7-3半导体激光器封装
半导体激光器国家标准(二)
![半导体激光器国家标准(二)](https://img.taocdn.com/s3/m/da6fa7cd9ec3d5bbfd0a7470.png)
半导体激光器国家标准(二)3.1.32 远场光强分布Far field intensity distribution在距离远远大于激光光源瑞利长度的接收面上得到的光强分布。
3.1.33 近场光强分布Near field intensity distribution激光器在输出腔面(AR面)上的光强分布。
3.1.34 近场非线性Near field non-linearity热应力引起半导体激光器阵列或巴条中各个发光单元在垂直p-n结的方向上发生的位移,导致激光器阵列或巴条近场各个发光单元不在一条直线上,又称为"smile"效应。
3.1.35 偏振Polarization半导体激光器是利用光波导效应将光场限制在有源区内,使光波沿着有源区层传播,并通过腔面输出,半导体激光器的偏振特性与电场和磁场两个空间变量有关,对于横向电场(TE)偏振光,只存在(Ey,Hx,Hz)三个分量,对于横向磁场(TM)偏振光,只存在(Ex,Ez,Hy)三个分量。
半导体激光器偏振特性优劣通常用偏振度来表征,偏振度为两种偏振态的光功率差与光功率和的比值,通常以百分比表示。
3.1.36 热阻Thermal resistance热量在热流路径上遇到的阻力,反映介质或介质间的传热能力的大小,激光器产生1W 热量所引起的温升大小,单位为℃/W或K/W。
3.1.37 波长-温度漂移Wavelength-temperature shift半导体激光器稳定工作时,结温每升高1℃所引起的波长变化,单位是nm/K。
3.1.38 斜率效率Slope efficiency激光器额定光功率的10%和90%对应的光功率差值△P与相应工作电流的差值△I的比值称为斜率效率。
3.1.39 光功率-电流曲线扭折Optical power-current curve kink光功率-电流曲线上出现的非线性变化的拐点。
扭折表征了光功率与工作电流的线性关系的优劣。
半导体激光器 制造 封装
![半导体激光器 制造 封装](https://img.taocdn.com/s3/m/b6b4eb66482fb4daa48d4b36.png)
TO封装技术
❖ TO封装,即Transistor Outline 或者Throughhole封装技术,原来是晶体管器件常用的封装形式, 在工业技术上比较成熟。TO封装的寄生参数小、工艺 简单、成本低,使用灵活方便,因此这种结构广泛用 于 2.5Gb/s以下LED、LD、光接收器件和组件的封装。 TO管壳内部空间很小,而且只有四根引线,不可能安 装半导体致冷器。由于在封装成本上的极大优势,封 装技术的不断提高,TO封装激光器的速率已经可以达 到 10Gb/s。
半导体LD的特点及与LED区别
特点:效率高、体积小、重量轻、 可 靠 , 结构简 单 ; 其缺点是输出功率较小。目前半导体激光器 可选择的波长主要局限在红光和红外区域。
LD 和LED的主要区别 LD发射的是受激辐射光。 LED发射的是自发辐射光。 LED的结构和LD相似,大多是采用双异质结
(DH)芯片,把有源层夹在P型和N型限制层中间, 不同的是LED不需要光学谐振腔,没有阈值。
2二次外延生长
生长:
1.低折射率层 2.腐蚀停止层 3.包层 4.帽层:接触层
DFB-LD
3一次光刻
❖ 一次光刻出双 沟图形
DFB-LD
4脊波导腐蚀
选择性腐蚀到四元 停止层
DFB-LD
5套刻
PECVD生长SiO2 自对准光刻 SiO2腐蚀
DFB-LD
6三次光刻:电极图形
