stata入门常用命令
零基础小白STATA数据分析实用常见命令整理
![零基础小白STATA数据分析实用常见命令整理](https://img.taocdn.com/s3/m/c58195e71ed9ad51f11df23c.png)
STATA基础入门零基础实用命令整理第一章数据的读入与熟悉1.读入文件中的部分变量. use[变量] using [文件名]Eg . use age sex height weight using [文件名]2.读入文件中的部分观察量. use[文件名] in X/Y. use "I:\stata\chapter3.dta" in 601/1000软件只读入从第601个观察到第1000个观察之间的400个观察量3.描述、管理数据的基本命令命令功能. describe描述数据的基本情况:样本总量、变量总数、变量的格式等. list. list [变量名]-列出数据中所有变量的分布,从第一个样本到最后一个样本-列出选定变量的分布. list [变量名] in X/Y 列出数据中被选定的变量分布。
in限定数据的观察值范围。
比如,若只想查看第100个-200个观察值的分布,则将X/Y替换成100/200. order [变量名]按选定变量排序。
比如,样本的编号、年龄、性别、教育程度,……,等. aorder 将所有变量从 a-z 排序. label variable给变量贴上标签命令功能. sort [变量名] -将某个变量的数值进行排序。
一般情况下,排序的方式是从小到大-可同时排序多个变量-Stata将缺失值描述为最大数值,故排列在最后. sort [变量名] [in] 对某些变量的某个取值范围进行排序;没有指定的取值范围保持在原地方. gsort [+|-][变量名] -可从小到大和从大到小-若变量名前没有任何符号或加上+号,则按升序排列;若在变量名前加上-号,则按降序排列-变量可以是数值型、也可以是字符型. gsort [+|-][变量名] ,mfirst -mfirst指定将缺失值置于所有有效数值之前. gsort -age第二章变量的生成与处理1.离散和连续测量离散方式(discrete measure):由定性测量和定序测量组成;适用于低层次数据连续方式(continuous measure):由定距测量和定比测量组成。
Stata常用命令
![Stata常用命令](https://img.taocdn.com/s3/m/a0d931b405087632311212ed.png)
Stata常用命令大学期间觉得学的最有用的软件之一就是stata了,对stata基本是在血和泪的尝试中爬过,到了最后基本属于只要stata不出现红字错误命令就开心得不得了。
顺便整理一下常用的stata命令如下,应该对付计量方向第一学期的入门问题不大(求stata大神不虐..),所以就只写了一部分常用的,有时间后面再补充吧。
主要就是分为基本操作和回归统计两部分:1、基本操作import/use/insheet/merge:基本常用的导入文件就是这四个了,建议直接从stata的menu菜单中导入,导入xlsx和csv这种常见的格式时还有一些备用选项可以自己体验一下(比如string和把第一行视为变量名之类)。
merge需要单独说一下,因为是将两个数据库合并为一个,原理也比较简单,两个数据库中根据一些相同的变量把其他数据“加”到原来的数据库中,也是建议直接菜单操作,不要用命令。
在Data的Combine datasets的merge two datasets中,分为1:1、m:1、1:m各种形式,基本用两次就差不多能搞懂。
help:一定第一个学的是这个!啥不会就help一下,不知道函数了就help function,不知道回归细节就help regress,多读help文件!gen/egen:最常用的建立函数的命令,这两个不同之处在于gen一般是初等函数,egen的函数会复杂一些。
常用的函数包括数学函数和其他函数,比如count/tag之类,建议直接到菜单里Data下Create data的create new variable或create new variable(extended)直接生成函数,会方便的多。
mean/abs/sqrt/max/min/sum/sd:常用数学函数,分别是求均值、绝对值、方根、最大最小、求和、方差用的。
keep if/drop if:这两个也是最常用的,在数据需要进行筛选的时候,两个命令的区别也很明显,keep是留下哪些,drop是去掉哪些。
STATA入门命令归纳
![STATA入门命令归纳](https://img.taocdn.com/s3/m/336c7078a98271fe910ef972.png)
STATA入门命令归纳stata作为一款短小而精悍的统计分析软件,深受广大使用者喜爱。
本文就平时所学的一些小技巧,常用命令进行归纳总结,并必要时附一定例子,力求简洁明白易操作。
1.reg y x1 x2predict xxx 返回先前回归中因变量的拟合值,xxx随意变量名。
predict newvar, stdp 预测拟合值的标准差predict aaa,re 返回先前回归中因变量的残差,aaa为随意变量名。
