IGBT。
2、IGBT额定电流的选择以30kW变频器为例,负载电流约为79A,由于负载电气启动或加速时,电流过载,一般要求1分钟的时间内,承受1.5倍的过流,择最大负载电流约为119A ,建议选择150A电流等级的IGBT。
3、IGBT开关参数的选择变频器的开关频率一般小于10kHZ,而在实际工作的过程中,IGBT的通态损耗所占比重比较大,建议选择低通态型IGBT,以30kW ,逆变频率小于10kHz的变频器为例,选择IGBT的开关参数见表14、影响IGBT可靠性因素1)栅电压IGBT工作时,必须有正向栅电压,常用的栅驱动电压值为15~187,最高用到20V,而棚电压与栅极电阻Rg有很大关系,在设计IGBT驱动电路时,参考IGBT Datasheet中的额定Rg值,设计合适驱动参数,保证合理正向栅电压。
变频器中IGBT爆炸原因分析
变频器中IGBT爆炸原因分析一、IGBT爆炸:因为某些原因,模块的损耗十分巨大,热量散不出去,导致内部温度极高,产生气体,冲破壳体,这就是所谓的IGBT爆炸。
二.IGBT爆炸原因分析1.爆炸的本质是发热功率超过散热功率,内部原因应该就是过热。
2.人为因素(1)进线接在出线的端子上(2)变频器接错电源(3)没按要求接负载3.常见原因:(1)过电流:一种是负载短路,另一种是控制电路处逻辑受干扰,导致上下桥臂元件直通。
(2)绝缘的损坏(3)过电压:通常是线路杂散电感在极高的di/dt作用下产生的尖峰电压而造成,解决的办法就是设计高性能吸收回路,降低线路杂散电感。
(4)过热:IGBT不能完全导通,在有电流的情况下元件损耗增大,温度增加导致损坏。
(5)通讯误码率a.通讯一段时间后,突然的错误信息导致IGBT 误导通使IGBT爆炸b.通讯板FPGA程序运行不稳定导致IGBT误导通使IGBT爆炸4其他原因(1)电路中过流检测电路反应时间跟不上。
(2)IGBT短路保护是通过检测饱和压降,而留给执行机构的时间一般是10us(8倍过流)在上电的时候容易烧预充电电阻和制动单元里的IGBT。
(3)工艺问题:铜排校着劲、螺丝拧不紧等。
(4)短时大电流:原因也有很多,比如死区没设置好、主电路过压、吸收电路未做好。
(5)驱动电源也是个应该特别注意的问题,该隔离加隔离、该滤波加滤波。
(6)电机冲击反馈电压过大导致IGBT爆炸。
但对于充电时爆炸的情况发生的概率不是很大。
(7)电机启动时,输入测电压瞬间跌落,电容放电。
输入测电压恢复后电容充电时的浪涌电流过大致使IGBT爆炸三.IGBT爆炸的案例案例一变频器上电就炸,故障率大约为5%。
本来怀疑是充电电路的问题,但是这是个老机型,用过很长时间了。
后来发现由于使用了新的工厂,新工厂的配电有问题,电网电压不稳造成的。
案例二:变频器上电炸,故障率大约为2%。
一直找不到原因,后来发现一个奇怪的现象,变频器特别容易在雨天炸。
IGBT是什么?
