差分放大电路仿真
PSpice仿真教程8-差分放大电路分析解读
题目:分析差分放大电路的差模电压增益、共模电压增益和共模抑制比绘制差分放大电路原理图如图所示,其中vs+和vs-为正弦源。
另存为chadong1.sch一、分析双端输入时的差模电压增益1.设置信号源的属性。
vs+,vs-为差分放大电路的信号源。
vs+的属性设置如下:Vs-的属性设置如:vs+的“AC”项设为10mv,vs-的“AC”项设为-10mv。
这样才能起到差模输入的作用。
2. 设置分析类型3. Analysis→Simulate,调用Pspice A/D对电路进行仿真计算。
4.测得恒流源给出的静态电流为1.849mA,晶体管Q1和Q2的发射极电流相等,都为0.9246mA。
(思考为什么是相等的)5. 在probe下,单击Trace→Add,在Trace Expression中输入要显示的变量。
若要观察单端输出时的差模电压增益,编辑表达式为:V(out1) / (V(Vs+:+)-V(Vs-:+));若要观察双端输出时的差模电压增益,编辑表达式为:(V(out1)-V(out2)) / (V(Vs+:+)-V(Vs-:+))。
得到结果如下:6. 用游标测量,双端输出时的差模电压增益为100.68,单端输出时的差模电压增益为50.34.是双端输出时的一半(为什么)。
两条曲线的上限截止频率点都是3.3843Mhz。
二、分析双端输入时的共模电压增益将原理图chadong1.sch打开,另存为chadong2.sch1.设置信号源的属性。
vs+的属性设置不变。
Vs-的“AC”属性设置为10mv,使其和信号源vs+一样,这样就相当于在两个输入端加上了相同的信号,起到共模输入的作用。
2. 设置分析类型3. Analysis Simulate,调用Pspice A/D对电路进行仿真计算。
4. 在probe下,单击Trace→Add,在Trace Expression中输入要显示的变量。
若要观察单端输出时的共模电压增益,编辑表达式为:V(out1) / V(Vs+:+);若要观察双端输出时的共模电压增益,编辑表达式为:(V(out1)-V(out2)) / V(Vs+:+)。
恒流源式差分放大电路multisim仿真
题目一恒流源式差分放大电路Multisim仿真在Multisim中构建恒流源式差分放点电路,如图1.1.1所示,其中三极管的β1=β2=β3 =50,r bb’1= r bb’2 =r bb’3=300Ω,调零电位器Rw的滑动端调在中点。
图1.1.1恒流源式差分放大仿真电路1.1利用Multisim的直流工作点分析功能测量电路的静态工作点,结果如下:图1.2 恒流源式差分放大电路的静态分析可得:U CQ1=U CQ2=4.29661V (对地)U BQ1=U BQ2= -15.40674 Mv (对地)则I CQ1=I CQ2=(Vcc-U CQ1)/R C1=(12-4.29661)/100 mA=0.077 mA =77μ A1.2加上正弦输入电压,由虚拟示波器可以看到U C1与u1同相。
1.3计算分析当Ui=10mV时,利用虚拟仪器表可测得U0=1.549V,Ii=154.496 nA,图1.4 恒流源式差分放大电路虚拟仪器表则A d=-U0/Ui=-1.549/10*10-3=-154.9Ri=Ui/Ii=10/154.496*103kΩ=64.73 kΩ在两个三极管的集电极之间接上一个负载电阻R L=100 kΩ,此时可测得U0=516.382mV。
前面已测得当负载电阻开路时U0’=1.549V,则R0=(U’0/U0-1)R L=(1549/516.384-1)*100 kΩ=199.97 kΩ1.4 实验结论:在三级管输出特性的恒流区,当集电极电压有一个较大的变化量ΔU CE时,集电极电流i c基本不变。
此时三级管c、e之间的等效电阻r ce=Δu CE/Δi c的值很大。
用恒流源三级管充当一个阻值很大的长尾电阻Re,既可在不用大电阻的条件下有效的抑制零漂,又适合集成电路制造供工艺代替大电阻的特点,因此,这种方法在集成运放中被广泛采用。
题目二电子灭鼠器的设计2.1设计电路:利用Protel 99SE设计一个红外线灭鼠器的电路。
【最新精选】差分放大电路仿真
差分放大电路仿真一、实验目的1.掌握差动放大电路对放大器性能的影响。
2.学习差动放大器静态工作点、电压放大倍数、输入电阻、输出电阻的仿真方法。
3.学习掌握Multisim交流分析4.学会开关元件的使用二、实验原理图3.2-1是差动放大器的基本结构。