predict newvar, stdr 预测残差的标准差test x1 检验变量x1的显著性,返回当X1系数为零时的F值,F值为回归报告中t值平方。
test x1=x2 检验x1 x2变量的系数是否相等。
test x1*a=x2*b a,b为任意常数,检验变量x1与x2是否存在某种线性关系。
2.tab x1,gen(x1) 产生x1的虚拟变量。
gen fsize1=fize==1 产生虚拟变量,如果family size为1,则令fsize1=1,否则为零。
下同。
gen fsize2=fsize==2gen fsize3=fsize==3gen fsize4=fsize==4gen fsize5=fsize>=53.reg y x1 x2 x3,level(99) 返回回归报告中99%的置信区间。
set level 97 在以后的回归中都默认返回97的置信区间。
reg y x1 x2 x3,noconstant 无常数回归。
4.display fprob(q, n-k-1, F 返回值为F,分子自由度为q,分母自由度为n-k-1的p值di tprob(n-k-1,t) 返回值为t,自由度为n-k-1的p值5.stata中缺失值为无穷大值。
reg bwght cigs parity faminc if fatheduc<. & motheduc<.6.标准化变量egen stdprice=std(price)/可以添加语句:egenstdprice=std(price),mean(0)std(0)/reg y x1 x2 x3,beta7. 将回归结果输入到test.docreg bwght cigs famincoutreg2 using test.doc, nolabel replacereg bwghtlbs cigs famincoutreg2 using test.doc, nolabel appendreg bwght packs famincoutreg2 using test.doc, nolabel append8.逻辑表达式:缺失值用“.”表示关系运算符:==,!=(不等于),~=(约等于),>,<,<=,>=逻辑运算符:&(与),|(或),~(非)9.对现有变量重新赋值replace oldvar =exp [if] [in] [, nopromote]10.describe:报告样本容量、变量个数、变量名称等11.sort x1 x2 依次按升序排列gsort -x1 按x1降序排列12.excle转为stata时日期变量的处理gen date(或任一新变量名)=date(‘原变量名’,‘YMD’/'DMY'/..) form date %td12. 删掉重复记录duplicates drop13.独立样本均值差异检验ttest。
stata常用命令
![stata常用命令](https://img.taocdn.com/s3/m/b178622dfd4ffe4733687e21af45b307e871f917.png)
stata常用命令1. 生成变量1.1 gen生成新变量,可以是常数或基于其他变量的一般表达式。
1.2 replace替换已有变量的值。
生成专门函数如总和、均值、标准差等。
2. 数据子集保留指定的变量。
2.2 drop2.3 in子集数据只保留某些被满足条件的观察值。
更加灵活地较大判断条件。
3. 重塑数据3.1 wide将数据在垂直方向与一个变量进行“展开”(unstack)。
4. 数据合并将两个数据集根据一些共同变量进行合并。
5. 数据排序5.1 sort按顺序排列观测值。
5.2 by指定一组变量作为分类变量,然后对该变量使用stata命令。
6. 描述性统计和图形6.1 summarize描述数据集的基本信息。
6.2 tabulate生成列联表。
绘制直方图。
生成散点图。
6.5 twoway可用于绘制多元图形,包括线图、条形图、密度图等。
7. 频数用于表格中简单查看可以因为比较大的变量。
8. 回归分析8.1 regress线性回归分析。
8.2 logistic8.3 probit生成probit模型。
9. 时间序列9.1 tsset使用stata处理时间序列数据的第一步是指定数据集变量中的时间序列。
生成时间序列图。
10. 面板数据使Stata处理面板数据。
10.2 xtreg生成固定效应模型或随机效应模型。
11. 模型诊断使用模型生成新的预测值。
测试线性组合的系数的显著性。
12. 元分析进行元分析。
13. 子样本13.1 markin创建一个新文件并标记子样本。
标记子样本中的索引值。
以上就是stata常用命令,当然并不是所有的命令都一一列举,在实践用stata的经验中可以去发掘能否有更好的命令来使用。
Stata常用15条命令
![Stata常用15条命令](https://img.taocdn.com/s3/m/38da598bf12d2af90242e6af.png)