IGBT是什么?作者:海飞乐技术时间:2017-04-13 16:00IGBT是什么?IGBT全称为绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor),所以它是一个有MOS Gate的BJT晶体管,可以简单理解为IGBT是MOSFET和BJT的组合体。
MOSFET主要是单一载流子(多子)导电,而BJT是两种载流子导电,所以BJT的驱动电流会比MOSFET 大,但是MOSFET的控制级栅极是靠场效应反型来控制的,没有额外的控制端功率损耗。
所以IGBT就是利用了MOSFET和BJT的优点组合起来的,兼有MOSFET的栅极电压控制晶体管(高输入阻抗),又利用了BJT的双载流子达到大电流(低导通压降)的目的 (Voltage-Controlled Bipolar Device)。
从而达到驱动功率小、饱和压降低的完美要求,广泛应用于600V以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
图1IGBT实物图左图IGBT模块,右图IGBT管IGBT有什么用?绝缘栅双极晶体管(IGBT)是高压开关家族中最为年轻的一位。
由一个15V高阻抗电压源即可便利的控制电流流通器件从而可达到用较低的控制功率来控制高电流。
IGBT就是一个开关,非通即断,如何控制他的通还是断,就是靠的是栅源极的电压,当栅源极加+12V(大于6V,一般取12V到15V)时IGBT导通,栅源极不加电压或者是加负压时,IGBT关断,加负压就是为了可靠关断。
IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。
IGBT有三个端子,分别是G,D,S,在G和S两端加上电压后,内部的电子发生转移(半导体材料的特点,这也是为什么用半导体材料做电力电子开关的原因),本来是正离子和负离子一一对应,半导体材料呈中性,但是加上电压后,电子在电压的作用下,累积到一边,形成了一层导电沟道,因为电子是可以导电的,变成了导体。
IGBT
IGBTIGBT(Insulated Gate Bipolar Transistor),绝缘栅极型功率管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式电力电子器件。
应用于交流电机、变频器、开关电源、照明电路、牵引传动等领域。
IGBT是强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。
由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。
虽然最新一代功率MOSFET器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT 技术高出很多。
较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。
导通IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。
如等效电路图所示(图1),其中一个MOSFET驱动两个双极器件。
基片的应用在管体的P+和N+ 区之间创建了一个J1结。
当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率MOSFET的方式产生一股电流。
如果这个电子流产生的电压在0.7V范围内,那么,J1将处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。
最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET 电流);空穴电流(双极)。
关断当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。
在任何情况下,如果MOSFET电流在开关阶段迅速下降,集电极电流则逐渐降低,这是因为换向开始后,在N层内还存在少数的载流子(少子)。
变频器中的IGBT模块损耗计算及散热系统设计
变频器中的IGBT模块损耗计算及散热系统设计一、本文概述随着电力电子技术的快速发展,变频器作为电能转换与控制的核心设备,在工业自动化、新能源发电、电动汽车等领域得到了广泛应用。
绝缘栅双极晶体管(IGBT)作为变频器的关键功率器件,其性能直接影响到变频器的效率和可靠性。
IGBT模块的损耗计算和散热系统设计是变频器设计中的重要环节,对于提高变频器性能、降低运行成本、延长设备寿命具有重要意义。
本文旨在探讨变频器中IGBT模块的损耗计算方法和散热系统设计原则。
我们将分析IGBT模块的工作原理和损耗产生机制,包括通态损耗、开关损耗等。
在此基础上,我们将介绍损耗计算的数学模型和计算方法,以及如何通过实验手段验证计算结果的准确性。
我们将重点讨论散热系统的设计原则和优化方法,包括散热器结构设计、散热风扇的选择与控制、散热系统的热仿真分析等。