它由两个元件参数相同的基本共发射放大电路组成。
当开关K 拨向左边时,构成典型的差动放大器。
调零电位器RP用来调节VT1、VT2管的静态工作点,使得输入信号Ui=0时,双端输出电压Uo=0。
R E为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。
图3.2-1 差动放大器原理电路在设计时,选择VT1、VT2特性完全相同,相应的电阻也完全一致,调节电位器RP的位置置50%处,则当输入电压等于零时,UCQ1= UCQ2,即Uo=0。
双击图中万用表XMM1、XMM2、XMM3分别显示出UCQ1、、UCQ2、Uo电压,其显示结果如图3.2-2所示。
(a)UCQ1显示结果(b)Uo显示结果(c)UCQ2显示结果图3.2-2 UCQ1、、UCQ2、Uo显示结果三、虚礼实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表四、实验内容与步骤1. 差动放大器的静态工作点分析 典型差动放大器电路静态工作点EBEEE E R U U I -≈(认为UB1=UB2≈0),E C2C1I 21I I ==恒流源差动放大器电路静态工作点E1BEEE CC 212E3C3R U )U (U R R R I I -++≈≈,C3C1C1I 21I I == (1)按下图3.2-3输入电路图3.2-3(2)调节放大器零点把开关S1和S2闭合,S3打在最左端,启动仿真,调节滑动变阻器的阻值,使得万用表的数据为0(尽量接近0,如果不好调节,可以减小滑动变阻器的Increment 值)。
(3)直流分析启动直流分析,将测量结果填入下表:2. 差模电压放大倍数和共模电压放大倍数 (1)测量差模电压放大倍数当差动放大器的发射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数Ad 由输出端方式决定,而与输入方式无关。
仿真实验--差分电路仿真实验
仿真实验三差分电路仿真实验一、实验目的(1)通过Multisim来仿真电路,测试差分放大电路的静态工作点、差模电压放大倍数、输入电阻和输出电阻;(2)加深对差分放大电路原理的理解;(3)通过仿真,体会差分放大电路对温漂的抑制作用;二、实验平台Multisim 10.0三、实验原理差放的外信号输入分差模和共模两种基本输入状态。
当外信号加到两输入端子之间,使两个输入信号V i1、V i2的大小相等、极性相反时,称为差模输入状态。
此时,外输入信号称为差模输入信号,以V id表示,且有:当外信号加到两输入端子与地之间,使V i1、V i2大小相等、极性相同时,称为共模输入状态,此时的外输入信号称为共模输入信号,以V ic表示,且:当输入信号使V i1、V i2的大小不对称时,输入信号可以看成是由差模信号Vid和共模信号V ic两部分组成,其中动态时分差模输入和共模输入两种状态。
(1)对差模输入信号的放大作用当差模信号V id输入(共模信号V ic=0)时,差放两输入端信号大小相等、极性相反,即V i1=-V i2=V id/2,因此差动对管电流增量的大小相等、极性相反,导致两输出端对地的电压增量,即差模输出电压V od1、V od2大小相等、极性相反,此时双端输出电压V o=V od1-V od2=2V od1=V od,可见,差放能有效地放大差模输入信号。
要注意的是:差放公共射极的动态电阻R e对差模信号不起(负反馈)作用。
(2)对共模输入信号的抑制作用当共模信号V ic输入(差模信号V id=0)时,差放两输入端信号大小相等、极性相同,即V i1=V i2=V ic,因此差动对管电流增量的大小相等、极性相同,导致两输出端对地的电压增量,即差模输出电压V oc1、V oc2大小相等、极性相同,此时双端输出电压V o=V oc1-V oc2=0,可见,差放对共模输入信号具有很强的抑制能力。
此外,在电路对称的条件下,差放具有很强的抑制零点漂移及抑制噪声与干扰的能力。
差分放大电路仿真分析报告
差分放大电路仿真分析差分放大电路是集成运算放大器的主要单元电路之一,它具有很强的抑制零点漂移的能力。
作为集成运算放大器的输入级,差分放大电路几乎完全决定着集成运算放大器的差模输入特性、共模抑制特性、输入失调特性和噪声特性。
差分放大电路经由两个参数完全相同的晶体管组成,电路结构对称。
电路具有两个输入端和两个输出端,因此差分放大电路具有四种形式:单端输入单端输出、单端输入双端输出、双端输入单端输出以及双端输入双端输出。
