复数经典试题(含答案) 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复数选择题
1.若复数()()24z i i =--,则z =( ) A .76i -- B .76-+i C .76i - D .76i + 2.复数z 满足12i z i ⋅=-,z 是z 的共轭复数,则z z ⋅=( )
A B C .3
D .5
3.已知复数1z i i =+-(i 为虚数单位),则z =( )
A
.1
B .i
C i
D i
4.已知复数()2
11i z i
-=
+,则z =( )
A .1i --
B .1i -+
C .1i +
D .1i -
5.若1i i
z ,则2z z i ⋅-=( )
A .
B .4
C .
D .8
6.复数12i
z i
=
+(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限
C .第三象限
D .第四象限
7.在复平面内,复数z 对应的点为(,)x y ,若2
2
(2)4x y ++=,则( ) A .22z +=
B .22z i +=
C .24z +=
D .24z i +=
8.复数112z i =+,21z i =+(i 为虚数单位),则12z z ⋅虚部等于( ). A .1-
B .3
C .3i
D .i -
9.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( ) A .4 B .2 C .0 D .1- 10.若复数z 满足213z z i -=+,则z =( )
A .1i +
B .1i -
C .1i -+
D .1i --
11.设a +∈R ,复数()()
()
2
4
2
121i i z ai ++=-,若1z =,则a =( )
A .10
B .9
C .8
D .7
12.复数()()212z i i =-+在复平面内对应的点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
13.已知i 是虚数单位,设复数22i
a bi i
-+=+,其中,a b ∈R ,则+a b 的值为( ) A .75
B .75-
C .
15
D .15
-
14.若复数11i
z i
,i 是虚数单位,则z =( ) A .0
B .
12
C .1
D .2
15.设复数满足(12)i z i +=,则||z =( )
A .
15
B C D .5
二、多选题
16.i 是虚数单位,下列说法中正确的有( ) A .若复数z 满足0z z ⋅=,则0z =
B .若复数1z ,2z 满足1212z z z z +=-,则120z z =
C .若复数()z a ai a R =+∈,则z 可能是纯虚数
D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限 17.若复数351i
z i
-=-,则( )
A .z =
B .z 的实部与虚部之差为3
C .4z i =+
D .z 在复平面内对应的点位于第四象限
18.已知复数z 满足2
20z z +=,则z 可能为( ). A .0
B .2-
C .2i
D .2i+1-
19.已知复数122
z =-,则下列结论正确的有( )
A .1z z ⋅=
B .2z z =
C .31z =-
D .202012z =-
+ 20.设复数z 满足1
z i z
+=,则下列说法错误的是( ) A .z 为纯虚数
B .z 的虚部为12
i -
C .在复平面内,z 对应的点位于第三象限
D .2
z =
21.下面是关于复数2
1i
z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z =
B .22z i =
C .z 的共轭复数为1i +
D .z 的虚部为1-
22.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数z
w z
=,则下列结论正确的有( )
A .w 在复平面内对应的点位于第二象限
B .1w =
C .w 的实部为12
-
D .w 23.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =
,则12=z z B .若12=z z ,则12z z =
C .若12z z >则12z z >
D .若12z z >,则12z z >
24.已知i 为虚数单位,则下列选项中正确的是( ) A .复数34z i =+的模5z =
B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限
C .若复数(
)(
)
2
2
34224m m m m +-+--i 是纯虚数,则1m =或4m =- D .对任意的复数z ,都有2
0z
25.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:
()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:
()()()n cos sin co i s s n
n n
z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦
+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .2
2
z z = B .当1r =,3
π
θ=时,31z =
C .当1r =,3
π
θ=时,12z =
D .当1r =,4
π
θ=
时,若n 为偶数,则复数n z 为纯虚数
26.下列命题中,正确的是( ) A .复数的模总是非负数
B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应
C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限
D .相等的向量对应着相等的复数
27.已知复数(
)(()()2
11z m m m i m R =-+-∈,则下列说法正确的是( )
A .若0m =,则共轭复数1z =-
B .若复数2z =,则m
C .若复数z 为纯虚数,则1m =±
D .若0m =,则2420z z ++= 28.以下为真命题的是( ) A .纯虚数z 的共轭复数等于z -
B .若120z z +=,则12z z =
C .若12z z +∈R ,则1z 与2z 互为共轭复数
D .若120z z -=,则1z 与2z 互为共轭复数