本文将总结一些实际应用中的经验教训,提出针对IGBT模块损耗计算和散热系统设计的优化建议,为变频器设计工程师提供有益的参考。
通过本文的研究,我们期望能够为变频器设计中的IGBT模块损耗计算和散热系统设计提供理论支持和实践指导,推动变频器技术的持续发展和应用创新。
二、IGBT模块损耗计算绝缘栅双极晶体管(IGBT)是变频器中的关键元件,其性能直接影响变频器的效率和可靠性。
IGBT模块的损耗计算是散热系统设计的基础,对于确保变频器的稳定运行具有重要意义。
IGBT模块的损耗主要包括通态损耗和开关损耗两部分。
通态损耗是指IGBT在导通状态下,由于电流通过而产生的热量损耗。
开关损耗则发生在IGBT的开通和关断过程中,由于电压和电流的乘积在时间上的积分不为零,导致能量损失。
通态损耗的计算公式为:Pcond = Icoll * Vce(sat),其中Icoll 为集电极电流,Vce(sat)为饱和压降。
饱和压降是IGBT导通时电压降的一个重要参数,它与集电极电流、结温和门极电流等因素有关。
有趣解读IGBT模块“续流二极管”
有趣解读IGBT模块“续流二极管”IGBT 模块上有一个“续流二极管”。
它有什么作用呢?答:当 PWM波输出的时候,它是维持电机内的电流不断用的。
我在说明变频器逆变原理的时候,用的一个电阻做负载。
电阻做负载,它上面的电流随着电压有通断而通断,上图所示的原理没有问题。
但变频器实际是要驱动电机的,接在电机的定子上面,定子是一组线圈绕成的,就是“电感”。
电感有一个特点:它的内部的电流不能进行突变。
所以当采用PWM 波输出电压波形时,加在电机上的电压就是“断断续续”的,这样电机内的电流就会“断断续续”的,这就给电机带来严重的后果:由于电感断流时,会产生反电动势,这个电动势加在 IGBT 上面,对 IGBT 会有损害。
解决的办法:在 IGBT 的 CE 极上并联“续流二极管”。
有了这个续流二极管,电机的电流就是连续的。
具体怎么工作的呢?如下图,负载上换成了一个电感L。
当1/4 开通时,电感上会有电流流过。
然后 PWM 波控制 1/4 关断,这样上图中标箭头的这个电路中就没有电流流过。
由于电感L 接在电路中,电感的特性,电流不能突然中断,所以电感中此时还有电流流过,同时因为电路上电流中断了,导致它会产生一个反电动势,这个反电动势将通过3 的续流二极管加到正极上,由于正极前面有滤波电容,这个反电动势可以对电容进行充电。
这样,正极的电压也不会上升。
如下图:坦白说,上面的这个解释节我写得不是很有信心,我希望有高人出来指点一下。
欢迎朋友在评论中留言。
我会在后面写《变频器的输出电流》一节中,通过实际的电流照片,验证这个二极管的作用。
现在来解释在《变频器整流部分元件》中说,在《电流整流的方式分类》中讲的“也可以用 IGBT 进行整流”有问题的。
IGBT,通常就是一个元件,它不带续流二极管。
即是这个符号:商用 IGBT 模块,都是将“IGBT+续流二极管”集成在一个整体部件中,即下面的这个符号。
在工厂中,我们称这个整体部件叫IGBT,不会说“IGBT 模块”。
变频器中IGBT模块的作用
变频器中IGBT模块的作用
IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管.是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。
IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。
非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
IGB T 的驱动方法和MOSFET 基本相同,只需控制输入极N一沟道MOSFET ,所以具有高输入阻抗特性。
当MOS FET 的沟道形成后,从P+ 基极注入到N 一层的空穴(少子),对N 一层进行电导调制,减小N 一层的电阻,使IGBT 在高电压时,也具有低的通态电压而在漏区另一侧的P+ 区称为漏注入区( Drain injector ),它是IGBT 特有的功能区,与漏区和亚沟道区一起形成PNP 双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。
附于漏注入区上的电极称为漏极。
IGBT 的开关作用是通过加正向栅极电压形成沟道,给PNP 晶体管提供基极电流,使IGBT 导通。
反之,加反向门极电压消除沟道,切断基极电流,使IGBT 关断。
变频器IGBT损坏原因和测量方法
变频器IGBT损坏原因和测量方法1、IGBT模块因散热不良导致其损坏变频器在运转中突然发出爆炸声响,同时外接保险烧毁,拆机发现变频器的igbt模块损坏。
经过对相关板卡的测试,发现igbt触发线路损坏,测量其他板块正常。
在拆卸变频器板卡时发现其电源板和电流检测板上有很多的油污和灰尘。
打开变频器的散热片风机,看到散热片上也粘满了油污和杂物,将变频器的散热通道完全堵死。