实验内容:一、理想差分放大电路1、绘制电路图启动Capture CIS程序,新建工程,利用Capture CIS绘图软件,绘制如下的电路原理图。
双击正弦电压源VS+的图标,在弹出的窗口中设置AC为10mV,DC为0V,VOFF 为0,VAMPL为10m,VFREQ1kHz。
VS-的设置除AC为-10mV外,其余均与VS+同。
2、直流工作点分析选择Spice | New Simulation Profile功能选项或单击按钮,打开NewSimulation对话框,在Name文本框中输入Bias,单击 Create按钮,弹出Simulation Settings-Bias对话框,设置如下:保存设置,启动PSpice A/D仿真程序,调出PSpice A/D窗口,可以在PSpice A/D窗口中选择View | OutPut Filse功能菜单选项,查看输出文件。
在Capture CIS窗口中,单击作电压与电流值,如下图:3、双端输入是的基本特性上面的电路是双端输入的形式,可以利用上面的电路来分析双端输入时的电路特性。
将分析类型设为交流扫描分析AC Sweep。
选择PSpice | New SimulationProfile功能选项或单击按钮,打开New Simulation对话框,在Name文本框中输入AC,单击 Create按钮,弹出Simulation Settings-AC对话框,设置如下:启动PSpice A/D仿真程序,显示空的PSpice A/D窗口,选择Trace | Add Trace命令,在Add Trace窗口中设置如下图,即观察单端输出时的电压增益:V(OUT1)/ (V(VS+:+)-V(Vs-:+))。
PSpice实例教程-差分放大电路分析
题目:分析差分放大电路的差模电压增益、共模电压增益和共模抑制比绘制差分放大电路原理图如图所示,其中vs+和vs-为正弦源。
另存为chadong1.sch一、分析双端输入时的差模电压增益1.设置信号源的属性。
vs+,vs-为差分放大电路的信号源。
vs+的属性设置如下:Vs-的属性设置如下:vs+的“AC”项设为10mv,vs-的“AC”项设为-10mv。
这样才能起到差模输入的作用。
2. 设置分析类型3. AnalysisÆSimulate,调用Pspice A/D对电路进行仿真计算。
4.测得恒流源给出的静态电流为1.849mA,晶体管Q1和Q2的发射极电流相等,都为0.9246mA。
(思考为什么是相等的)5. 在probe下,单击TraceÆAdd,在Trace Expression中输入要显示的变量。
若要观察单端输出时的差模电压增益,编辑表达式为:V(out1) / (V(Vs+:+)-V(Vs-:+));若要观察双端输出时的差模电压增益,编辑表达式为:(V(out1)-V(out2)) / (V(Vs+:+)-V(Vs-:+))。
得到结果如下:6. 用游标测量,双端输出时的差模电压增益为100.68,单端输出时的差模电压增益为50.34.是双端输出时的一半(为什么)。
两条曲线的上限截止频率点都是3.3843Mhz。
二、分析双端输入时的共模电压增益将原理图chadong1.sch打开,另存为chadong2.sch1.设置信号源的属性。
vs+的属性设置不变。
Vs-的“AC”属性设置为10mv,使其和信号源vs+一样,这样就相当于在两个输入端加上了相同的信号,起到共模输入的作用。
2. 设置分析类型3. AnalysisÆSimulate,调用Pspice A/D对电路进行仿真计算。
4. 在probe下,单击TraceÆAdd,在Trace Expression中输入要显示的变量。
实验三 差分放大电路
Au1
2[RB1
(RC // RL ) rbe (1 )RW
/
2]
Ro Ro1 RC
5)恒流源放大电路静态分析
U AB
RB 2 RB1 RB2
( VCC
VEE
)
IE3
U AB U BE3 RE
IC3
UCE1 UCE 2 VCC IC RC UBE I B1RB
I E1
IE2
表3
长尾差放 Aud 恒流源差放 Aud 输入、输出信号波形双
估算值
3 端口输出 测量值
-24 -25.36
-24 -25.36
估算值
4 端口输出 测量值
24 25.36
24 25.36
5、通过 3、4 问求出放大电路双端输出、单端输出电压放大倍数的比值,分析该比值和什么 参数有关系。 该比值和 RC 与 RL 有关,当 RC=RL 时单端输出差模放大倍数和双端输出差模放大倍数比值为 4:3;当负载为空载时比值为 2:1.