【命令1】:导入数据一般做实证分析使用的是excel中的数据,其后缀名为.xls,需要将其修改为.csvinsheet using name.csv, clear【命令2】:删除重复变量sort var1 var2duplicatesdrop var1 var2, force【命令3】:合并数据use data1, clearmerge m:m var1 var2 using data2drop if _merge==2drop if _merge==1drop _merge【命令4】:描述性统计分析tabstat var1var2, stat(n min mean median p25 p75 maxsd), if groupvar==0 or 1输出到word中:logout, save(name) word replace: tabstat var, stat(n min mean p50 max sd) col(stat)f(%9.2g)【命令5】:结果输出安装ssc install estout, replace单个回归reg y xesttab using name.rtf, compress nogap r2 ar2 star(* 0.1 ** 0.05 *** 0.01)多个回归一起reg y x1est store m1reg y x2est store m2esttab m1 m2 using name.rtf, compress nogap r2 ar2 star(* 0.1 ** 0.05 *** 0.01)【命令6】生成虚拟变量tab year, gen(year)tab industry, gen(industry)【命令7】数据缩尾处理findit winsor2之后安装winsor2 varname, replace cut(1 99)【命令8】异方差检验怀特检验ssc install whitetstreg y x1 x2estat imtest, white处理:“OLS+稳健标准差”reg y x1 x2 x3, robust【命令9】 DW检验gen id=_ntsset idestat dwatson【命令10】计算两个日期之间的间隔天数gen td=date(trading_date,'YMD')gen ed=date(eventdate,'YMD')form td ed %tdgen d=ed-td【命令11 】生成滞后、差分数据tsset code yeargen newvarname=l.varnamegen newvarname=d.varname【命令12】多重共线检验之方差膨胀因子reg y x1 x2 x3vif【命令13】多重共线修正之逐步回归stepwise, pe(0.1): reg y x【命令14】检验是否遗漏高次项reg y xestat ovtest或者estat ovtest, rhs【命令15】样本检验两样本均值T检验ttest var, by(groupvar)两样本中位数Z检验ranksum var, by(groupvar)。
stata基础命令
![stata基础命令](https://img.taocdn.com/s3/m/31bf7cf888eb172ded630b1c59eef8c75fbf9584.png)
stata基础命令Stata基础命令Stata是一种功能强大的统计分析软件,广泛应用于学术研究和商业分析领域。
本文将介绍Stata的一些基础命令,帮助读者快速掌握Stata的使用方法。
1. 数据导入与查看命令在Stata中,可以使用"import"命令将外部数据导入到Stata的工作环境中。
例如,可以使用"import excel"命令导入Excel表格中的数据,或使用"import delimited"命令导入以逗号分隔的文本文件。
导入数据后,可以使用"browse"命令查看数据集的内容,或使用"describe"命令查看数据集的结构信息。
2. 数据清洗与变量处理命令在进行数据分析之前,通常需要对数据进行清洗和变量处理。
Stata 提供了一系列命令来完成这些任务。
例如,可以使用"drop"命令删除不需要的变量或观察值,使用"rename"命令修改变量名,使用"generate"命令创建新的变量,使用"recode"命令对变量进行重新编码等。
3. 描述性统计与绘图命令Stata提供了各种命令来计算和展示数据的描述性统计信息。
例如,可以使用"summarize"命令计算变量的均值、标准差和分位数等统计量,使用"tabulate"命令生成变量的频数表,使用"histogram"命令绘制变量的直方图,使用"scatter"命令绘制两个变量的散点图等。
4. 统计模型与假设检验命令在Stata中,可以使用各种命令来拟合统计模型和进行假设检验。
例如,可以使用"regress"命令拟合线性回归模型,使用"logit"命令拟合二元Logistic回归模型,使用"anova"命令进行方差分析,使用"ttest"命令进行两样本t检验等。
stata 常用命令
![stata 常用命令](https://img.taocdn.com/s3/m/967ae175effdc8d376eeaeaad1f34693daef10ce.png)
stata 常用命令Stata是一个流行的统计分析软件,广泛应用于各个领域的数据分析和研究。
它提供了丰富的命令和功能,可帮助用户处理、分析和可视化数据。