DFB-LD
7欧姆接触
半导体激光器的制作工艺、 封装技术和可靠性
目录
1.半导体材料选择 2.制作工艺概述 3.DFB和VCSEL激光器芯片制造 4.耦合封装技术
1.半导体激光器材料选择
❖ 半导体激光器材料主要选 取Ⅲ-Ⅴ族化合物(二元、 三元或四元),大多为直 接带隙材料,发光器件的 覆盖波长范围从0.4μm到 10μm。
半导体激光器国家标准(二)
![半导体激光器国家标准(二)](https://img.taocdn.com/s3/m/c2bc3dde81c758f5f61f6798.png)
半导体激光器国家标准(二)3.1.32 远场光强分布Far field intensity distribution在距离远远大于激光光源瑞利长度的接收面上得到的光强分布。
3.1.33 近场光强分布Near field intensity distribution激光器在输出腔面(AR面)上的光强分布。
3.1.34 近场非线性Near field non-linearity热应力引起半导体激光器阵列或巴条中各个发光单元在垂直p-n结的方向上发生的位移,导致激光器阵列或巴条近场各个发光单元不在一条直线上,又称为"smile"效应。
3.1.35 偏振Polarization半导体激光器是利用光波导效应将光场限制在有源区内,使光波沿着有源区层传播,并通过腔面输出,半导体激光器的偏振特性与电场和磁场两个空间变量有关,对于横向电场(TE)偏振光,只存在(Ey,Hx,Hz)三个分量,对于横向磁场(TM)偏振光,只存在(Ex,Ez,Hy)三个分量。
半导体激光器偏振特性优劣通常用偏振度来表征,偏振度为两种偏振态的光功率差与光功率和的比值,通常以百分比表示。
3.1.36 热阻Thermal resistance热量在热流路径上遇到的阻力,反映介质或介质间的传热能力的大小,激光器产生1W 热量所引起的温升大小,单位为℃/W或K/W。
3.1.37 波长-温度漂移Wavelength-temperature shift半导体激光器稳定工作时,结温每升高1℃所引起的波长变化,单位是nm/K。
3.1.38 斜率效率Slope efficiency激光器额定光功率的10%和90%对应的光功率差值△P与相应工作电流的差值△I的比值称为斜率效率。
3.1.39 光功率-电流曲线扭折Optical power-current curve kink光功率-电流曲线上出现的非线性变化的拐点。
扭折表征了光功率与工作电流的线性关系的优劣。
半导体激光器参数3
![半导体激光器参数3](https://img.taocdn.com/s3/m/6100f08bb9f3f90f76c61b5b.png)
半导体激光器参数3
阵列和单元器件快轴方向上光束质量一致; 阵列慢轴方向上光源区越薄,发散角越大,衍射极限矛盾? 大功率半导体激光器快轴方向N.A.>0.6
半导体激光器参数3
N.A.=nsin
•高数值孔径要求使用高 折射率材料 •难点:非球面微柱透镜 的加工
•光束质量表征光束的可汇聚程度 •光参积是一个不变量
半导体激光器参数3
激光头工作距离 ≥100mm
M2值增大 焦点增大
对光束质量提出要求
半导体激光器参数3
输入光束的光斑半径要小于光纤芯径
din dcore
发散角(全角)要小于光纤数值孔径的反 正弦的2倍
in2arcsNi.nA.() N.A.=0.22 < 25.4°
diode laser
fast- & slow axis
collimation
spatial multiplexing
spatial multiplexing
polarization multiplex.
wavelength multiplex.