R i d 2R i1
R o 2R o1
长尾电路双端输出电压放大倍数估算
3)静态时与双端输出相同。 4)动态分析: 共模放大倍数:
AC
uo ui
RB1 rbe
RC || RL (1 )(2RE
RW
/ 2)
RB1
RC || RL rbe (1 )(2RE )
差模放大倍数:
Ad
1 2
典型电路
恒流源电路
IE
[U EE U BE ] RE
I C1
IC2
IE 2
(认为 UB1=UB2≈0)
IC3
IE3
[R2 (UCC U EE (R1 R2 ) U BE
利用multisim设计惠斯通电桥差分放大器电路
利用multisim设计惠斯通电桥差分放大器电路1.引言1.1 概述概述部分的内容:概述部分旨在介绍本文的主题,即利用Multisim设计惠斯通电桥差分放大器电路。
在当前电子技术的发展中,电路设计和仿真软件的应用越来越广泛,Multisim作为一款功能强大、易于使用的电路设计工具,被广泛应用于电子教学、科研和工程实践领域。
而惠斯通电桥差分放大器电路作为一种常用的信号放大器电路,具有放大稳定性好、噪声水平低等优点,在传感器信号放大、测量控制系统等领域得到了广泛应用。
本文将重点讨论如何利用Multisim这一工具进行惠斯通电桥差分放大器电路的设计。
在引言部分,首先将简要介绍本文的结构和目的,为读者提供概览。
接着,文章将通过正文部分详细阐述设计的关键要点和步骤,包括电路分析、参数计算和电路优化等内容。
最后,在结论部分对所设计的电路进行总结,并展望未来的发展方向。
通过本文的阅读,读者将能够了解到如何利用Multisim这一工具进行惠斯通电桥差分放大器电路的设计,掌握设计的关键要点,并能够根据实际需求进行电路参数的计算和优化,从而能够更好地应用于实际工程和科研中。
1.2文章结构文章结构部分的内容应该包括对整篇文章的组织结构进行介绍和说明。
下面是一种可能的写法:文章结构本文按照以下结构进行组织。
首先在引言部分进行概述,介绍了设计惠斯通电桥差分放大器电路的目的和意义。
接下来,正文部分将详细介绍设计过程中的两个关键要点。
其中,第一个要点将重点阐述如何使用Multisim软件进行电路设计和仿真,包括电路元件的选取、参数设置以及仿真结果的分析。
第二个要点将着重讲解惠斯通电桥差分放大器电路的原理及其在实际应用中的优势。
最后,结论部分对整个设计过程进行总结,并展望了未来该电路在相关领域中的应用前景。
通过以上结构的设计,本文将全面介绍利用Multisim设计惠斯通电桥差分放大器电路的过程和关键要点,旨在帮助读者更好地了解该电路的原理和应用价值。
Lab 5 差分放大器电路仿真
Lab 5 差分放大器电路仿真1.实验目的熟悉ADE环境设置。
掌握层次化设计方法。
了解仿真结果分析方法。
2.实验原理关于仿真部分的实验原理,在lab4中已有详述。
层次化(Hierarchy)设计:在较为复杂的电路中,因为电路元件个数相对庞大,所有电路单元不可能都以元件的形式出现在电路里。
为了简化电路形式,可采用特定的电路符号,每个符号代表一个电路单元,甚至在电路符号中再镶嵌符号,由此形成多层电路结构。
层次化设计简化了电路结构,便于电路设计与仿真,lab4所设计的ampTest测试平台就包含有Lab3所设计的放大电路Amplifier。
在lab11以后的版图设计中,层次化设计成为必然。
层次化设计的特点:①大量元件可以用一个符号代表②符号可以代表元件、单元电路模块③同一符号可以出现在不同层次④设计中不再需要特定的结构形式⑤方便了不同层次间的设计层次化方法(也可使用盲键)①选择要进入下层(或返回上层)的符号②进入下层:选择Design→Hierarchy→Descend Edit [E]③返回上层:选择Design→Hierarchy→Return [^e]④返回顶层:选择Design→Hierarchy→Return To Top3.实验内容运行仿真设置Analyses①在CIW窗口中,打开ampTest的Schematic Editing窗口,选择Tool→AnalogEnvironment,弹出ADE窗口。
②在ADE窗口中,选择Analyses→Choose,打开Choosing Analyses窗口。
③设置Analyses栏目中的ac:a.在Analysis里,选择acb.设置Sweep V ariable为Frequencyc.设置Sweep Rangs为Start-Stop,Start赋值为100,Stop赋值为150Md.设置Sweep Type为Logarithmic,选择Points Per Decade为20e.选择Enabledf.点击Apply④设置Analyses栏目中的tran:a.在Analysis里,选择tranb.设置Stop Time为3uc.设置Accuracy Defaults (errpreset)为Moderated.选择Enablede.点击Apply⑤设置Analyses栏目中的dc:a.在Analysis里,选择dcb.在DC Analysis里,选择Save DC Operating Pointc.选择Enabledd.点击Applye.点击OK设置Design V ariables图5.1 Edit Design V ariables窗口①在Simulation窗口(也即ADE窗口)中,点击Edit Variables图标,弹出Edit Design V ariables窗口如图5.1所示。
