最新1.3装箱问题与背包问题
背包问题全类型
背包问题全类型背包问题给定⼀组物品,每种物品都有⾃⼰的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最⾼。
背包问题⼤体都可以⽤上述⽅式进⾏描述,但在具体的问题上有了不同的限制条件,于是便有了各种类型的背包问题。
背包问题可基本分为0-1背包问题、部分背包问题、多重背包问题、完全背包问题四⼤类。
接下从四种问题的解决的核⼼算法可以把部分背包问题单独化为⼀类,其核⼼算法为贪⼼。
其余的三种背包问题都可以⽤动态规划解决。
造成部分背包问题与其他的背包问题最⼤不同的原因是其限定条件的不同,部分1. 部分背包问题限定条件:每件物品可以只选取⼀部分完整问题描述:有 n 件物品,第i件物品重 w[i],价值为 v[i],且每件物品可以进⾏分割,分割后的价值按取⾛重量占该物品总重量的⽐值计算。
在不超过最⼤承载量 C 的范围内,问最⼤可以取⾛的价值为多少?( 其中 i ∈ {1,2,3,···,n} )算法:贪⼼分析:根据本题的特殊性,我们可以任意地对某⼀部品进⾏分割,所以我们优先选择性价⽐⾼的物品,即单位重量下物品的价值。
解题代码//C++#include<cstdio>#include<algorithm>#include<iostream>using namespace std;struct bag { int w,v; //w表⽰重量 v表⽰价值 double p; //⽤来储存v/w 性价⽐}a[10005];bool cmp(bag x,bag y) { return x.p > y.p; //性价⽐⾼的物品排在前⾯}int main() {剩余 } } printf('%.2f\n', ans); //输出答案 return 0;}注意计算时注意数据类型在计算“性价⽐”的时候要注意,在C/C++等⼀部分语⾔中存在以下机制 int/int = int ,这样是⽆法计算出⼩数的,需要将其中任意⼀项浮点化即可。
背包问题
完全背包问题也是一个相当基础的背包问题,它有两个状态转移方程,分别在“基本思路”以及“O(VN) 的算法“的小节中给出。希望你能够对这两个状态转移方程都仔细地体会,不仅记住,也要弄明白它们是怎么得 出来的,最好能够自己想一种得到这些方程的方法。事实上,对每一道动态规划题目都思考其方程的意义以及如 何得来,是加深对动态规划的理解、提高动态规划功力的好方法。
这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关 的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然按照解01背包时的思路,令 f[i,v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程, 像这样:f[i,v]=max{f[i,v-vi]+wi,f[i-1,v]}。这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的 时间则不是常数了,求解状态f[v]的时间是O(v/c),总的复杂度是超过O(VN)的。
背包问题已经研究了一个多世纪,早期的作品可追溯到1897年 数学家托比亚斯·丹齐格(Tobias Dantzig, 1884-1956)的早期作品 ,并指的是包装你最有价值或有用的物品而不会超载你的行李的常见问题。
应用
1998年的石溪布鲁克大学算法库的研究表明,在75个算法问题中,背包问题是第18个最受欢迎,第4个最需 要解决的问题(前三为后kd树,后缀树和bin包装问题)。
基础背包
题目 基本思路
空间复杂 示例程序
递归实现 程序
测试数据 总结
有N件物品和一个容量为V的背包。第i件物品的重量是w[i],价值是v[i]。求解将哪些物品装入背包可使这些 物品的重量总和不超过背包容量,且价值总和最大。
背包问题——精选推荐
01背包01背包解析和程序[问题描述]在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W·2……Wn,与之相对应的价值为P1,P2……Pn。
求出获得最大价值的方案。
注意:在本题中,所有的体积值均为整数。
[算法分析]:对于背包问题,通常的处理方法是搜索。
用递归来完成搜索,算法设计如下:function Make( i {处理到第i件物品} , j{剩余的空间为j}:integer) :integer;初始时i=m , j=背包总容量beginif i:=0 thenMake:=0;if j>=wi then (背包剩余空间可以放下物品 i )r1:=Make(i-1,j-wi)+v; (第i件物品放入所能得到的价值 )r2:=Make(i-1,j) (第i件物品不放所能得到的价值 )Make:=max{r1,r2}end;这个算法的时间复杂度是O(2^n),我们可以做一些简单的优化。
由于本题中的所有物品的体积均为整数,经过几次的选择后背包的剩余空间可能会相等,在搜索中会重复计算这些结点,所以,如果我们把搜索过程中计算过的结点的值记录下来,以保证不重复计算的话,速度就会提高很多。
这是简单?quot;以空间换时间"。