wavelength multiplexing
1
2
3
半导体激光器参数3
半导体激光器参数3
缺点:
•介质中光程长,有一定吸收,晶体需要良好冷却
•入射角有一定限制
•晶体占据一定空间
No=1.658,Ne=1.486
半导体激光器参数3
4种波长光束耦合, BPP不变,功率提高4倍, 等效提高光束质量4倍
半导体激光器参数3
polarizat ion mult iplexing
半导体激光器参数3
椭球面方程
半导体激光器参数3
半导体激光器 工艺流程
![半导体激光器 工艺流程](https://img.taocdn.com/s3/m/4cf1bddd85868762caaedd3383c4bb4cf7ecb78f.png)
半导体激光器工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!半导体激光器的生产工艺流程是一个高科技、精细的过程,主要包括以下几个步骤:1. 设计阶段:- 首先,需要进行半导体激光器的设计,包括确定激光器的结构、材料、光输出功率、波长等参数。
半导体激光器 材料
![半导体激光器 材料](https://img.taocdn.com/s3/m/e2de2cc7e43a580216fc700abb68a98270feac5b.png)
半导体激光器材料
半导体激光器,也被称为激光二极管,是一种使用半导体材料作为工作物质的激光器。
由于物质结构上的差异,不同种类的半导体激光器产生激光的具体过程会有所不同。
在制作半导体激光器时,需要使用满足一定要求的半导体材料。
这些要求包括:
1. 直接带隙:只有具有直接带隙的材料,在电子-空穴复合产生光子时,才无需声子参加,从而有较高的发光效率。
2. 晶格匹配:作用层和限制层的晶格需要匹配,以确保激光器的性能。
3. 晶体完整性:要求晶体完整,位错密度、有害杂质浓度应尽量小。
常用的半导体激光器工作物质包括砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。
激励方式有电注入、电子束激励和光泵浦三种形式。
此外,半导体材料是一类具有半导体性能的电子材料,其导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内。
按照化学组成、
结构和性能的不同,半导体材料可以分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体等。
总的来说,对于半导体激光器的应用和发展,其材料的选择和处理是非常重要的。
国家半导体激光标准规范
![国家半导体激光标准规范](https://img.taocdn.com/s3/m/d000ba3b3169a4517723a375.png)
国家半导体激光标准规范1 远场光强分布在距离远远大于激光光源瑞利长度的接收面上得到的光强分布。
3.1.33 近场光强分布 Near field intensity distribution 激光器在输出腔面(AR面)上的光强分布。
3.1.34 近场非线性 Near field non-linearity热应力引起半导体激光器阵列或巴条中各个发光单元在垂直p-n结的方向上发生的位移,导致激光器阵列或巴条近场各个发光单元不在一条直线上,又称为"smile"效应。
3.1.35 偏振 Polarization半导体激光器是利用光波导效应将光场限制在有源区内,使光波沿着有源区层传播,并通过腔面输出,半导体激光器的偏振特性与电场和磁场两个空间变量有关,对于横向电场(TE)偏振光,只存在(Ey,Hx,Hz)三个分量,对于横向磁场(TM)偏振光,只存在(Ex,Ez,Hy)三个分量。
半导体激光器偏振特性优劣通常用偏振度来表征,偏振度为两种偏振态的光功率差与光功率和的比值,通常以百分比表示。
3.1.36 热阻 Thermal resistance热量在热流路径上遇到的阻力,反映介质或介质间的传热能力的大小,激光器产生1W热量所引起的温升大小,单位为℃/W或K/W。
2波长-温度漂移Wavelength-temperature shift半导体激光器稳定工作时,结温每升高1℃所引起的波长变化,单位是nm/K。
3.1.38 斜率效率 Slope efficiency激光器额定光功率的10%和90%对应的光功率差值△P与相应工作电流的差值△I的比值称为斜率效率。
3 光功率-电流曲线扭折 Optical power-current curve kink光功率-电流曲线上出现的非线性变化的拐点。
扭折表征了光功率与工作电流的线性关系的优劣。
4光输出饱和 Optical output saturation光输出饱和是指理想的线性响应光输出的跌落,表征激光器光输出效率下降。
高功率半导体激光器过渡热沉封装技
![高功率半导体激光器过渡热沉封装技](https://img.taocdn.com/s3/m/7f8d27ba6aec0975f46527d3240c844769eaa0ae.png)