基于Multisim的差分放大电路仿真分析
基于Multisim的差分放大电路仿真分析差分放大电路利用电路参数的对称性和负反馈作用,有效地稳定静态工作点,以放大差模信号抑制共模信号为显著特征,广泛应用于直接耦合电路和测量电路的输入级。
但是差分放大电路结构复杂、分析繁琐,特别是其对差模输入和共模输入信号有不同的分析方法,难以理解,因而一直是模拟电子技术中的难点。
Muhisim作为著名的电路设计与仿真软件,它不需要真实电路环境的介入,具有仿真速度快、精度高、准确、形象等优点。
因此,Multisim被许多高校引入到电子电路实验的辅助教学中,形成虚拟实验和虚拟实验室。
通过对实际电子电路的仿真分析,对于缩短设计周期、节省设计费用、提高设计质量具有重要意义。
1 Multisim8软件的特点Muhisim是加拿大IIT(Interactive Image Tech—nologies) 公司在EWB(Electronics Workbench)基础上推出的电子电路仿真设计软件,Muhisim现有版本为Muhisim2001,Muhisim7和较新版本Muhisim8。
它具有这样一些特点:(1)系统高度集成,界面直观,操作方便。
将电路原理图的创建、电路的仿真分析和分析结果的输出都集成在一起。
采用直观的图形界面创建电路:在计算机屏幕上模仿真实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取。
操作方法简单易学。
(2)支持模拟电路、数字电路以及模拟/数字混合电路的设计仿真。
既可以分别对模拟电子系统和数字电子系统进行仿真,也可以对数字电路和模拟电路混合在一起的电子系统进行仿真分析。
(3)电路分析手段完备,除了可以用多种常用测试仪表(如示波器、数字万用表、波特图仪等)对电路进行测试以外,还提供多种电路分析方法,包括静态工作点分析、瞬态分析、傅里叶分析等。
(4)提供多种输入/输出接口,可以输入由PSpice 等其他电路仿真软件所创建的Spice网表文件,并自动形成相应的电路原理图,也可以把Muhisim环境下创建的电路原理图文件输出给Protel等常见的印刷电路软件PCB进行印刷电路设计。
模电实验-差分放大电路
实验三—差分式放大电路实验内容:一、典型差分式放大电路性能测试实验电路如图,开关K拨向左边构成典型差分式放大电路。
1.测量静态工作点①调节放大电路零点信号源不接入。
将放大电路输入端A、B与地短接,接通±12V直流电源,用万用表测量输出电压Vo,调节调零电位器Rp,使Vo=0.调节要仔细,力求准确。
②测量静态工作点零点调好后,用万用表测量T1、T2管各电极电位及射极电阻RE两端的电压VBE,记录表中。
2.测量差模电压增益断开直流电源,将函数信号发生器的输出端接放大电路输入A端,地端接放大电路输入B端构成差模输入方式,调节输入信号为频率f=1KHz的正弦信号,并使输出旋钮置零,用示波器监视输出端(集电极C1或C2与地之间)。
接通±12V直流电源,逐渐增大输入电压Vi(约100mV),在输出波形无失真的情况下,用交流毫伏表Vi,V C1,V C2,记录在表中,并观察vi,vc1,vc2之间的相位关系及V BE 随Vi改变而变化的情况。
2.测量共模电压增益将差分放大电路A、B短接,信号源接在A端与地之间,构成共模输入方式,调节输入信号f=1KHz,Vi=1V,在输出电压无失真的情况下,测量V C1、V C2的值记录下表,并观察vi,vc1,vc2之间的相位关系及V RE随Vi改变而改变的情况。
二、具有恒流源的差分放大电路性能测试将电路图中的开关K拨向右边,构成具有恒流源的差分式放大电路,重复一——2、3实验内容的要求,记录入上表。
典型差分式放大电路vi,vc1,vc2的图像:共模输入左图——vi与vc1相位关系右图——vc1与vc2相位关系差模输入左图——vi与vc1相位关系右图——vc1与vc2相位关系具有恒流源的差分放大电路vi,vc1,vc2的图像:差模输入vi与vc1相位关系左图——vi与vc1相位关系右图——vc1与vc2相位关系在共模输入时,V i增大,V RE增大;差输入时,V RE很小,V i变化时,V RE变化不明显。
差分放大电路Multisim仿真
差分放大电路仿真双端输入双端输出差分放大电路模型:双端输入双端输出差分放大电路的调零和静态工作点求解:XMM1和XMM2的电压都为6.398V,输出电压为零。