我们发现,由于这些计算过程中会出现重叠的结点,符合动态规划中子问题重叠的性质。
同时,可以看出如果通过第N次选择得到的是一个最优解的话,那么第N-1次选择的结果一定也是一个最优解。
这符合动态规划中最优子问题的性质。
考虑用动态规划的方法来解决,这里的:阶段是:在前N件物品中,选取若干件物品放入背包中;状态是:在前N件物品中,选取若干件物品放入所剩空间为W的背包中的所能获得的最大价值;决策是:第N件物品放或者不放;由此可以写出动态转移方程:我们用f[i,j]表示在前 i 件物品中选择若干件放在所剩空间为 j 的背包里所能获得的最大价值f[i,j]=max{f[i-1,j-Wi]+Pi(j>=Wi), f[i-1,j]}这样,我们可以自底向上地得出在前M件物品中取出若干件放进背包能获得的最大价值,也就是f[m,w]算法设计如下:procedure Make;beginfor i:=0 to w dof[0,i]:=0;for i:=1 to m dofor j:=0 to w do beginf[i,j]:=f[i-1,j];if (j>=w) and (f[i-1,j-w]+v>f[i,j]) thenf[i,j]:=f[i-1,j-w]+v;end;writeln(f[m,wt]);end;由于是用了一个二重循环,这个算法的时间复杂度是O(n*w)。
背包问题九讲
背包问题九讲2.0RC1崔添翼(Tianyi Cui)*2011-09-28†本文题为《背包问题九讲》,从属于《动态规划的思考艺术》系列。
这系列文章的第一版于2007年下半年使用EmacsMuse制作,以HTML格式发布到网上,转载众多,有一定影响力。
2011年9月,本系列文章由原作者用L A T E X重新制作并全面修订,您现在看到的是2.0alpha版本,修订历史及最新版本请访问https:///tianyicui/pack查阅。
本文版权归原作者所有,采用CC BY-NC-SA协议发布。
Contents101背包问题31.1题目 (3)1.2基本思路 (3)1.3优化空间复杂度 (3)1.4初始化的细节问题 (4)1.5一个常数优化 (4)1.6小结 (5)2完全背包问题52.1题目 (5)2.2基本思路 (5)2.3一个简单有效的优化 (5)2.4转化为01背包问题求解 (6)2.5O(V N)的算法 (6)2.6小结 (7)3多重背包问题73.1题目 (7)3.2基本算法 (7)3.3转化为01背包问题 (7)3.4可行性问题O(V N)的算法 (8)*a.k.a.dd_engi†Build2011092818380013.5小结 (9)4混合三种背包问题94.1问题 (9)4.201背包与完全背包的混合 (9)4.3再加上多重背包 (9)4.4小结 (10)5二维费用的背包问题105.1问题 (10)5.2算法 (10)5.3物品总个数的限制 (10)5.4二维整数域N2上的背包问题 (11)5.5小结 (11)6分组的背包问题116.1问题 (11)6.2算法 (11)6.3小结 (12)7有依赖的背包问题127.1简化的问题 (12)7.2算法 (12)7.3较一般的问题 (12)7.4小结 (13)8泛化物品138.1定义 (13)8.2泛化物品的和 (13)8.3背包问题的泛化物品 (14)8.4小结 (14)9背包问题问法的变化149.1输出方案 (15)9.2输出字典序最小的最优方案 (15)9.3求方案总数 (15)9.4最优方案的总数 (16)9.5求次优解、第K优解 (16)9.6小结 (17)2101背包问题1.1题目有N件物品和一个容量为V的背包。
数据结构 背包问题
一、总则为加强铁路车间安全管理,保障员工生命财产安全,预防事故发生,根据《中华人民共和国安全生产法》等相关法律法规,结合我车间实际情况,特制定本制度。
二、安全管理组织机构1. 成立车间安全管理委员会,负责车间安全生产工作的组织、协调、监督和检查。
2. 委员会下设安全管理办公室,负责日常安全管理工作的组织实施。
三、安全管理制度1. 安全生产责任制(1)车间主任为安全生产第一责任人,对本车间安全生产工作全面负责。
(2)各工班长为班组安全生产第一责任人,对本班组安全生产工作全面负责。
(3)各岗位操作人员为岗位安全生产第一责任人,对本岗位安全生产工作全面负责。
2. 安全生产教育培训(1)车间定期组织安全生产教育培训,提高员工安全意识和技能。
(2)新员工上岗前必须经过安全生产教育培训,考核合格后方可上岗。
3. 安全生产检查(1)车间定期开展安全生产大检查,及时发现和消除安全隐患。
(2)各班组每周至少开展一次安全隐患自查,确保安全生产。
4. 事故报告和处理(1)发生安全事故,必须立即上报车间安全管理委员会。
(2)车间安全管理委员会应及时组织调查处理,查明事故原因,追究责任。
5. 安全防护设施(1)车间应配备必要的安全防护设施,如安全帽、安全带、防护眼镜等。
(2)员工必须正确使用安全防护设施,确保自身安全。
6. 作业现场管理(1)作业现场必须保持整洁,不得堆放杂物。
(2)作业现场应设置安全警示标志,确保作业人员安全。
7. 应急救援(1)车间应制定应急预案,明确应急处置流程。
(2)员工应熟悉应急预案,掌握应急处置技能。
四、奖励与处罚1. 对在安全生产工作中表现突出的单位和个人,给予表彰和奖励。