文章编号:2095-6835(2023)01-0078-04高功率半导体激光器过渡热沉封装技术研究马德营,李萌,邱冬(山东省创新发展研究院,山东济南250101)摘要:近些年,在市场应用驱动下,半导体激光器的输出功率越来越高,器件产生的热量也在增加,同时封装结构要求也更加紧凑,这对半导体激光器的热管理提出了更高的要求。
当今,激光器的外延生长技术和芯片加工工艺已经成熟,封装技术的提升已经成为解决散热问题的关键,其中过渡热沉技术能有效降低激光器的热阻,提高可靠性,而且便于操作,已经是高功率半导体激光器封装的首要选择。
从过渡热沉散热原理、热应力、过渡热沉材料和焊料选择等方面对过渡热沉技术进行了研究,并对未来的研究热点进行了探讨。
关键词:激光器;过渡热沉;热阻;焊料中图分类号:TN248.4文献标志码:A DOI:10.15913/ki.kjycx.2023.01.0221研究背景半导体激光器具有体积小、质量轻、能耗小、易调制、可以批量化生产等众多优点,被广泛应用于工业加工、信息通信、医疗、生命科学和军事等领域。
虽然半导体激光器电光转换效率高,但在激光器芯片有源区内存在非辐射复合损耗和自由载流子的吸收,工作时会产生大量的热;同时,各层材料存在着电阻,也会产生焦耳热,这使得很大一部分电能转化为热能,再加上芯片材料的热导率低,热量不能快速传导出去,从而导致有源区温度升高,有源区材料禁带宽度变小,出现激射波长红移、效率降低、功率降低、阈值电流增大等一系列的问题,严重影响激光器的寿命和可靠性。
当前,随着技术不断更新进步,应用市场对激光器的输出功率提出了更高的要求,而输出功率的提高,伴随着的则是更多热量的产生,这对激光器的散热管理提出了更高的要求。
半导体激光器的散热问题一直是国内外研究热点。
提升激光器的散热能力,可以减少热量在有源区的积蓄,降低有源区的温度,提高效率,降低工作电流,减小波长,改善光斑输出等。
研究发现,激光器芯片对传导冷却半导体激光器的总散热贡献仅为8%[1],因此,激光器的散热设计应更多地集中在封装上。
半导体激光器巴条封装应力及评价
![半导体激光器巴条封装应力及评价](https://img.taocdn.com/s3/m/a633785b2a160b4e767f5acfa1c7aa00b52a9dd2.png)
半导体激光器巴条封装应力及评价张哲铭;薄报学;张晓磊;顾华欣;刘力宁;徐雨萌;乔忠良;高欣【摘要】In order to detect the packaging induced stress of semiconductor lasers quickly and effec-tively,an experimental device which can reveal the encapsulation stress by detecting the polarization degree of each unit of laser bar was designed. The parameters of the semiconductor laser bar were experimentally tested and the finite element software was used to simulate the relationship between the degree of polarization and the packaging induced stress through the theory of the semiconductor energy band and stress. The experiment results show that the individual light-emitting unit of the bar is less polarized,the higher threshold current is due to the larger packaging stress. Through the cal-culation,the packing stress is 141.92 MPa, and the polarization equivalent stress is 26.73 MPa. The degree of polarization of the device below the threshold reflects the distribution trend of the packaging induced stress,and the degree of polarization of the device can be measured by using the following threshold current. It can provide a quicker and more efficient method for selecting the heat sink and the solder material and the improvement of the welding process parameters.