在本文中,我将向您介绍一些常用的Stata命令,以及它们在数据分析中的应用。
1. 数据导入与导出在使用Stata进行数据分析之前,我们需要将数据导入软件环境中。
Stata支持多种数据格式,如Excel、CSV、SPSS等。
对于Excel数据,我们可以使用命令"import excel"将数据导入到Stata中;对于CSV数据,可以使用"import delimited"命令。
Stata还提供了"export"命令,可将分析结果导出为Excel、CSV等格式,便于与其他软件进行交互。
2. 数据清洗与处理在数据分析过程中,数据清洗是一个重要的步骤。
Stata提供了一系列命令来处理和净化数据。
"drop"命令可以删除数据集中的变量或观察值;"replace"命令用于修改变量的取值;"gen"命令可以创建新的变量等。
"merge"命令可用于合并不同数据集,"sort"命令可用于排序数据等。
3. 描述性统计分析Stata提供了简单而强大的描述性统计分析命令,帮助用户了解数据的基本特征。
"summarize"命令可用于计算变量的均值、标准差等统计量;"tabulate"命令可用于制作交叉分类表;"histogram"命令可绘制变量的直方图等。
这些命令使我们能够更好地理解数据的分布和特征。
4. 统计模型估计Stata是一个强大的统计软件,支持各种常见的统计模型估计。
"regress"命令可用于进行线性回归分析;"logit"命令可用于二元逻辑回归分析;"heckman"命令可用于处理选择模型等。
Stata常用15条命令
![Stata常用15条命令](https://img.taocdn.com/s3/m/357c602378563c1ec5da50e2524de518964bd3a0.png)
Stata常用15条命令【命令1】:导入数据一般做实证分析使用的是excel中的数据,其后缀名为.xls,需要将其修改为.csvinsheet using name.csv, clear【命令2】:删除重复变量sort var1 var2duplicatesdrop var1 var2, force【命令3】:合并数据use data1, clearmerge m:m var1 var2 using data2drop if _merge==2drop if _merge==1drop _merge【命令4】:描述性统计分析tabstat var1var2, stat(n min mean median p25 p75 maxsd), if groupvar==0 or 1输出到word中:logout, save(name) word replace: tabstat var, stat(n min mean p50 max sd) col(stat)f(%9.2g)【命令5】:结果输出安装ssc install estout, replace单个回归reg y xesttab using name.rtf, compress nogap r2 ar2 star(* 0.1 ** 0.05 *** 0.01)多个回归一起reg y x1est store m1reg y x2est store m2esttab m1 m2 using name.rtf, compress nogap r2 ar2 star(* 0.1 ** 0.05 *** 0.01)【命令6】生成虚拟变量tab year, gen(year)tab industry, gen(industry)【命令7】数据缩尾处理findit winsor2之后安装winsor2 varname, replace cut(1 99)【命令8】异方差检验怀特检验ssc install whitetstreg y x1 x2estat imtest, white处理:“OLS+稳健标准差”reg y x1 x2 x3, robust【命令9】 DW检验gen id=_ntsset idestat dwatson【命令10】计算两个日期之间的间隔天数gen td=date(trading_date,'YMD')gen ed=date(eventdate,'YMD')form td ed %tdgen d=ed-td【命令11 】生成滞后、差分数据tsset code yeargen newvarname=l.varnamegen newvarname=d.varname【命令12】多重共线检验之方差膨胀因子reg y x1 x2 x3vif【命令13】多重共线修正之逐步回归stepwise, pe(0.1): reg y x 【命令14】检验是否遗漏高次项reg y xestat ovtest或者estat ovtest, rhs【命令15】样本检验两样本均值T检验ttest var, by(groupvar)两样本中位数Z检验ranksum var, by(groupvar)。
stata入门常用命令
![stata入门常用命令](https://img.taocdn.com/s3/m/eab32e30b6360b4c2e3f5727a5e9856a56122627.png)
stata入门常用命令