2. 对违反安全生产规定,造成事故或安全隐患的,按照相关规定予以处罚。
五、附则1. 本制度自发布之日起实施。
2. 本制度由车间安全管理委员会负责解释。
3. 本制度如有未尽事宜,由车间安全管理委员会另行制定补充规定。
数学建模背包问题
背包问题背包问题(Knapsack problem)是一种组合优化的NP 完全问题。
问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。
问题的名称来源于如何选择最合适的物品放置于给定背包中。
相似问题经常出现在商业、组合数学,计算复杂性理论、密码学和应用数学等领域中。
也可以将背包问题描述为决定性问题,即在总重量不超过W 的前提下,总价值是否能达到V ?它是在1978年由Merkel 和Hellman 提出的一、定义:背包问题属于组合优化问题,一般的最优化问题由目标函数和约束条件两部部分组成:我们有n 种物品,物品i 的重量为w i ,价格为p i 。
我们假定所有物品的重量和价格都是非负的。
背包所能承受的最大重量为W 。
如果限定每种物品只能选择0个或1个,则问题称为0-1背包问题。
可以用公式表示为:1max ni i i p x =∑1..,ni i i S T w x W =≤∑ {}0,1i x ∈如果限定物品i 最多只能选择b i 个,则问题称为有界背包问题。
可以用公式表示为:1max ni i i p x =∑1..,n i i i S T w xW =≤∑ {}0,1,,i i x b ∈⋅⋅⋅如果不限定每种物品的数量,则问题称为无界背包问题。
各类复杂的背包问题总可以变换为简单的0-1背包问题进行求解。
二、基本模型的建立方法1、0-1背包问题的数学模型(最基础的背包问题)分类:0-1背包问题简单分为一维背包和二维背包问题。
特点:每种物品仅有一件,可以选择放或不放。
1.1 一维背包问题问题:一个旅行者准备进行徒步旅行,为此他必须决定携带若干物品。
设有n 件物品可供他选择,编号为1,2,...,n 第i 件物品重量为i w 千克,价值为i p 元,他能携带的最大重量为w 千克。
他应该装入哪几件物品价值最大。
解:引入变量i x ,且设1,(1,2,,)0,i i x i n i ⎧==⎨⎩表示将第种物品装入包中表示不将第种物品装入包于是此问题的数学模型为:1max ni i i f p x ==∑1122.....01,1,2,...,.n n iw x w x w x W S T x i n +++≤⎧⎨==⎩或 1.2 二维背包问题一维背包问题只考虑了背包重量的限制,如果再增加背包体积的限制为V ,并设第i 件物品的体积i v ,问如何携带可使总价值最大。
旅行商问题+背包问题--经典问题
旅⾏商问题+背包问题--经典问题问题描述:旅⾏商问题(Traveling Salesman Problem,TSP)是旅⾏商要到若⼲个城市旅⾏,各城市之间的费⽤是已知的,为了节省费⽤,旅⾏商决定从所在城市出发,到每个城市旅⾏⼀次后返回初始城市,问他应选择什么样的路线才能使所⾛的总费⽤最短?此问题可描述如下:设G=(V,E)是⼀个具有边成本cij的有向图,cij的定义如下,对于所有的i和j,cij>0,若<i,j>不属于E,则cij=∞。
令|V|=n,并假设n>1。
G的⼀条周游路线是包含V中每个结点的⼀个有向环,周游路线的成本是此路线上所有边的成本和。
旅⾏商问题(Traveling Saleman Problem,TSP)⼜译为旅⾏推销员问题、货郎担问题,简称为TSP问题,是最基本的路线问题,该问题是在寻求单⼀旅⾏者由起点出发,通过所有给定的需求点之后,最后再回到原点的最⼩路径成本。
最早的旅⾏商问题的数学规划是由Dantzig(1959)等⼈提出。
TSP问题在物流中的描述是对应⼀个物流配送公司,欲将n个客户的订货沿最短路线全部送到。
如何确定最短路线。
TSP问题最简单的求解⽅法是枚举法。
它的解是多维的、多局部极值的、趋于⽆穷⼤的复杂解的空间,搜索空间是n个点的所有排列的集合,⼤⼩为(n-1)。
可以形象地把解空间看成是⼀个⽆穷⼤的丘陵地带,各⼭峰或⼭⾕的⾼度即是问题的极值。
求解TSP,则是在此不能穷尽的丘陵地带中攀登以达到⼭顶或⾕底的过程。
问题分析旅⾏商问题要从图G的所有周游路线中求取最⼩成本的周游路线,⽽从初始点出发的周游路线⼀共有(n-1)!条,即等于除初始结点外的n-1个结点的排列数,因此旅⾏商问题是⼀个排列问题。
排列问题⽐⼦集合的选择问题通常要难于求解得多,这是因为n个物体有n!种排列。
通过枚举(n-1)!条周游路线,从中找出⼀条具有最⼩成本的周游路线的算法,其计算时间显然为O(n!)。
背包问题的算法
背包问题是一种经典的优化问题,通常用于解决在给定一组物品和它们的重量、价值等信息的情况下,如何选择一些物品放入一个容量有限的背包中,使得背包中物品的总价值最大或总重量最小等问题。
以下是背包问题的一种经典算法——动态规划法:
1. 定义状态:设f[i][j]表示前i个物品中选择若干个物品放入容量为j的背包中所能获得的最大价值或最小重量。
2. 状态转移方程:对于第i个物品,有两种情况:
- 不放入背包中,此时f[i][j]=f[i-1][j];