由此推断变频器的IGBT模块因散热不良导致其损坏。
维修过程:首先将变频器完全拆开,将散热通道的散热片拆下,用空压气体将散热片清理干净,同时将变频器内部结构件和板卡全部清理干净。
安装igbt模块,安装igbt模块时候要按照模块的要求,顺序安装,力矩适度。
修理触发线路,然后依次安装其他器件。
安装结束后进行静态的测试,静态测试结果良好后进行通电测试和带负载试验。
带负载试验合格,顺利完成维修。
经验总结:综合不同型号和不同的使用环境中的数台变频器维修情况,总结出变频器igbt模块损坏的主要原因是使用环境的恶劣,使得门极驱动卡上电子元件损坏以及变频器的散热通道堵塞导致。
最容易损坏的器件是稳压管及光耦。
检查驱动电路是否有问题,可在断电时比较一下各路触发端电阻是否一致。
通电开机可测量触发端的电压波形。
但是有的变频器不装入模块不能开机,这时在模块p端串入假负载防止检查时误碰触发端或其他线路引起烧坏模块。
2、IGBT模块的简单测量方法变频器输出电压不平衡表现为马达抖动,转速不稳,一般没有经验是很难判定是哪路驱动有问题,这时可启动变频器2hz,用万用表直流电压档分别测:p-u、p-v、p-w及u-n、v-n、w-n的电压值,这6路电压这时也会不一样,那一路偏高则这一路有问题,其原理大家可自己画图分析一下。
对于IGBT模块,我们介绍最简单的测量方法(专业不是这样测量)将数字万用表拨到二极管测试档,测试IGBT模块c1、e1、c2、e2之间以及栅极g与e1、e2之间正反向二极管特性,来判断IGBT模块是否完好。
IGBT使用中的几个常识性问题
IGBT使⽤中的⼏个常识性问题 IGBT是变频器等电⼒电⼦产品中经常⽤到的关键器件,正确地使⽤好IGBT是保证产品质量的基础和前提。
现总结⼏个常识性问题,以利于硬件设计⼈员加深对IGBT的认识。
(1)输出特性 IGBT的正向特性可以分为4个区间:饱和区、线性区、截⽌区和雪崩击穿区。
由于IGBT⼀般在变频器中是⽤作开关功能的,故⼀般⼯作在饱和区和截⽌区。
如果驱动能⼒不够,可能会落到线性区引起过热损坏;如果关断时C-E间的电压过⾼,则有可能使IGBT发⽣雪崩击穿⽽损坏。
IGBT本⾝不像MOSFET那样内部有⼀个寄⽣⼆极管,所以在很多情况下会把⼀个⼆极管芯⽚与IGBT芯⽚封装在⼀起。
由于IGBT是⾮对称器件,E-C间承受电压的能⼒很差(通常只有⼗⼏伏),由于并联了反并⼆极管,所以承受的反压会被钳位,但某些情况下,由于⼆极管正向导通特性差等原因,钳位效果会⼤打折扣,反压可能冲到很⾼,进⽽导致IGBT反向击穿⽽失效。
(2)集电极电流Ic、Icm和⼆极管电流IF的定义 IGBT器件规格书中给的集电极电流Ic是在不考虑开关损耗情况下管⼦能够流过的最⼤连续电流;也即只考虑导通损耗,不考虑其他损耗并且在⼀定温度情况下管⼦所能承受的电流。
我们实际使⽤时IGBT是⼯作在周期性地开通、关断状态的,⽽且开关频率各不相同。
所以从热⽅⾯考虑,IGBT也绝对不能在额定电流下使⽤,具体能流过多⼤电流,要以结温(包括稳态结温和瞬态结温)计算结果为准。
集电极重复峰值电流Icm是管⼦在任何情况下都不能超过的最⼤峰值电流,该值受到结温、键合线通电流能⼒、功率端⼦承受能⼒、擎住效应风险等的限制,热仅仅是其中的⼀个限定条件。
我们在设定过流点、逐波限流点时要特别注意。
同样,反并⼆极管的额定电流(富⼠称为-Ic)也是不考虑开关损耗情况下管⼦能够流过的最⼤连续电流,具体定义如下式: (3)门极加稳压管和电阻 门极加电阻是为了避免门极悬浮,将IGBT输⼊电容中残存的电荷泄放掉,避免误开通。
变频器电路板元器件详解
变频器电路板元器件详解变频器电路板是变频器的核心组成部分,负责控制和调节变频器的运行。
本文将详细介绍变频器电路板上的各种元器件,包括电阻、电容、电感、二极管、三极管、IGBT、光耦和晶振等。
一、电阻电阻是电路板中常用的元件,用于限制电流。
在变频器电路板中,电阻的符号用字母R表示。
根据阻值特性,电阻可分为固定电阻、可调电阻和特种电阻。
根据材料,电阻可分为碳膜电阻、金属膜电阻、线绕电阻、无感电阻和薄膜电阻等。
根据安装方式,电阻可分为插件电阻和贴片电阻。
根据功能,电阻可分为负载电阻、采样电阻、分流电阻和保护电阻等。
二、电容电容是一种储能元件,具有隔直通交的功能。
在变频器电路板中,电容主要用于滤波、耦合和谐振等。
根据用途,电容可分为振荡电容、校正电容、显像管偏转电容、阻流电容、滤波电容、隔离电容和被偿电容等。
三、电感电感是一种将电能转化为磁能并存储起来的元件。
在变频器电路板中,电感主要用于滤波、耦合和抗干扰等。
根据用途,电感可分为振荡电感、校正电感、显像管偏转电感、阻流电感和滤波电感等。
四、二极管二极管是一种具有单向导电性的电子元件。
在变频器电路板中,二极管主要用于整流和续流等。
当给予正向电压时,二极管导通;当给予反向电压时,二极管截止。
五、三极管三极管是一种电流控制元件,具有放大信号的功能。
在变频器电路板中,三极管主要用于信号放大和处理等。
