液压储能在风力发电中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压储能在风力发电中的应用
摘要:为实现风力发电系统稳定、持续地供电,必须在系统中配备合适的储能装置。储能装置的作用是将风能首先转化为液压能,运用液压储能元件来进行风能的存储,并以液压蓄能器作为储能装置。液压储能系统不但可以促进电网安全稳定运行,还可以节省了电网建设的投资,对风力发电的发展有着重要意义。
关键字:液压储能、风力发电、蓄能器
1.1风力发电概述
21世纪是高效、洁净、安全、经济可持续利用能源的时代,世界各国都在向此方向发展,都把能源的利用作为科研领域的关键予以关注。受1973年世界范围内的石油危机和空气动力学理论的发展的影响,在常规能源告急和全球生态环境恶化的双重压力下,风力以其自身独有的优点,作为新能源的一部分有了新的快速的发展。
风力发电,就是把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。具体的说,就是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。我国世界上风力资源较为丰富的国家之一,全国可利用的风能约为2.5亿kW。风能作为一种无污染和可再生的新能源有着巨大的发展潜力,其次,用风力发电,可减少常规能源的消耗,从而减少有害气体的排放,对环境保护和生态平衡,改善能源结构具有重要意义。
1.2风力发电与储能技术
风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分
风轮(包括尾舵)、发电机和铁塔三部分(大型风力发电站基本上没有尾舵,一般只有小型才会拥有尾舵)。
由于风轮的转速比较低,而且风力的大小和方向经常变化着,这又使转速不稳定;所以,在带动发电机之前,还必须附加一个把转速提高到发电机额定转速的齿轮变速箱,再加一个调速机构使转速保持稳定,然后再联接到发电机上。为保持风轮始终对准风向以获得最大的功率,还需在风轮的后面装一个类似风向标的尾舵。
风力发电还受到以下两个方面的严重制约,一方面,风机造价居高不下,风力发电技术也不是很完善,使风力发电单价约为火力发电单位造价的2~2.5倍。另一个方面,风能是随机性的能源,具有间歇性、风速的不稳定性,风速的变化会造成电流波动问题,影响输出电力的稳定性。而应用储能装置是改善发电机输出电压和频率质量的有效途径。
目前几种常用的对付电流波动问题的方法有:1、在小功率情况下,对电流加设滤波电容,因为滤波电容有削峰填谷的作用;2、电感储能;3、用液压蓄能器的方式解决储能问题。
超级电容器在风力发电系统直流母线侧并入超级电容器,不仅能像蓄电池一样储存能量,平抑由于风力波动引起的能量波动,还可以起到调节有功无功的作用。缺点是电容的寿命受电解液的影响比较短,并且工作频率高时,热量会使电解液更快消耗,不适合在高温时使用。
超导储能系统主要由电感很大的超导蓄能线圈、使线圈保持在临界温度以下的氦制冷器和交直流变流装置构成。当储存电能时,将风力发电机的交流电,经过交-直流变流器整流成直流电,激励超导线圈。发电时,直流电经逆变器装置变为交流电输出,供应电力负荷或直接接入电力系统。缺点是体积重量大,磁芯还怕摔。很多储能技术采用超导体,在大型线圈产生的电磁力的约束、制冷技术等方面还未成熟,所以电感储能还不成熟。
液压储能器又称蓄能器,是一种能把液压能储存在耐压容器里,待需要时又将其解放出来的能量储存装置,对保证系统正常运行、改善其动态品质、保持工作稳定性、延长工作寿命、降低噪声等起着重要的作用。储能器能给系统带来的经济、节能、安全、可靠、环保等效果非常明显。缺点是易漏油,而且需要经常
打压。
通过比较,液压储能技术在保证密封性良好的情况下,作为风力发电的储能技术,是较有优势的。因此,设计液压储能装置来解决风电存储问题极具意义。
2.1蓄能器的分类极其特点
蓄能器根据储能方式的不同,一般分为重力式蓄能器、弹簧式蓄能器和充气式蓄能器。
(1)重力式蓄能器
重力式蓄能器是利用重物(重锤)的重量,通过活塞作用在油液上而产生压力能。其压力大小取决于重物的重量和柱塞大小。这种蓄能器的优点:结构简单,容量大,压力高而恒定,在输出油液的整个过程中,压力输出压力稳定,与输出速度无关。但体积庞大,笨重,惯性大,响应滞缓。只适用于固定设备的储能,不宜用于吸收压力脉动和冲击。
(2)弹簧式蓄能器
弹簧式蓄能器是利用弹簧力作用于活塞上,使之与压力油的压力相平衡,以储存压力能。蓄能器产生的压力取决于弹簧的刚度和压缩量。这种蓄能器的优点是结构简单,反应较重力式灵敏,但容量小(容量大则笨重)。适用于低压、小容积、循环频率低的系统作储能及缓冲用。
(3)充气式蓄能器
充气式蓄能器的工作原理是利用蓄能器内预先充有预订压力的气体(空气或氮气)与液压泵冲入蓄能器内的压力油平衡。当系统需要油液时,在气体压力作用下,使油液排出。其中,气囊式蓄能器应用最广泛。
2.2气囊式蓄能器
气囊式蓄能器(如图2-1)的工作原理是基于波意尔定理,主要由充气阀、壳体,皮囊、和进油阀组成。气体和油液由皮囊隔开,皮囊用耐用橡胶组成,固定在一个耐高压的壳体上部,皮囊内冲入惰性气体,(一般为氮气),壳体下端的进油阀是一个用弹簧加载的菌形阀,它能使油液进出蓄能器时皮囊不会挤出油口。充气阀在蓄能器工作前为皮囊充气,充气完毕将自动关闭。
在使用前,首先向蓄能器中的气囊充以预订压力的氮气,然后用液压泵向蓄
能器充油,在压力油的作用下,顶开菌型阀,油进入容器内,压缩气囊,当气腔和液腔的压力相等时,气囊处于平衡状态,这时蓄能器内压力为泵压力。当系统需要油时,在气体压力作用下,气囊膨胀,逐渐将油液挤出。另外,充气阀处可做检查皮囊内气压大小的接表口,这种蓄能器的结构保证了气液的密封可靠。
将壳体和气囊顶部设计成“上部敞开式”结构,更换气囊方便。
图2-1 气囊式蓄能器
3.1风力发电中液压储能原理
液压储能系统中,叶轮直接驱动液压泵转动,输出高压油,油液经过液压管路送至地面,通过稳压泵站进入蓄能器以液压能的形式存储起来。需要用电时,通过稳压泵站驱动液压马达转动,液压马达带动发电机转动,液压马达的转速可以通过稳压泵站的调速回路来使之稳定,因此无需稳压系统。当无风或风力较小时,可通过蓄能器和液压泵同时向液压马达供油,来保证系统的稳定和持续发电。
原理图如图3-1所示,当控制器监测到蓄能器压力低于最低压力时,风轮首先带动液压泵转动,此时两通阀A和两通阀B均被关闭,溢流阀作为安全阀使用,因此液压泵通过一个单向阀后向蓄能器内充入高压油。需要发电时,控制器通过电控信号,打开两通阀B,蓄能器内的液压油流出,由控制器控制调速阀控制输出流量,驱动液压马达转动,带动发电机发电,驱动电阻负载。在发电时,通过调节调速阀的开度和液压马达的排量,使输出功率和输出电压均保持在稳定状态