%为了快捷而有效地检测半导体激光器的封装应力,设计了一种通过检测激光器巴条各个单元偏振度揭示出其封装应力分布的实验方法.实验测试半导体激光器巴条的各项参数,并利用有限元软件模拟,通过半导体能带与应力理论,说明偏振度与封装应力的影响关系.实验表明,巴条个别发光单元的偏振度较低、阈值电流较高是由于封装应力较大.通过计算,封装应力为141.92 MPa,偏振等效应力最大为26.73 MPa.实验器件在阈值以下的偏振度较好地反映了封装应力的分布趋势.利用阈值电流以下测量器件偏振度,可以为选择热沉及焊料材料、焊接工艺参数的改进等方面提供一个较为快捷而有效的检测方法.【期刊名称】《发光学报》【年(卷),期】2018(039)003【总页数】6页(P343-348)【关键词】巴条;偏振度;封装应力;偏振等效应力【作者】张哲铭;薄报学;张晓磊;顾华欣;刘力宁;徐雨萌;乔忠良;高欣【作者单位】长春理工大学,高功率半导体激光国家重点实验室,吉林长春 130022;长春理工大学,高功率半导体激光国家重点实验室,吉林长春 130022;长春理工大学,高功率半导体激光国家重点实验室,吉林长春 130022;长春理工大学,高功率半导体激光国家重点实验室,吉林长春 130022;长春理工大学,高功率半导体激光国家重点实验室,吉林长春 130022;长春理工大学,高功率半导体激光国家重点实验室,吉林长春 130022;长春理工大学,高功率半导体激光国家重点实验室,吉林长春 130022;长春理工大学,高功率半导体激光国家重点实验室,吉林长春 130022【正文语种】中文【中图分类】TN248.41 引言随着大功率半导体激光器的芯片加工与封装技术的快速发展,其应用范围也日趋广泛,进而对大功率半导体激光器的可靠性要求日渐提高。
7-3 半导体激光器封装PPT课件
![7-3 半导体激光器封装PPT课件](https://img.taocdn.com/s3/m/7e35d4fcbd64783e08122b69.png)
阵列器件热沉的分类
无源热沉(passive heatsinks) :
有源热沉(active heatsinks):
无源热沉的热结构
2t 0
t 0 (y=0,y=b); t=0 (z=c)
y
t 0
x
t q[H (e y)H (d x)]
整体结构简单、理想化的情况。
求解方法—数值解法
数值解法: 利用有限个离散点值的集合表征物理场 (量)的连续变化情况。
适用领域: 外形结构比较复杂、很难获得解析解的情 况下。
热阻概念的引入
热量的传递同自然界中的其它转移过程, 如电量的转移、质量的转移有着共同的规 律,可归结为: 过程中的转移量 = 过程中的动力/过程中 的阻力
nd
e
2 n c a
n z
J(x z)
a
e a
2nc
2qgasin nd a
e
n a
z
cos
n
x
2nc
a
n 1
bn2
2
1
e
a
bn2
2
1
e
a
计算结果
I
t
t
热沉尺寸:
25 257.5mm3 热流密度: 4 106W/m2 λ=398W/m﹒K
Cu heat sink
PL wavelength (nm) PL wavelength (nm)
847
mounted on Cu heatsink
846
847
Mounted on expansion-matched heatsink
846
半导体激光器封装技术及封装形式
![半导体激光器封装技术及封装形式](https://img.taocdn.com/s3/m/7c773a13e45c3b3567ec8b77.png)
半导体激光器封装技术及封装形式半导体激光器的概念半导体激光器是用半导体材料作为工作物质的激光器,由于物质结构上的差异,不同种类产生激光的具体过程比较特殊。
常用工作物质有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。
激励方式有电注入、电子束激励和光泵浦三种形式。
半导体激光器件,可分为同质结、单异质结、双异质结等几种。
同质结激光器和单异质结激光器在室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。
半导体激光器的工作原理半导体激光器是依靠注入载流子工作的,发射激光必须具备三个基本条件:(1)要产生足够的粒子数反转分布,即高能态粒子数足够的大于处于低能态的粒子数;(2)有一个合适的谐振腔能够起到反馈作用,使受激辐射光子增生,从而产生激光震荡;(3)要满足一定的阀值条件,以使光子增益等于或大于光子的损耗。
半导体激光器工作原理是激励方式,利用半导体物质(即利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈,产生光的辐射放大,输出激光。