根据材质,三极管可分为硅管和锗管;根据结构,三极管可分为NPN和PNP型;根据功能,三极管可分为开关管、功率管、达林顿管和光敏管等;根据功率可分为小功率管、中功率管和大功率管;根据工作频率可分为低频管、高频管和超频管;根据结构工艺可分为合金管和平面管;根据安装方式可分为插件三极管和贴片三极管。
六、IGBTIGBT是一种电压控制元件,具有开关速度快和功耗低的特点。
在变频器电路板中,IGBT主要用于高压和大电流的控制。
IGBT是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件。
IGBT组装工艺流程
IGBT组装工艺流程IGBT是大功率变频器核心元器件,其性能好坏直接决定整个产品的质量,因此,其组装过程要求标准、专业、规范的生产工艺。
我司工业设计部单艳梅根据实际生产经验和工艺流程总结出了一套完备的IGBT组装工艺,今天刊登出来,与大家一起分享、学习。
目前IGBT等高精密器件的组装生产是采用一人操作多项工作的方式,这容易造成装配动作不规范、装配的产品达不到专业水平,从而影响产品装配质量的问题。
实操过程中对散热器以及IGBT对表面平整度都有很严格的要求,因此当装配作业时就需要专业的工作平台,同时采用合适的运输工具及采取相应的保护措施来避免元器件表面受损。
另外,如果操作过程中工人徒手搬运散热器或IGBT,一旦发生意外失手情况,造成元器件损坏,就会产生不小的经济损失。
为了克服上述缺陷,提高了装配产品的质量和效率,特设计了本IGBT 的组装工艺流程,其具体如下。
1、工艺流程步骤本次采用的工艺流程方案是在IGBT的组装过程中,设置若干个工位点,并在每个对应的工位点划定工位器具区域,配备组装使用工具,同时设立若干检验员,对整个工艺过程进行检验。
具体工艺步骤如下:(1)设置工位1,抹绝缘硅脂;①将IGBT反扣在专用固定工装支架上;②涂抹绝缘硅脂前用干净的棉布或者用干净的棉布蘸取酒精擦拭清理IGBT;③涂抹导热硅脂时,用专用的钢质刮刀把绝缘硅脂均匀涂抹在每个丝网的网孔内;④把涂抹好绝缘硅脂的IGBT轻置放在散热器上指定的安装位置,放置时应对孔一次性放置到位;(2)设置工位2,预紧IGBT和散热器;在对IGBT固定安装时,用扭力扳手分别对不同规格的IGBT用O.4NM-0.6NM的均力按端子顺序预紧螺栓。
一般情况下IGBT有以下三种不同端子顺序,其中:六个端口的顺序为:2-5-3-6-1-4,八个端口的顺序为:2-6-3-7-4-8-1-5,十四个端口的顺序为:4-11-3-10-5-12-2-9-6-13-1-8-7-14;(3)设置工位3,紧固散热器;按照上述步骤(2)中②同样顺序用扭力扳手采用4NM-6NM的均力进行紧固螺栓;图1预紧螺栓顺序2 3 4 5 6 714 13 12I11D9 8图3预紧螺栓顺序(4)设置工位4,按照位置装配加热电阻;(5)设置工位5,固定驱动电路板;按照图示位置把驱动电路板固定在IGBT相应位置;(6)设置工位6,进行模块内部接线;以上步骤按照顺序操作,完成之后送入半成品放置区域,形成一条由流水线始端走向末端并转入半成品放置区域的IGBT的组装工艺图4IGBT装配组件结构示意图2、工艺流程特点采用此工艺流程后,具有以下特点:1、采用这种流程作业方式可以让工人各司其职,每个人只专长自己所在工位的装配内容,有利于标准作业化的执行,加强工人装配的熟练程度,提高产品质量。
电力电子半导体器件(IGBT)
c. 栅分布锁定:是因为绝缘栅旳电容效应,造成在开关过程中个别先开通或 后关断旳IGBT之中旳电流密度过大而形成局部锁定。
——采用多种工艺措施,能够提升锁定电流,克服因为锁定产生旳失效。
4.开关时间与漏极电流、门极电阻、结温等参数旳关系:
5.开关损耗与温度和漏极电流关系
(三)擎住效应
IGBT旳锁定现象又称擎住效应。IGBT复合器件内有一种 寄生晶闸管存在,它由PNP利NPN两个晶体管构成。在NPN晶 体管旳基极与发射极之间并有一种体区电阻Rbr,在该电阻上, P型体区旳横向空穴流会产生一定压降。对J3结来说相当于加 一种正偏置电压。在要求旳漏极电流范围内,这个正偏压不大, NPN晶体管不起作用。当漏极电流人到—定程度时,这个正偏 量电压足以使NPN晶体管导通,进而使寄生晶闸管开通、门极 失去控制作用、这就是所谓旳擎住效应。IGBT发生擎住效应后。 漏极电流增大造成过高旳功耗,最终造成器件损坏。
在使用中为了防止IGBT发生擎住现象:
1.设计电路时应确保IGBT中旳电流不超出IDM值; 2.用加大门极电阻RG旳方法延长IGBT旳关断时间,减小重加
dVDS/d t。 3.器件制造厂家也在IGBT旳工艺与构造上想方设法尽量提
高IDM值,尽量防止产生擎住效应。
(四)安全工作区 1.FBSOA:IGBT开通时正向偏置安全工作区。
4.开关特征:
与功率MOSFET相比,IGBT 通态压降要小得多,1000V旳 IGBT约有2~5V旳通态压降。这 是因为IGBT中N-漂移区存在电 导调制效应旳缘故。
影响变频器IGBT模块的四大因素!