双端输入双端输出时静态工作点如下图所示,Ib=4.975uA,Ie=1.13mA,Vcq=6.398V。
双端输入单端输出时的静态工作点:Ib=5.197uA, Ie=1.13mA,Vcq1=6.398V,Vcq2=2.169V。
对比上图的静态工作点可知,XMM2的静态工作点基本不变,但XMM1的静态工作点变化较大,计算公式可参照模电书上的静态工作点计算公式,经计算和实际的仿真结果非常接近。
VCC’=VCC*R6/(R1+R6)=12*5/(10+5)=4V,Rc’=R1//R6=10*5/(10+5)=3.33,Ieq1=(VCC-Ubeq1)/2R11=(12-0.7)/2/10=0.565mA,Vcq1=Vcc’-Ieq1*Rc’=4-0.565*3.33=2.11167V,基本和仿真结果相同。
双端输入双端输出差分放大电路差分放大倍数:输入电压Ui=7.071mV,输出电压Uo=124.194,Aod=Uo/Ui=17.56把R3和R4减小为510Ω后,放大倍数如下图所示:放大倍数为26.28。
共模放大倍数:下图测量的是差分放大电路对共模信号的放大作用,Ui=7.071mV,输出电压为6.935nV,对共模信号有很强的抑制作用把R11改为一个由三极管组成的恒流源:Uo=55.676pV,相对于加10KΩ的电阻R11,能更好的抑制共模信号,能模电书上的公式和结论吻合。
THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。
实验七 差分放大电路仿真与设计
实验七差分放大电路设计与仿真一、实验目的1、设计差分放大电路,其中T1和T2是对管;2、分析差分放大电路中的元件参数对其静态工作点、放大电路主要性能指标的影响;二、实验内容1、差分放大电路设计及仿真;2、滑动Rw抽头分别在中点、最右端点,分别仿真求电路的动态Au、通频带参数;四、实验要求1、设计差分放大电路并仿真;2、滑动Rw抽头分别在中点、最右端点,分别仿真给出结果,Au=?3、滑动Rw抽头,获取最大Au值,仿真波形并记录;三、实验原理1、最简单的差分放大电路如图所示由两个完全对称的单管放大电路拼接而成。
在该电路中,晶体管T1、T2型号一样、特性相同,RB1为输入回路限流电阻,RB2为基极偏流电阻,RC为集电极负载电阻。
输入信号电压由两管的基极输入,输出电压从两管的集电极之间提取(也称双端输出),由于电路的对称性,在理想情况下,它们的静态工作点必然一一对应相等。
2.抑制零点漂移在输入电压为零, ui1 = ui2 = 0 的情况下,由于电路对称,存在IC1 = IC2,所以两管的集电极电位相等,即 UC1 = UC2,故uo = UC1 - UC2 = 0。
当温度升高引起三极管集电极电流增加时,由于电路对称,存在,导致两管集电极电位的下降量必然相等,即所以输出电压仍为零,即。
由以上分析可知,在理想情况下,由于电路的对称性,输出信号电压采用从两管集电极间提取的双端输出方式,对于无论什么原因引起的零点漂移,均能有效地抑制。
抑制零点漂移是差动放大电路最突出的优点。
但必须注意,在这种最简单的差动放大电路中,每个管子的漂移仍然存在。
3.动态分析差动放大电路的信号输入有共模输入、差模输入、比较输入三种类型,输出方式有单端输出、双端输出两种。
(1)共模输入。
在电路的两个输入端输入大小相等、极性相同的信号电压,即,这种输入方式称为共模输入。
大小相等、极性相同的信号为共模信号。
很显然,由于电路的对称性,在共模输入信号的作用下,两管集电极电位的大小、方向变化相同,输出电压为零(双端输出)。
仿真分析差分放大电路的性能
图 1 恒流 源差 分放 大 电 路 图
双 电源 的作用 : 使信 号变 化 幅度 加 大 ; 。I I 、砚由负 电源 U 提供 。T 工作 在 放 大 区 , 当于 恒 流 源 的 管 相 作 用 。T 管 为温度 补偿 三极管 ( C短 接 , 当于二极 管 ) 4 B 相
:
有重 要意义 。
1 工 作 原 理
差分放 大 电路是 直接耦 合 电路 中最 典 型的一 种 电路 , 不仅可 以通 过双 端输 出 , 负载两 端 同向 的电压 它 对
相互 抵消 , 同时对 单端 输 出的零漂 也有 很强 的抑制 能力 。 图 1 典型 的恒 流源差放 电路 , 由两个 电路参 数完 全相 同 的单 管放 大 电路 , 过发射 极耦 合在 一起 的 为 是 通 对称 式放大 电路 , 具有 两个输 入端 和两个 输 出端 。其 中 , 三极 管 T 、 成差放 的两 个输入 管 , T 。T 构 T 、 的集 电 极 V V 构 成 电路 的两 个输 出端 ; 、 Q 三极 管 T 、 ,T 构成 恒 流源 电路 。 ]
收 稿 日期 :0 20 - 2 1 -32 9