半导体激光器优点:体积小、重量轻、运转可靠、耗电少、效率高等。
半导体激光器的封装技术一般情况下,半导体激光器的发光波长随温度变化为0.2-0.3nm/℃,光谱宽度随之增加,影响颜色鲜艳度。
另外,当正向电流流经pn结,发热性损耗使结区产生温升,在室温附近,温度每升高1℃,半导体激光器的发光强度会相应地减少1%左右,封装散热;时保持色纯度与发光强度非常重要,以往多采用减少其驱动电流的办法,降低结温,多数半导体激光器的驱动电流限制在20mA左右。
但是,半导体激光器的光输出会随电流的增大而增加,很多功率型半导体激光器的驱动电流可以达到70mA、100mA甚至1A级,需要改进封装结构,全新的半导体激光器封装设计理念和低热阻封装结构及技术,改善热特性。
例如,采用大面积芯片倒装结构,选用导。
大功率半导体激光器合束技术及应用研究
![大功率半导体激光器合束技术及应用研究](https://img.taocdn.com/s3/m/11dde895a48da0116c175f0e7cd184254a351b10.png)
大功率半导体激光束组合技术及其应用研究1.本文概述随着现代技术的发展,大功率半导体激光器在工业加工、医疗、通信等领域显示出巨大的潜力。
单个半导体激光器的输出功率往往难以满足这些领域的需求。
为此,出现了激光束组合技术,该技术将多个激光器的输出组合以实现更高功率的激光输出。
本文主要对大功率半导体激光器的合束技术进行了深入的研究和探索,分析了各种合束技术的原理、特点和应用场景,并对这些技术的未来发展进行了展望。
通过本研究,旨在为大功率半导体激光器的应用提供理论支持和实践指导,促进相关领域的技术进步。
2.半导体激光器的基本理论半导体激光器作为一种重要的光电子器件,其基本理论主要基于固态物理和量子力学。
半导体材料中的电子在受到光和电等外部刺激时会从低能级转变为高能级,形成非平衡电荷载流子。
当这些非平衡载流子通过辐射重新组合并返回到较低的能级时,它们会释放光子,产生激光。
半导体激光器的核心结构包括PN结,其中P型和N型半导体通过扩散形成PN结。
在PN结中,电子和空穴复合并释放能量。
当这种能量以光的形式释放时,就会形成激光。
激光的产生需要三个基本条件:粒子数反转、增益大于损耗和谐振腔的反馈效应。
粒子反转是指在较高能级上的粒子比在较低能级上的多的现象,这是产生激光的先决条件。
大于损耗的增益确保了光在谐振腔中的连续放大。
谐振腔的反馈效应使光在腔内多次反射和放大,最终形成高强度的激光输出。
半导体激光器的波长取决于其活性材料的能带结构。
通过选择不同的半导体材料或调整其组成,可以实现不同波长的激光输出。
通过改变谐振腔的结构和尺寸,还可以控制激光器的波长和输出特性。
在实际应用中,半导体激光器具有体积小、重量轻、效率高、可靠性好的优点,已广泛应用于通信、工业加工、医疗等领域。
随着技术的进步,半导体激光器将在更多的领域发挥重要作用。
3.激光光束组合技术原理高功率半导体激光束组合技术是将多个激光器的输出组合成一个高功率激光输出的技术。
半导体激光to封装
![半导体激光to封装](https://img.taocdn.com/s3/m/3959c2cdd5d8d15abe23482fb4daa58da0111cf9.png)
半导体激光to封装
半导体激光器封装是将半导体激光器芯片封装在适当的外壳中,以保护器件、
提高稳定性和可靠性、便于集成和应用的过程。
半导体激光器是一种将电能转化为光能的器件,具有高效、小尺寸、低功耗、快速调制等特点,广泛应用于通信、医疗、工业加工等领域。
半导体激光器封装的过程主要包括芯片粘合、金线焊接、外壳封装等步骤。
首先,将半导体激光器芯片通过粘合剂固定在封装底座上,确保芯片与底座之间的良好热接触,以便散热。
接着,利用金线焊接技术将芯片与封装底座之间的电连接起来,保证器件正常工作所需的电气信号传输。
最后,将整个器件封装在外壳中,通常采用金属、塑料等材料制成,以保护器件免受外界环境的影响。
半导体激光器封装的关键技术包括封装材料的选择、封装工艺的优化、封装结
构的设计等方面。
封装材料的选择应考虑到材料的导热性能、光学透过性、尺寸稳定性等因素,以确保器件工作的稳定性和可靠性。
封装工艺的优化包括粘合、焊接、封装的工艺参数控制,以确保器件封装过程中的质量和稳定性。
封装结构的设计应考虑到器件的散热、光学性能、尺寸匹配等因素,以满足器件的实际应用需求。
半导体激光器封装的发展趋势是向着封装尺寸更小、性能更稳定、集成度更高
的方向发展。
随着半导体激光器在通信、医疗、工业等领域的广泛应用,封装技术的不断创新和进步将为半导体激光器的性能提升和应用拓展提供重要支持。
因此,半导体激光器封装技术的研究和发展具有重要的意义,将进一步推动半导体激光器的发展和应用。
关于影响半导体激光器封装后焦距因素的分析
![关于影响半导体激光器封装后焦距因素的分析](https://img.taocdn.com/s3/m/2cbda94a77c66137ee06eff9aef8941ea76e4bc2.png)