影响变频器IGBT模块的四大因素!
1、电压因素
(1)IGBT模块的供电电压过高时,将超出其安全工作范围,导致其击穿损坏;
(2)供电电压过低时,使负载能力不足,运行电流加大,运行电机易产生堵转现象,危及IGBT模块的安全;
(3)供电电压波动,如直流回路滤波(储能)电容的失容等,会引起浪涌电流及尖峰电压的产生,对IGBT模块的安全运行产生威胁;
(4)IGBT的控制电压——驱动电压低落时,会导致IGBT的欠激励,导通内阻变大,功耗与温度上升,易于损坏IGBT模块。
2、电流因素
(1)过流,在轻、中度过流状态,为反时限保护区域;
(2)严重过流或短路状态,无延时速断保护;
3、温度因素
(1)轻度温升,采到强制风冷等手段;
(2)温度上升到一定幅值时,停机保护;
4、其它因素
(1)驱动电路的异常,如负截止负压控制回路的中断等,会使IGBT受误触通而损坏;
(2)控制电路、检测电路本身异常,如检测电路的基准电压飘移,导致保护动作起控点变化,起不到应有的保护作用。
变频器IGBT模块的工作原理及特性
变频器IGBT模块的工作原理及特性变频器IGBT模块的工作原理变频器IGBT模块的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。
反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。
IGBT的驱动方法和MOSFET基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。
当MOSFET的沟道形成后,从P+基极注入到N一层的空穴(少子),对N 一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。
变频器IGBT模块的特性静态特性IGBT的静态特性主要有伏安特性、转移特性和开关特性。
IGBT的伏安特性是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。
输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id越大。
它与GTR的输出特性相似.也可分为饱和区1、放大区2和击穿特性3部分。
在截止状态下的IGBT,正向电压由J2结承担,反向电压由J1结承担。
如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。
IGBT模块的转移特性是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。
它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th)时,IGBT处于关断状态。
在IGBT导通后的大部分漏极电流范围内,Id与Ugs呈线性关系。
最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。
IGBT 模块的开关特性是指漏极电流与漏源电压之间的关系。
IGBT处于导通态时,由于它的PNP晶体管为宽基区晶体管,所以其B值极低。
尽管等效电路为达林顿结构,但流过MOSFET的电流成为IGBT总电流的主要部分。
此时,通态电压Uds(on)可用下式表示Uds(on)=Uj1+Udr+IdRoh(2-14)式中Uj1——JI结的正向电压,其值为0.7~IV;Udr——扩展电阻Rdr上的压降;Roh——沟道电阻。
IGCT及IGCT变频器
IGCT及IGCT变频器1 引言大功率晶闸管(SCR)在过去相当一段时间里,几乎是能够承受高电压和大电流的唯一半导体器件。
因此,针对SCR的不足,人们又研制开发出了门极关断晶闸管(GTO)。
用GTO 晶闸管作为逆变器件取得了较为满意的结果,但其关断控制较易失败,仍较复杂,工作频率也不够高。
几乎与此同时,电力晶体管(GTR)迅速发展了起来。
绝缘栅双极晶体管IGBT是MOSFET和GTR相结合的产物。
其主体部分与晶体管相同,也有集电极和发射极,但驱动部分却和场效应晶体管相同,是绝缘栅结构。
IGBT的工作特点是,控制部分与场效应晶体管相同,控制信号为电压信号UGE,输人阻抗很高,栅极电流I G≈0,故驱动功率很小。