- 放入背包中,此时f[i][j]=max(f[i-1][j], f[i-1][j-w[i]]+v[i]),其中w[i]和v[i]分别表示第i 个物品的重量和价值。
3. 初始化:f[0][0]=0。
4. 计算最优解:根据状态转移方程,从上到下依次计算每个物品的状态值,最终得到f[n][m]即为所求的最优解。
时间复杂度:O(n*m),其中n为物品数量,m为背包容量。
空间复杂度:O(n*m)。
背包问题的数学模型
背包问题的数学模型摘要:1.背包问题的定义2.背包问题的数学模型3.背包问题的求解方法4.背包问题的应用实例正文:一、背包问题的定义背包问题是一个经典的优化问题,它的问题是给定一个背包和n 种物品,其中,背包的容量为V,第i 种物品的质量为c_i,价值为p_i,如何通过物品选择,使得装入背包中的物品总价值最大。
二、背包问题的数学模型为了更好地理解背包问题,我们可以将其建立一个数学模型。
假设有n 种物品,分别用v_i 表示第i 种物品的价值,c_i 表示第i 种物品的质量,那么背包问题的数学模型可以表示为:f(x) = max {v_1x_1 + v_2x_2 +...+ v_nx_n}s.t.c_1x_1 + c_2x_2 +...+ c_nx_n <= Vx_i >= 0, i = 1,2,...,n其中,f(x) 表示背包中物品的总价值,x_i 表示第i 种物品的数量,V 表示背包的容量,c_i 表示第i 种物品的质量,v_i 表示第i 种物品的价值。
三、背包问题的求解方法背包问题的求解方法有很多,常见的有动态规划法、回溯法、贪心算法等。
这里我们以动态规划法为例进行介绍。
动态规划法的基本思想是将问题分解为子问题,通过求解子问题,最终得到原问题的解。
对于背包问题,我们可以将问题分解为:在容量为V 的情况下,如何选择物品使得总价值最大。
然后,我们可以通过递归的方式,依次求解子问题,最终得到原问题的解。
四、背包问题的应用实例背包问题是一个非常实用的优化问题,它在现实生活中有很多应用。
例如,一个果农需要根据市场需求和成本,选择合适的水果进行装箱;一个旅行者需要根据行李箱的容量和物品的价值,选择携带的物品等。
这些都可以通过背包问题来求解。
综上所述,背包问题是一个经典的优化问题,它有着广泛的应用。
背包问题解题方法总结
背包问题解题⽅法总结最近在⽜客刷题遇到好⼏道背包问题,索性这两天集中⽕⼒刷了⼀些这类的题。
这⾥总结⼀下0-1背包、完全背包和多重背包三种基本的背包问题的解题套路。
(均基于动态规划的思想)0-1背包题⽬:有 N 件物品和容量为 W 的背包。
第 i 件物品的重量为 w_i,价值为 v_i,求将不超过背包容量的物品装⼊背包能得到的最⼤价值。
特点,每件物品的数量只有⼀个,可以选择放或不放某件物品。
⽤dp[i][j]表⽰将前 i+1 件总重量不超过 j 的物品放⼊背包能获得的最⼤价值,则可以⽤以下的转移⽅程来表⽰这个过程:\[dp[i,j] = max(dp[i - 1, j], dp[i-1, j-w[i]] + v[i]) \]注意到dp数组第i⾏的值更新只跟 i-1 ⾏有关,因此可以通过滚动数组或者反向更新的⽅式优化⼀下空间复杂度,在动态规划解题的时候这是⼀种常⽤的空间复杂度优化⽅式。
优化后的代码如下:for(int i = 0; i < N; i++){// 注意到这⾥dp需要从后往前更新,避免更新前就把旧值覆盖// 从实际意义上来说,因为每件物品只有⼀个,从后向前更新保证了更新是在还没放⼊过当前物品的前提下进⾏的for(int j = W; j >= w[i]; j--){dp[j] = Math.max(dp[j], dp[j - w[i]] + v[i]);}}完全背包题⽬:有 N 种物品和容量为 W 的背包。
第 i 种物品的重量为 w_i,价值为 v_i,每种物品的数量⽆限。
求将不超过背包容量的物品装⼊背包能得到的最⼤价值。
特点:每种物品的数量⽆限多。
考虑到每种物品的数量⽆限。
⽤dp[j]表⽰在重量不超过 j 的情况下背包中物品可以达到的最⼤价值,则转移⽅程如下:\[dp[j]=max(dp[j], dp[j-w[i]]+v[i]) \]核⼼代码如下:for(int i = 0; i < N; i++){for(int j = w[i]; j <= W; j++){ // 这⾥和0-1背包不同dp[j] = Math.max(dp[j], dp[j - w[i]] + v[i]);}}注意内层for循环是从前向后更新dp数组的,这是唯⼀和上⾯的0-1背包问题区别的地⽅。
背包问题问题实验报告(3篇)
第1篇一、实验目的1. 理解背包问题的基本概念和分类。
2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。
3. 分析背包问题的复杂度,比较不同算法的效率。
4. 通过实验验证算法的正确性和实用性。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。
c. 返回dp[n][C],即为最大价值。
2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。
《背包问题详解》课件
VS
约束条件
背包的容量有限,每个物品的数量和重量 、价值是已知的,目标是最大化背包中物 品的总价值。