关于影响半导体激光器封装后焦距因素的分析翟 建 申 闯 刘世凯 陈立红*(河北杰微科技有限公司)摘 要:基于半导体激光器(LD )的TO56封装方式,LD芯片共晶位置及同轴封装结构的差异,会对封装后激光器产品的焦距产生影响。
为了研究LD芯片共晶、封装参数对焦距的影响,本文重点分析了影响TO56激光器产品焦距的因素,并得出结论:提升LD芯片烧结刻度及封装同轴的精度,选取合适高度、透镜大小和折射率的管帽可以提高产品封装后焦距稳定性。
关键词:TO56,激光器,焦距,共晶参数,封装参数Analysis of Factors Affecting Focal Length of Semiconductor Laser afterPackagingZHAI Jian SHEN Chuang LIU Shi-kai CHEN Li-hong *(Hebei Jiewei Technology Co., Ltd.)Abstract: Based on the semiconductor laser (LD) TO56 packaging mode, the laser product focal length changes after packaging due to the influence of the eutectic position of LD chip and the coaxial packaging structure. In order to study the influence of LD chip eutectic and package parameters on focal length, this paper focuses on analyzing the factors affecting the focal length of TO56 laser products, and draw the conclusion: increasing the precision of LD chip sintering scale and packaging coaxial, and selecting the appropriate height, lens size and refractive index of the tube cap can improve the focal length stability of products after packaging.Keywords: TO56, laser, focal length, eutectic parameters, packaging parameters作者简介:翟建,初级工程师,本科,现任河北杰微科技有限公司工艺工程师,主要从事光通信器件封装研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体激光器的结构要求
? 机械稳定性; ? 电连接; ? 散热问题;
以每个发光单元2W,有源区尺寸 1um ×100um 计算,体发热密度 2×1010W/m3。 以50%电光转换效率计算,一个典型的中等功率 50W/bar ,腔长为1mm , 热流密度为500W/cm 2,电流密度1000A/cm 2
热量传递的基本方式
? 导热:物体各部分之间不发生相对位移 时依靠微观粒子热运动而产生的 热量传递。
? 对流:由于流体之间相对位移、冷热流 体相互掺混引起的热量传递。
? 热辐射:通过电磁波来传递能量的方式 称为辐射
几个基本公式
? 傅立叶定律(热传导) q= -λ(dt/dx) λ:热导率
? 牛顿冷却公式(对流散热) q=hΔt h: 表面传热系数
半导体激光单元器件
依靠自然对流散热,热阻较高,热 阻约为5K/W左右
阵列器件热沉的分类
? 无源热沉(passive heatsinks) :
? 有源热沉(active heatsinks):
无源热沉的热结构
? 2t ? 0
??t ? 0
?y
(y=0,y=b); t=0 (z=c)
??t ? 0
不同脉宽情况下的热效应
低占空比硬脉冲工作状态
AuSn焊料的特点
? 高温、高电流密度条件下稳定性好; ? 激光bar 结温可允许达80 ℃; ? 寿命高达3-4万小时; ? 工业用低占空比完全调制硬脉冲条件下寿命
与普通工作状态寿命差别不大。
AuSn焊料的使用
新一代CTE热沉材料
Bar 内应力分布
? 电学中这种规律性就是欧姆定律: ? 传热学中此规律演变为:
I?U R
? ? ?t R
半导体激光器的热阻
? ? ?t R
? Φ为有源区产生的热量: Φ=IV-Popt ? △t 是有源区与冷却介质之间的温度差 ? R为有源区与冷却介质之间的热阻,单位K/W
降低有源区到冷却介质之间的热阻是 半导体激光热控制的核心。
?
? b ? ?e
?
? 2?m?? ?c ?
?? m?? ?b
?z
??
?? ?
? ??cos
?