作者简介 : 关秀丽( 98 ) 女 , 17 - , 吉林伊通人 , 讲师 , 硕士 , 主要从事检测技术与 自动化方 面的研究 。
长
春
大
学
学
报 第2 2卷 来自其 作用 是保 持 I D的相对 稳定 。
具工工程: T , 二 ] 体作过是 度- j 竺 温 +: 竺
关键词 : 差分放 大电路 ; 共模 分析 ; 仿真分析
中图 分 类 号 :N 2 T 72 文献标志码 : A 文章 编 号 :0 9—30 ( 02 0 10 97 2 1 )6—04 0 6 7— 3
差分放大电路仿真分析
差分放大电路仿真分析差分放大电路是一种常见的电路结构,在工业和通信领域广泛应用。
它以两个输入信号进行放大,并输出差分信号的电路。
在实际应用中,差分放大电路的性能稳定性和放大倍数都是非常重要的影响因素。
因此,进行差分放大电路的仿真分析,能够帮助我们更好地理解其工作原理和性能特点。
差分放大电路的基本原理是利用差分放大器放大两个输入信号的差值。
它由一个差分对和一个差分放大电路组成。
差分对是由一个电流源和两个晶体管组成的差分放大器的基本单元。
差分对通过差分放大电路将两个输入信号进行放大,并输出它们的差值。
1.差分对的静态工作点分析:在差分放大电路中,静态工作点的选择对电路的性能有着重要的影响。
通过仿真分析,可以确定差分对的电流源和晶体管的工作电流,以及选择合适的电流源和晶体管参数,以达到最佳的电路性能。
2.输入电阻和差分增益的分析:差分放大电路的输入电阻和差分增益是衡量其工作性能的重要指标。
通过仿真分析,可以获得差分放大电路的输入电阻和差分增益的数值,并比较不同参数下的性能差异。
同时,还可以通过改变差分对的电源电压、晶体管的尺寸等参数,来优化电路的输入电阻和差分增益。
3.噪声分析:噪声是影响差分放大电路性能的重要因素。
通过仿真分析,可以了解差分放大电路的噪声功率谱密度和噪声等效电荷的数值。
同时,还可以通过改变电源电压、电流源的数值等参数,来降低差分放大电路的噪声。
4.输出阻抗和共模抑制比的分析:差分放大电路的输出阻抗和共模抑制比是衡量其输出性能的重要指标。
通过仿真分析,可以获得差分放大电路的输出阻抗和共模抑制比的数值,并比较不同参数下的性能差异。
同时,还可以通过改变晶体管的尺寸和电流源的数值等参数,来优化电路的输出阻抗和共模抑制比。
总的来说,差分放大电路的仿真分析主要包括静态工作点分析、输入电阻和差分增益的分析、噪声分析以及输出阻抗和共模抑制比的分析。
通过仿真分析,可以更好地理解差分放大电路的工作原理和性能特点,并通过改进电路参数来优化电路性能,满足实际应用需求。
虚拟仿真实验报告
电子技术虚拟仿真实验报告专业:班级:姓名:学号:实验一、单级阻容耦合放大电路仿真实验一、实验目的1、进一步熟悉multisim10软件的使用方法。
2、学会用multisim10软件分析单管放大电路的主要性能指标。
3、了解仿真分析法中的直流工作点分析法。
4、掌握测量放大器的电压放大倍数。
5、掌握静态工作点变化对放大器输出波形的影响。
6、了解不同的负载对放大倍数的影响。
7、学会测量放大器输入、输出电阻的方法。
二、实验内容及步骤1.静态工作点的测试(1)在电子仿真软件Multisim 10基本界面的电子平台上组建如图1所示的仿真电路。
双击电位器图标,将弹出的对话框的“Valve”选项卡的“Increment”R”。
栏改成“1”,将“Label”选项卡的“RefDes”栏改成“P图1单级阻容耦合放大电路仿真电路图R大约在35%左右时,利用直流工作点分析方法分析直流工作点(2)调节P的值。
直流工作点分析(DC Operating Point Analysis)是用来分析和计算电路静态工作点的,进行分析时,Multisim 10自动将电路分析条件设为电感、交流电压源短路,电容断开。
单击Multisim 10菜单“Simulate/Analyses/DC operating Point…”,在弹出的对话框中选择待分析的电路节点,如2图所示。
单击Simulate 按钮进行直流工作点分析。
分析结果如图3所示。
列出了单级阻容耦合放大电路各节点对地电压数据,根据各节点对地电压数据,可容易计算出直流工作点的值,依据分析结果,将测试结果填入表1中,比较理论估算与仿真分析结果。
图2 直流工作点分析选项对话框图3 直流工作点分析结果2. 电压放大倍数测试(1)关闭仿真开关,从电子仿真软件Multisim 10基本界面虚拟仪器工具条中,调出虚拟函数信号发生器和虚拟双踪示波器,将虚拟函数信号发生器接到电路输入端,将虚拟示波器两个通道分别接到电路的输入端和输出端,如图4所示。
实验课7 全差分运放的仿真方法
CMOS模拟集成电路实验报告实验课7 全差分运放的仿真方法目标:1、了解全差分运放的各项指标2、掌握全差分运放各项指标的仿真方法,对全差分运放的各指标进行仿真,给出各指标的仿真结果。