多重背包问题的最优解法
贪心算法
按照物品单位重量的价值进行排序,优先选择单位重量价值最高的物品,直到背包满或者无法再放入更多物品。
动态规划
将问题分解为子问题,通过解决子问题的最优解来得到原问题的最优解。具体来说,对于多重背包问题,可以将 问题分解为多个一维背包问题,然后分别求解每个一维背包问题的最优解,最后取最优解中的最大值。
02
背包问题通常涉及到多个约束条 件,如物品的重量、价值、体积 等,以及一个目标函数,如背包 中物品的总价值或总重量。
背包问题的分类
根据物品能否分割,背包问题可以分为可分割问题和不可分 割问题。在可分割问题中,物品可以被切割成任意大小,而 在不可分割问题中,物品只能以完整的形式装入背包。
根据是否考虑时间因素,背包问题可以分为静态问题和动态 问题。在静态问题中,所有物品的属性和背包的容量都是固 定的,而在动态问题中,物品的属性和背包的容量可能会随 着时间变化。
完全背包问题的最优解法
最优解法通常采用贪心算法,即每次选择单位重量价值最高的物品,直到背包容量用完为止。这种方 法能够得到最优解,但并不是所有情况下都能找到最优解。
在某些情况下,贪心算法可能会错过最优解,因为它的选择是基于当前的最优选择,而不是全局的最 优选择。
完全背包问题的动态规划解法
动态规划是解决完全背包问题的另一 种方法,它通过将问题分解为更小的 子问题来求解。对于完全背包问题, 动态规划的思路是先解决子问题,再 根据子问题的解来解决原问题。
《背包问题详解》ppt 课件
目录
• 背包问题的定义与分类 • 0-1背包问题详解 • 多重背包问题详解 • 完全背包问题详解 • 变种背包问题详解
数据结构 背包问题(2023最新版)
数据结构背包问题数据结构 - 背包问题简介背包问题是计算机科学中常见的问题之一,它涉及到在限定容量的背包中放置物品以达到最大价值。
在这个文档中,我们将介绍背包问题的几种常见解决方法和相关的数据结构。
背包问题类型0/1 背包问题在 0/1 背包问题中,每个物品要么被完全放入背包,要么不放入。
物品数量有限,目标是最大化背包中物品的总价值。
完全背包问题在完全背包问题中,每个物品都可以被选择无限次放入背包。
物品数量无限,同样的目标是最大化背包中物品的总价值。
多重背包问题多重背包问题给每种物品一个可选的数量上限,使此问题成为既有数量限制,又有是否选择的 0/1 特征的混合。
背包问题的解决方法动态规划动态规划是解决背包问题的一种常见方法,它将问题分解为更小的子问题,并通过存储解决子问题的结果来构建一个完整的解决方案。
贪心算法贪心算法选择当前具有最大或最小值的物品,并不考虑未来的影响。
尽管贪心算法并不总是得到最优解,但它可以在某些情况下提供近似解。
回溯算法回溯算法通过枚举所有可能的解决方案来解决问题。
对于背包问题,它可以尝试放入或不放入每个物品,并根据问题的限制条件确定最佳选择。
背包问题的数据结构物品每个物品都有自己的重量和价值,可以表示为一个结构体或对象。
在背包问题的解决中,我们需要使用这些信息来做出决策。
背包背包可以表示为一个简单的容器,用于存放物品。
我们可以使用数组、链表或其他数据结构来表示背包,并根据问题的限制来管理它。
价值数组价值数组是一个用于存储每个物品价值的数据结构。
我们可以使用数组、哈希表或其他数据结构来表示物品的价值,并在解决背包问题时使用它。
附件本文档没有涉及附件。
法律名词及注释本文档中没有涉及法律名词及注释。
背包问题
件物品和一个容量为V的背包 有N件物品和一个容量为 的背包。第i件物品的 件物品和一个容量为 的背包。 件物品的 费用是c[i],价值是 费用是 ,价值是w[i]。这些物品被划分为若干 。 每组中的物品互相冲突,最多选一件。 组,每组中的物品互相冲突,最多选一件。求解 将哪些物品装入背包可使这些物品的费用总和不 超过背包容量,且价值总和最大。 超过背包容量,且价值总和最大。 for 所有的组k for v=V..0 for 所有的i属于组k f[v]=max{f[v],f[v-c[i]]+w[i]} // 例题见浙大3264
背包问题
DP
01背包问题 背包问题
最基础的背包
问题描述: 件物品和一个容量为V的背 问题描述:有N件物品和一个容量为 的背 件物品和一个容量为 件物品的费用是c[i],价值是w[i]。 包。第i件物品的费用是 ,价值是 件物品的费用是 。 求解将哪些物品装入背包可使这些物品的费 用总和不超过背包容量,且价值总和最大。 用总和不超过背包容量,且价值总和最大。
(3)多重背包问题
在刚才的完全背包问题中,物品的数目是 无限的,而在多重背包问题中,每件物品最多 只能使用K次;
使用完全背包中的方法2,对每一件物品进行拆分(略)
(4)混合背包问题
分情况讨论: 1.只能使用一次的物品(逆向DP) 2.能使用无数次的物品(正向DP) 3.能使用有限次的物品(二进制拆分后在进行01DP)
方法一:转化为01背包问题 f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<= v} 复杂度>>O(NV) 一件物品拆分成 V/c[i]件 方法二:采用二进制数拆分,一件物品拆分成 log2 (V/c[i]) 件 这种方法比上方法一拆分出来的物品数目小一些
数据结构 背包问题