???
m?? b
?? ? ?y ?????
m ? 1 ?? ??
? ?a ?m2?? 2??? 1 ? e
0
2000
4000
6000
8000
Lateral position (μ m)
10000
半导体激光器的热特性
? 阈值电流随有源区温度的指数增长; ? 电光转换效率随有源区温度的指数下降; ? 有源区温度增加器件寿命下降; ? 腔面温度升高非辐射复合导致COD问题。
有源区温度控制大功率半导体激光器应用的 核心问题。
T (z) ?? ? q ?d ?g ?z ? q ?d ?g ?c
? ?a?b
? ?a?b
?
? R (y ?z) ??
???? ??
? 2?q ?d ?b ?sin
??
m?? ?g
???e
?
2?m?? ?c b
m?? ?z
??
?b?
?e b ?
??
?
? 2?m?? ?c ?
2?q ?d ?b ?sin ?? m?? ?g ??
bar facet
Cu heat sink
847
wavelength(nm)
846
PL
845 0
mounted on Cu heatsink
2000
4000
6000
Lateral position (μ m)
8000
10000
847ቤተ መጻሕፍቲ ባይዱ
wavelength(nm)
846
PL
845
Mounted on expansion-matched heatsink
? 斯泰藩-波尔兹曼定律(热辐射) q=ξA(T1- T2)
固体中的热传导
? 核心:目标物体温度场函数t(x.y.z)的 确定。
稳态无内热源情况下的Laplace 方程
求解方法—解析函数法
? 解析函数法: 利用合理的数学语言把实际工况变换成导
热微分方程,然后利用数学物理方法解之,得 到温度场函数。 ? 适用领域:
Bar 焊接的“Smile”效应
Bar 封装时的应力特性
? 由于bar 的GaAs衬底的热膨胀系数与热沉热膨胀 系数不一致引入应力。
半导体激光器的工作状态
? 按电流的持续时间分: 1、连续( CW) 2、准连续( QCW) 3、脉冲( pulse)
? 按电流的变化程度分: 1、连续( CW) 2、软脉冲( Soft pulse ) 3、硬脉冲( Hard pulse )
?x
? ?t ? ? q[ H (e ? y)H (d ? x)]
?z
(z=0)
(x=0,x=a)
H
(?
)
?
?1
? ?
0
??0 ??0
计算结果
利用傅立叶变换法求解以上方程组得到温度场t(x,y,z):
t ( x, y, z) ? T ( z) ? R( y, z) ? J ( x, z) ? I ( x, y, z)
典型的封装形式
? Bar p 面朝下焊接到热沉上,热沉充当正极; ? 热沉根据散热量不同分为有源、无源热沉; ? N面电连接采用 Cu箔或金丝引线。
上电极 下电极
电流方向 发光方向
热散出方向
Bar焊接焊料的选择
? 软焊料 纯In材料具有非常好的延展性,抗疲劳性以及抗
裂纹传播率 .适用于CTE与GaAs 差别较大的热沉材料 与激光bar 之间的焊接,例如: CVD金刚石、无氧铜 和AlN 等材料。 ? 硬焊料
AuSn 合金为激光 bar 焊接的首选硬焊料 。适用于 热沉材料热膨胀系数 (CTE)与GaAs 差别非常小的情 况,例如: BeO热沉和CuW合金热沉。
In 焊料的缺点
? 极限寿命为104小时左右; ? 光束质量随工作时间增加而降低(In蠕变加剧Smile 效应); ? 不利于更高功率工作(连续输出功率<120W/bar ); ? 工业用低占空比完全调制硬脉冲条件下工作寿命几百小时; ? 控制激光bar 结温≤55℃。
整体结构简单、理想化的情况。
求解方法—数值解法
? 数值解法: 利用有限个离散点值的集合表征物理场(量)的 连续变化情况。
? 适用领域: 外形结构比较复杂、很难获得解析解的情况下。
热阻概念的引入
? 热量的传递同自然界中的其它转移过程,如电量 的转移、质量的转移有着共同的规律,可归结为 :
过程中的转移量 = 过程中的动力/过程中的阻力