而其主电路部分则与GTR相同,工作电流为集电极电流,工作频率可达20kHz。
由IGBT作为逆变器件的变频器载波频率一般都在10kHz以上,故电动机的电流波形比较平滑,基本无电磁噪声。
虽然硅双极型及场控型功率器件的研究已趋成熟,但是它们的性能仍待提高和改善,而1996年出现的集成门极换流晶闸管(IGCT)有迅速取代GTO的趋势。
2 IGCT集成门极换流晶闸管(IGCT)是将门极驱动电路与门极换流晶闸管GCT集成于一个整体形成的器件。
门极换流晶闸管GCT是基于GTO结构的一个新型电力半导体器件,它不仅与GTO有相同的高阻断能力和低通态压降,而且有与IGBT相同的开关性能,兼有GTO和IGBT 之所长,是一种较理想的兆瓦级、中压开关器件。
IGCT芯片在不串不并的情况下,二电平逆变器容量0.5~3MV A,三电平逆变器1~6MV A;若反向二极管分离,不与IGCT集成在一起,二电平逆变器容量可扩至4. 5MV A,三电平扩至9MV A。
目前IGCT已经商品化,ABB 公司制造的IGCT产品的最高性能参数为4.5kV/4kA,最高研制水平为6kV/4kA[1]。
1998 年,日本三菱公司也开发了直径为88mm的6kV/4kA的GCT晶闸管。
变频器igbt工作原理和作用
变频器IGBT工作原理和作用变频器是一种能够改变电机供电频率以控制转速的电气设备,而IGBT (Insulated Gate Bipolar Transistor)作为变频器中核心的控制元件之一,发挥着重要的作用。
本文将介绍变频器IGBT的工作原理和作用。
一、IGBT的基本结构IGBT是一种三极型功率半导体器件,其结构包括P型区(汇流极)、N型区(发射极)和N+型区(栅极)。
通过控制栅极电压来控制其导通和截止状态,从而实现功率的调节和控制。
二、IGBT的工作原理1.导通状态:当在栅极施加正向电压时,形成导通的电场,使得P-N结之间的耗尽区扩展,IGBT导通。
此时电流可以顺利通过IGBT进行功率传递。
2.截止状态:当在栅极施加负向电压或零电压时,耗尽层恢复正常,IGBT截止,电流无法流经。
3.开关特性: IGBT具有开关速度快、损耗小的特点,可以进行高频开关控制,适用于变频器等高效能电源控制设备。
三、变频器中IGBT的作用1.频率调节:变频器通过控制IGBT导通和截止时间来改变输出频率,实现对电动机转速的调节,从而满足不同负载条件下的运行要求。
2.电流控制:通过控制IGBT的导通角度和导通时间,可以实现对输出电流的精确控制,保证电动机运行的稳定性和效率。
3.节能减耗:变频器利用IGBT进行电能调节,可以根据实际负载情况调节输出功率,实现节能减排的目的,提高电动机的使用效率。
结论IGBT作为变频器中的重要组成部分,通过控制其导通和截止状态,实现对电动机的频率和电流等参数进行精准调控,提高了电动机的效率和性能,同时也减少了能源的消耗。
深入了解变频器IGBT的工作原理和作用,有助于更好地应用和维护这一关键设备。
IGBT简介介绍
过压、过流及短路保护
01
过压保护
为了防止IGBT在过高的电压下工作导致损坏,需要设置过压保护电路。
当电压超过设定值时,保护电路会迅速动作,切断IGBT的工作电源。
02
过流保护
当IGBT流过过大的电流时,过流保护电路会起作用,限制电流继续增加
,避免IGBT因过热而损坏。
03
短路保护
短路是IGBT运行过程中可能遇到的严重问题。短路保护电路能在发生短
IGBT具有较好的热稳定性 ,能够在高温环境下正常 工作。
IGBT的应用领域
电源变换
IGBT广泛应用于DC-DC变换器、ACDC整流器等电源电路中,实现电压、 电流的变换和控制。
01
02
电机驱动
IGBT可用于电机驱动电路中,如电动 汽车、电动自行车等驱动系统。
03
焊接设备
IGBT作为核心器件,应用于电阻焊、 电弧焊等焊接设备中。
IGBT的市场前景及展望
新能源汽车市场
随着新能源汽车市场的持续增长,IGBT作为核心 功率器件,其需求将继续旺盛。
智能电网与可再生能源
智能电网建设及可再生能源的快速发展将为IGBT 提供新的增长点。
轨道交通市场
轨道交通的电气化与智能化趋势将推动IGBT在轨 道交通领域的应用不断扩大。
展望
未来,随着技术的不断进步,IGBT将在更多领域 得到应用,市场规模将持续扩大。同时,国内品 牌在技术和市场上将不断取得突破,逐步缩小与 国外品牌的差距。