数据结构背包问题背包问题是数据结构中的一个经典问题,它在计算机科学和算法设计中有着广泛的应用。
本文将详细介绍背包问题的定义、解决思路以及常见的解决方法。
一、背包问题的定义背包问题是指在给定的一组物品中,选择一些物品放入背包中,使得背包中物品的总价值最大化,同时受到背包的容量限制。
每个物品都有自己的重量和价值,背包的容量是事先确定的。
二、解决思路背包问题可以使用动态规划的思想进行求解。
具体来说,可以定义一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时所能获得的最大价值。
然后根据状态转移方程进行递推求解。
三、常见的解决方法1. 0-1背包问题0-1背包问题是最基本的背包问题,每个物品要么完整地放入背包中,要么不放入。
具体的解决方法是使用动态规划,根据状态转移方程进行递推计算。
2. 完全背包问题完全背包问题相较于0-1背包问题,每个物品可以无限次地放入背包中。
同样使用动态规划进行求解,但在状态转移方程中需要进行一些调整。
3. 多重背包问题多重背包问题是在完全背包问题的基础上,对每个物品的数量进行了限制。
可以将多重背包问题转化为0-1背包问题进行求解。
4. 分组背包问题分组背包问题是在背包问题的基础上,将物品进行了分组。
每个组内的物品只能选择一个放入背包中。
可以使用动态规划进行求解,需要对状态转移方程进行一些修改。
四、示例假设有一个背包的容量为10,有以下物品可供选择:物品1:重量3,价值4物品2:重量4,价值5物品3:重量5,价值6物品4:重量2,价值3我们可以使用动态规划来解决这个问题。
首先初始化一个二维数组dp,大小为(n+1)×(W+1),其中n为物品的个数,W为背包的容量。
然后根据状态转移方程进行递推计算,最终得到dp[n][W]即为所求的最大价值。
具体的计算过程如下:1. 初始化dp数组,dp[0][j]和dp[i][0]均为0,表示背包容量为0或没有物品可选时的最大价值为0。
《背包问题详解》课件
贪心算法
按照物品的单位价值排序,不断 选取物品放入背包,直至背包无 法再放入任何物品。
分支界限算法
通过添加上下界、剪枝和优化等 技巧,搜索并找到最优解。
多重背包问题的解法
动态规充最优解。
贪心算法
按照物品的单位价值排序,依次选取物品放入 背包,直至背包无法再放入任何物品。
《背包问题详解》PPT课 件
背包问题是一类经典的组合优化问题,涉及在限定容量的背包中选择一组物 品以最大化价值或满足约束条件。本课件将详细介绍背包问题的定义、分类 以及不同类型的解法。
背包问题的定义和分类
背包问题是指在给定背包容量和一组物品的条件下,选择恰当的物品放入背包中,使得物品价值最大化或满足 特定的约束条件。背包问题可以根据约束条件的不同分为0/1背包问题、完全背包问题和多重背包问题。
背包问题的贪心算法
贪心算法是一种启发式算法,通过按照某种策略选择物品放入背包,逐步构建出问题的解。贪心算法的优点是 简单高效,但是并不保证必然能够得到最优解,只能得到近似解。
背包问题的分支界限算法
分支界限算法是一种精确算法,通过搜索问题的解空间树并进行剪枝和优化, 找到最优解或最优解的近似解。算法的核心思想是根据上下界限制,分割问 题空间,减少搜索的规模。
背包问题的变种及其解法
1
部分背包问题
限制物品的选择范围,求解背包能容纳
零钱兑换问题
2
的最大价值。
将背包问题中的背包容量转化为固定的
面额,求解所需的最少硬币数量。
3
集合覆盖问题
将背包问题中的容量和物品价值转化为 集合和元素的关系,求解最小化子集覆 盖问题。
背包问题的动态规划算法
动态规划算法是求解背包问题的一种常用方法。通过定义状态转移方程和利 用动态规划表格,逐步计算填充最优解。算法的核心思想是将问题拆解成子 问题,并利用子问题的最优解构造出大问题的最优解。
数据结构 背包问题
数据结构背包问题背景介绍:数据结构是计算机科学中的一个重要分支,它研究数据的组织、存储、管理和操作的方法。
背包问题是数据结构中的一个经典问题,它在组合优化和算法设计中具有重要的应用价值。
背包问题可以分为0-1背包问题、完全背包问题和多重背包问题等多种类型。
问题描述:背包问题是指在给定的一组物品中,选择若干物品放入背包中,使得物品的总价值最大,且背包的容量不超过限定值。
每个物品都有自己的重量和价值,背包的容量限制了所能放入物品的总重量。
解决思路:背包问题可以使用动态规划算法来求解。
动态规划算法的基本思想是将原问题分解成若干个子问题,通过求解子问题的最优解来求解原问题的最优解。
对于背包问题,可以使用一个二维数组来记录每个子问题的最优解,然后逐步构建出整个问题的最优解。
具体步骤:1. 定义问题:- 物品集合:假设有n个物品,编号为1到n。
- 物品重量:w1, w2, ..., wn,其中wi表示第i个物品的重量。
- 物品价值:v1, v2, ..., vn,其中vi表示第i个物品的价值。
- 背包容量:C,表示背包能够承受的最大重量。
- 最优解:使用一个二维数组dp[n+1][C+1]来存储每个子问题的最优解,其中dp[i][j]表示在考虑前i个物品、背包容量为j的情况下的最优解。
2. 初始化:- 将dp数组的第一行和第一列都初始化为0,表示背包容量为0或物品数量为0时的最优解都为0。