本次实验课使用的全差分运放首先分析此电路图,全差分运算放大器是一种具有差分输入,差分输出结构的运算放大器。
其相对于单端输出的放大器具有一些优势:因为当前的工艺尺寸在减少,所以供电的电源电压越来越小,所以在供电电压很小的情况下,单端输出很难理想工作,为了电路有很大的信号摆幅,采用类似上图的全差分运算放大器,其主要由主放大器和共模反馈环路组成。
1、开环增益的仿真得到的仿真图为1.开环增益:首先开环增益计算方法是低频工作时(<200Hz) ,运放开环放大倍数;通过仿真图截点可知增益为73.3db。
2.增益带宽积:随着频率的增大,A0会开始下降,A0下降至0dB 时的频率即为GBW,所以截取其对应增益为0的点即可得到其增益带宽积为1.03GB。
3.相位裕度:其计算方法为增益为0的时候对应的VP的纵坐标,如图即为-118,则其相位裕度为-118+180=62,而为保证运放工作的稳定性,当增益下降到0dB 时,相位的移动应小于180 度,一般取余量应大于60度,即相位的移动应小于120 度;所以得到的符合要求。
在做以上仿真的时候,关键步骤在于设定VCMFB,为了得到大的增益,并且使相位裕度符合要求,一直在不停地改变VCMFB,最初只是0.93,0.94,0.95的变化,后来发现增益还是远远不能满足要求,只有精确到小数点后4为到5位才能得到大增益。
2.CMRR 的仿真分析此题可得共模抑制比定义为差分增益和共模增益的比值,它反映了一个放大器对于共模信号和共模噪声的抑制能力。
因此需要仿真共模增益和差分增益。
可以利用两个放大器,一个连成共模放大,一个连成差模放大,用图1仿真差分增益图1用图2仿真共模增益图2将两个仿真写在一个sp文件中可以得到如下结果:相角仿真因为CMRR 的相角为=Vp(V op,Von)-Vp(V o p)黄色的为Vp(Vo p),红色的为Vp(V op,Von),两者相减,得到CMRR 的相角的仿真图为,其中蓝线为CMRR的相角仿真图,其它两条为上面的线,将它们放在一起对比:CMRR的幅度仿真其CMRR 的幅值为=Vdb(V op,V on)-Vdb(V op),蓝线为Vdb(V op,V on),粉线为Vdb(V op),两者相减得到绿线,即为CMRR的幅值特性曲线截取其在100HZ之前的增益值可得低频时增益为49.1db。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏州市职业大学实验报告姓名:学号:班级:
图2 差分放大器电路调零
R12kΩ
R2
2kΩ
R36.8kΩ
R46.8kΩ
R55.1kΩ
R6510Ω
R7510Ω
R812kΩ
Rp1
100ΩKey=A
50%
V112 V
V212 V Q1
2N3903Q2
2N390316
710
11
0U1
DC 1e-009W
1.089m
A
+
-
125
U3
DC 1e-009W -0.015m
A
+-
140
4U2
DC 10M W
5.303
V
+
-
3
2
图3差分放大器电路静态工作点测量
R1 2kΩ
R2
2kΩR3
6.8kΩ
R4
6.8kΩ
R5
5.1kΩ
R6 510¦¸R7 510Ω
R8
12kΩ
Rp1
100Ω
Key=A
50%
V1
12 V
V2
12 V
Q1
2N3903
Q2
2N3903
16
7
10
11
0 2
XFG1
XSC1
A B
Ext Trig
+
+
_
_+_
8
5
12
4
3
图4 测量差模电压放大倍数
图5 差模输入差分放大电路输入、输出波形图
3.测量共模放大倍数
将函数信号发生器XFG1的“+”端接放大电路的共同输入端,COM 接地,构成共模输入方式,如图6所示。
在输出负载端用万用表测量输出电压值,打开仿真开关,测得8R 两端输出电压值为pV 038.1,几乎为0,所以共模双端输出放大倍数也就近似为0。
图6 共模输入、双端输出电压放大倍数测量
示波器观察到的差分放大电路输入、输出波形如图7所示。
图7共模输入差分放大电路输入、输出波形
R1 2k¦¸
R2
2k¦¸R3
6.8k¦¸
R4
6.8k¦¸
R5
5.1k¦¸
R6 510¦¸R7 510¦¸
R8
12k¦¸
Rp1
100¦¸
Key=A
50%
V1
12 V
V2
12 V
Q1
2N3903
Q2
2N3903
16
7
10
11
0 2
XSC1
A B Ext Trig
+
+
_
_+_
5
XFG1
34
8
9
图8 单端输出差分放大电路
图9 单端输出差分放大电路波形图
总结
通过这次实验仿真,对Multisim仿真软件的了解,在实践过程中也不断地积累了经验,能够独立完成电路的连接,并且能够熟练使用仪表元件进行测试。
通过仿真实验可以看到,差分放大电路只放大差模信号,对共模信号有很强的抑制作用。
这次仿真加深了对差分放大器性能及特点的理解,它利用电路参数的对称性和发射极电阻的负反馈作用,有效地抑制零点漂移。