IGBT的驱动方式
栅极驱动:通过控制栅极与发射极之间的电压来控制IGBT的开通与关断。这种方式 简单、直接且效率高。
电流源驱动:通过电流源来为栅极提供驱动电流。这种方式更为稳定,但需要额外 的电流源。
变频器IGBT模块检测方法
5.屏蔽罩 为避免有些电感器在工作时产生的磁场影响其它电路及元器件正常工作,就为其增加了金属屏幕罩(例如半导体收音机的振荡线圈等)。采用屏蔽罩的电感器,会增加线圈的损耗,使Q值降低。
6.封装材料 有些电感器(如色码电感器、色环电感器等)绕制好后,用封装材料将线圈和磁心等密封起来。封装材料采用塑料或环氧树脂等。
3、任何指针式万用表皆可用于检测IGBT。注意判断IGBT好坏时,一定要将万用表拨在R×10KΩ挡,因R×1KΩ挡以下各档万用表内部电池电压太低,检测好坏时不能使IGBT导通,而无法判断IGBT的好坏。此方法同样也可以用于检测功率场效应晶体管(P-MOSFET)的好坏。
电容
的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(μF)/mju:/、纳法(nF)、皮法(pF)。其中:1法拉=1000毫法(mF),1毫法=1000微法(μF),1微法=1000纳法(nF),1纳法=1000皮法(pF)
(三)可调电感器 常用的可调电感器有半导体收音机用振荡线圈、电视机用行振荡线圈、行线性线圈、中频陷波线圈、音响用频率补偿线圈、阻波线圈等
a.标称电感量:
电感器上标注的电感量的大小.表示线圈本身固有特性,主要取决于线圈的圈数,结构及绕制方法等,与电流大小无关,反映电感线圈存储磁场能的能力,也反映电感器通过变化电流时产生感应电动势的能力.单位为亨(H).
b.允许误差 :
电感的实际电感量相对于标称值的最大允许偏差范围称为允许误差.
【2.电感器的分类:】
a.按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器应用之元器件
随着电子技术的告诉发展,目前变频器行业应用的主要功率器件有IGBT单管、IGBT模块、PIM模块、IPM模块四种。
1、IGBT单管:IGBT,封装较模块小,电流通常在100A以下,通常用于小功率场合,在功率较大的场合使用IGBT单个单元模块,单个封装,使用更加灵活,散热好,维修成本低、方便;由于是单个封装在变频器等逆变场合对驱动电路要求较高,若驱动技术不过关,则不稳定性概率增加,常见有TO247 等封装,变频器行业应用英飞凌比较多;
2、IGBT单模块:是IGBT单管的放大版,以陶瓷作为基板,一般应用于功率较大的场合,通常在15KW以上,最大功率目前可以做到1MW,大功率变频器基本上都是应用IGBT单个模块,成本高;
3、IGBT集成模块:模块化封装就是将多个IGBT集成封装在一起,集体封装能够使整体结构设计变得更为简单,可以降低对驱动电路要求;不过集体封装对封装技术和散热等方面要求也随之增加,同时维修成本也增加,一般在功率较大的场合很少使用集体封装模块,变频器行业集体封装最大在15KW以内;
4、PIM模块:集成整流桥+制动单元(PFC)+三相逆变(IGBT桥),在IGBT模块基础上加入整流和制动部分,通常情况电路结构和IGBT 集成模块区别不大,材料也比较便宜,同时集整流和逆变两大主要功率部分于一体,封装比IGBT集成模块要求更高,一般主流变频器很少使用;
5、IPM模块:集成门级驱动及众多保护功能(过热保护,过压,过流,欠压保护等)的IGBT模块,80年代初发展起来,属于第三代电子技术器件,机构紧凑,价格低,可以简化整体电路,目前通常有六合一、七合一封装两种,维修方便,但成本也高,坏一处则换整个模块,目前IPM模块在性能稳定性和工作可靠性方面做得并不是很好,主要原因就是集成东西越多,故障率越高,目前变频器行业只在7.5KW以下使用较多。
综述:各厂家在选用器材各有考量,要实现变频功能,各部功能缺一不可,集成无非就是将原有电路中的一部分集中封装于一个电子器件当中,达到简化外部PCB板件(PCB板是直接与环境接触)电路的目的,从而降低故障概率,但是同时集体封装也增加了对封装的要求,增加了集成模块发生故障的概率。
因此孰好孰坏,不能简单的来判断,主要是看厂家的技术设计水平和工艺水平的比拼。