3. 动态规划求解:- 对于每个子问题dp[i][j],可以分为两种情况讨论:a. 第i个物品不放入背包:此时最优解为dp[i-1][j],即在考虑前i-1个物品、背包容量为j的情况下的最优解。
b. 第i个物品放入背包:此时最优解为dp[i-1][j-wi]+vi,即在考虑前i-1个物品、背包容量为j-wi的情况下的最优解加上第i个物品的价值。
- 取两种情况的较大值作为dp[i][j]的最优解。
- 依次填充dp数组,直到计算出dp[n][C],即问题的最优解。
背包问题入门(单调队列优化多重背包
背包问题⼊门(单调队列优化多重背包写这篇⽂章主要是为了帮帮新⼈吧,dalao 勿喷.qwq 每种物品都有⼀个价值w 和体积c.//这个就是下⾯的变量名,请看清再往下看. 你现在有⼀个背包容积为V,你想⽤⼀些物品装背包使得物品总价值最⼤.01 多种物品,每种物品只有⼀个.求能获得的最⼤总价值. 我们考虑是否选择第i 件物品时,是需要考虑前i-1件物品对答案的贡献的. 如果我们不选择第i 件物品,那我们就相当于是⽤i-1件物品,填充了体积为v 的背包所得到的最优解. ⽽我们选择第i 件物品的时候,我们要得到体积为v 的背包,我们需要通过填充⽤i-1件物品填充得到的体积为v-c[i]的背包得到体积为v 的背包.//请保证理解了上⾯加粗的字再往下看.所以根据上⾯的分析,我们很容易设出01背包的⼆维状态f[i][v]f[i][v]代表⽤i 件物品填充为体积为v 的背包得到的最⼤价值.从⽽很容易的写出状态转移⽅程f [i ][v ]=max (f [i −1][v ],f [i −1][v −c [i ]]+w [i ])状态转移⽅程是如何得来的对于当前第i 件物品,我们需要考虑其是否能让我们得到更优解.显然,根据上⾯的话我们选择第i 件物品的时候,我们要得到体积为v 的背包,我们需要通过填充⽤i-1件物品填充得到的体积为v-c[i]的背包得到体积为v 的背包.我们需要考虑到v −c [i ]的情况.当不选当前第i 件物品的时候,就对应了状态转移⽅程中的f [i −1][v ],⽽选择的时候就对应了f [i −1][v −c [i ]]+w [i ].Q:是不是在状态转移⽅程中⼀定会选择当前i物品A:我们考虑⼀个问题.如果⼀个体积为5的物品价值为10,⽽还有⼀个体积为3的物品价值为12,⼀个体积为2的物品价值为8.显然我们会选择后者.这样我们的状态转移⽅程中就不⼀定会选择i 物品。
其实最好地去理解背包问题的话,还是⼿跑⼀下这个过程,会加深理解。
背包问题——精选推荐
背包问题01背包问题题⽬有N件物品和⼀个容量为M的背包,每种物品只可以取⼀件。
第i件物品的费⽤是c[i],价值是v[i]。
求解将哪些物品装⼊背包可使价值总和最⼤。
分析这是最基础的背包问题,特点是:每种物品仅有⼀件,可以选择放或不放。
⽤⼦问题定义状态:即f[i][j]表⽰前i件物品恰放⼊⼀个容量为j的背包可以获得的最⼤价值。
则其状态转移⽅程便是:f[i][j]=max{f[i-1][j],f[i-1][j-c[i]]+v[i]}优化空间复杂度即改⽤⼀维数组f[j]存储第i个物品时剩余空间为j时的背包的最⼤价值。
注意到j-c[i]<j这个关系,当j=0……M顺序推f[j],则后⾯的到的f[j]将会使⽤到当前i状态下新⽣成的f[j-c[i]],⽽不是我们所需的i-1状态时的f[j-c[i]]。
因此,在每次主循环中我们以j=M……0顺序推f[j],这样才能保证推f[j]时f[j-c[i]]保存的是状态f[i-1][j-c[i]]的值。
参考代码完全背包问题题⽬有N件物品和⼀个容量为M的背包,每种物品都有⽆限件可⽤。
第i件物品的费⽤是c[i],价值是v[i]。
求解将哪些物品装⼊背包可使价值总和最⼤。
分析类似01背包问题,但与它相关的策略已并⾮取或不取两种,⽽是有取0件、取1件、取2件……。
如果仍然按照解01背包时的思路,令f[i][j]表⽰前i种物品恰放⼊⼀个容量为j的背包的最⼤权值。
仍然可以按照每种物品不同的策略写出状态转移⽅程:f[i][j]=max{ f[i-1][j-k*c[i]]+k*v[i] | 0<=k*c[i]<=M }优化时间复杂度若两件物品i、j满⾜c[i]<=c[j]且w[i]>=w[j],则将物品j去掉,不⽤考虑。
将费⽤⼤于M的物品去掉,然后使⽤类似计数排序的做法,计算出费⽤相同的物品中价值最⾼的是哪个。
转化为01背包问题求解最简单的想法是:考虑到第i种物品最多选M/c[i]件,于是可以把第i种物品转化为M/c[i]件费⽤及价值均不变的物品,然后求解这个01背包问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
装箱问题的LINGO软件求解
例1 已知30个物品,其中6个长0.51m,6个长 0.27m,6个长0.26m,余下12个长0.23m, 箱子长为1m,问最少需多少个箱子才能把30 个物品全部装进箱子。
见lingo程序
装箱问题的近似求解算法
NF(Next Fit-下次适应)算法:按照物 体给定的顺序装箱:把物品wi放到它第 一个能放进去的箱子中。Bj是具有最大 下标的使用过的箱子,若wi的长度不大 于Bj的剩余长度,则把wi放入Bj,否则 把wi放入一个新的箱子Bj+1,且Bj在以 后的装箱中不再使用。
多机调度问题要求给出一种作业调度方案,使所给的n个 作业在尽可能短的时间内由m台机器加工处理完成。
[分析]这个问题可以看成装箱问题,也是NP完全问题。对 于这一类问题,用贪婪选择策略有时可以设计出较好的近似 算法。采用最长处理时间作业优先的贪婪选择策略可以设计 出解多处理器调度问题的较好的近似算法。按此策略,当 n≤m时,我们只要将机器i的[0,ti]时间区间分配给作业i即 可。
适应算法的特点是当处理当前物品,如果有已经打 开的箱子中能够放下这个物品,则不打开新的箱子。
在线算法:如果一个近似装箱算法在执行过程中, 每当一个物品到达时,就立刻决定把该物品放入哪 个箱子中,而不管后序物品如何,这种算法就被称 为在线算法。下次适应算法、首次适应算法等都是 在线算法,其时间复杂度都为O(n) 。
FFD算法: { 输入箱子的容积; 输入物品种数n; 按体积从大到小顺序,输入各物品的体积; 预置已用箱子链为空; 预置已用箱子计数器box_count为0; for (i=0;i<n;i ++ ) { 从已用的第一只箱子 开始顺序寻找能放入物品i 的箱子j;
if (已用箱子都不能再放物品i) { 另用一个箱子,并将物品i放入该箱子; box_count++; }
else 将物品i放入箱子j;
}}
装箱问题中最早被研究的是一维装箱问题。随 着研究的深入,人们发现实际生活中更多存在 的是一些带约束的装箱问题,因此也就抽象化 出了,如二维装箱问题(条形装箱问题、剪裁 问题)、三维装箱问题、变容装箱问题、有色 装箱问题、对偶装箱问题等等一系列的带约束 的装箱问题。但是由于这些问题所与生俱来的 复杂性,虽然已经有一些研究成果发表了,但 是其研究还是相当的困难。本文所讨论的还是 一维装箱问题。
降序首次适应算法 (FFD): 先将物体按长度从大到小排序,然后按FF算法对 物体装箱.
不失一般性,对n件物品的体积按从大到小排好序, 即有v1≥v2≥…≥vn,然后按排序结果对物品重新 编号即可。
离线算法:如果算法在开始装箱之前,已经预先 得到了所有物品的信息而一次性的确定装箱策略, 这种算法就被称为离线算法。降序首次适应算法 和降序最佳适应算法是两个重要的离线算法。 这里的降序首次适应算法就是一种贪婪算法。
若考察将n种物品的集合分划成n个或小于n个 物品的所有子集,最优解就可以找到。但所有 可能划分的总数太大。对适当大的n,找出所 有可能的划分要花费的时间是无法承受的。为 此,对装箱问题采用非常简单的近似算法,即 贪婪法。该算法依次将物品放到它第一个能放 进去的箱子中,该算法虽不能保证找到最优解, 但还是能找到非常好的解。
装箱问题在工业生产及日常生活中有广泛的用 途,其应用在实际生活中无处不在,如货物装运, 服装裁剪,以及我们计算机科学中的存储分配、共 享资源调度、文件存储都是装箱问题在实际应用中 的体现。所以具有重要的研究价值。
例2: 多处理器调度问题
设有n个独立的作业{1,2,…,n},由m台相同的机器进行 加工处理。作业i所需的处理时间为ti。现约定,任何作业 可以在任何一台机器上加工处理,但未完工前不允许中断处 理。任何作业不能拆分成更小的子作业。
当n>m时,我们首先将n个作业依其所需的处理时间从大 到小排序。然后依此顺序将作业分配给空闲的处理器。
例 如 , 设 7 个 独 立 作 业 {1,2,3,4,5,6,7} 由 3 台 机 器 M1,M2,和M3来加工处理。各作业所需的处理时间分别为 {2,14,4,16,6,5,3}。按贪婪算法产生的作业调度如图所示, 所需的加工时间为17。
【问题】 装箱问题
问题描述:装箱问题可简述如下:设有编 号为1、…、n的n种物品,体积分别为v1、 v2、…、vn。将这n种物品装到容量都为V的若 干箱子里(更一般的装箱问题还可以要求容量 不是相同的)。约定这n种物品的体积均不超过 V,即对于1≤i ≤ n,有0<vi≤V。不同的装箱方 案所需要的箱子数目可能不同。装箱问题要求 使装尽这n种物品的箱子数要少。
1.3装箱问题与背包问题
装箱问题是一个经典的NP难解问题,这 意味着该问题不存在在多项式时间内求 得精确解的算法(如果P≠NP),因此对 装箱问题算法的研究指的是对其近似算 法的研究,所谓近似算法即该算法可以 求得与精确解接近的结果,但不一定得到 精确解。
其在工业生产及日常生活中有广泛的用途, 其应用在实际生活中无处不在,货物装运, 服装裁剪,以及我们计算机科学中的存储分 配、共享资源调度、文件存储都是装箱问题 在实际应用中的体现。所以具有重要的研究 价值。
装箱问题的数学表示如下( : 0-1规划模型)
n
minz(y) yi
i1
n
s.t.
j xij Vy i
j 1
i N{i =1表示箱子i装入物品, 反之表示箱子i空着
i1
yi 0或1 iN xij =1表示物品j装入箱
xij 0或1
j N
子i ,反之表示物品j未 放入箱子i
最后循环
FF(First Fit-首次适应 )算法:按照物体 给定的顺序装箱:把物品wi放到第一个箱子 中。 B1 B2 …Bj是当前已经使用过的箱子, 在这些箱子中找一个长度不小于wi且下标最 小的箱子,将放入wi,如果不存在这样的箱子, 则另开一个新箱子Bj+1 , 将wi放入Bj+1中 。
以上算法都称为在线适应算法,