Stata是一款广泛应用于数据分析、统计建模和数据可视化的软件,它具有操作简单、图形化界面、支持多种数据格式等优点,因此备受研究者和学者的青睐。
下面是一些Stata入门常用命令的介绍: 1. 数据读取命令:insheet, infile
insheet命令可以读取Excel表格中的数据,并将其导入Stata,infile命令可以读取纯文本文件中的数据。
2. 数据清理命令:drop, rename, recode, generate
drop命令可以用于删除不需要的变量和观测,rename命令可以修改变量的名称,recode命令可以将变量的取值进行重新编码,generate命令可以生成新的变量。
3. 描述性统计命令:summarize, tabulate, graph
summarize命令可以输出变量的基本统计量,如均值、中位数、标准差等,tabulate命令可以制作交叉表格,graph命令可以制作各种图形,如直方图、散点图等。
4. 回归分析命令:regress, logistic, probit
regress命令可以进行线性回归分析,logistic命令可以进行二元Logistic回归分析,probit命令可以进行二元Probit回归分析。
5. 面板数据分析命令:xtreg, xtlogit, xtpoisson
xtreg命令可以进行面板数据的线性回归分析,xtlogit命令可以进行面板数据的二元Logistic回归分析,xtpoisson命令可以进行面板数据的Poisson回归分析。
以上是一些Stata入门常用命令的介绍,这些命令可以帮助研究者和学者进行数据分析、统计建模和数据可视化等工作。
stata常用命令资料
![stata常用命令资料](https://img.taocdn.com/s3/m/6c91f59851e2524de518964bcf84b9d528ea2c80.png)
stata常用命令资料Stata是一种广泛使用的统计分析软件,它提供了丰富的数据处理、统计计算和图形绘制功能。
下面是一些常用的Stata命令及其用法,以帮助您更好地使用Stata进行数据分析。
1. 数据导入与导出- `import excel:从Excel文件中导入数据。
- `import delimited:从文本文件中导入数据。
- `save:保存当前数据集。
- `use:加载已保存的数据集。
- `export excel:将数据导出到Excel文件。
2. 数据处理与清洗- `drop:删除变量或观察。
- `keep:保留指定变量或观察。
- `rename:重命名变量。
- `egen:生成新变量,如求和、平均值等。
- `egen group:按照指定的变量进行分组。
3. 描述统计- `summarize:计算变量的描述统计量,如均值、标准差等。
- `tabulate:制表统计,用于计算分类变量的频数和百分比。
- `histogram:绘制直方图。
- `correlate:计算变量之间的相关系数。
- `egen:生成新的汇总统计量,如总和、均值等。
4. 统计模型- `regress:线性回归分析。
- `logit:二项逻辑回归分析。
- `probit:概率回归模型。
- `ttest:单样本或双样本t检验。
- `anova:方差分析。
5. 数据可视化- `scatter:绘制散点图。
- `line:绘制折线图。
- `bar:绘制柱状图。
- `histogram:绘制直方图。
- `graph combine:将多个图形合并为一个图形。
6. 数据管理- `sort:对数据进行排序。
- `merge:合并两个数据集。
- `reshape:改变数据集的结构。
- `append:将多个数据集追加到一个数据集中。
- `collapse:将数据按照指定的变量进行折叠。
7. 循环与条件语句- `foreach:循环变量的值。
Stata常用命令100条
![Stata常用命令100条](https://img.taocdn.com/s3/m/b2e0b230e3bd960590c69ec3d5bbfd0a7956d57b.png)
Stata常用命令100条数据管理设置工作路径:cd导入间隔符为制表符或逗号等格式的文本文件:insheet 导入固定列格式的文件:infix导入自由格式的文本文件:infile导入XML格式文件:xmluse更改变量的存储格式:recast建立新变量:generate或egen重命名变量rename变量排序:order删除变量或观测值:drop生成分类变量:recode字符串与数值变量间转换:destring或encode升序或降序排列:gsort升序排列:sort检查数据是否存在重复观测值:isid报告、标记或删除重复观测值:duplicates长数据与宽数据间转换:reshape生成变量的统计指标数据:collapse横向合并数据:merge纵向添加数据:append根据组内配对合并变量:joinby标量:scalar随机抽样:sample有放回的抽样:bsample从多元正态分布随机变量中抽样:drawnorm 生成特定相关结构的变量:corr2data统计制图直方图:histogram一般绘图命令:graph或twoway对称图:symplot分位数图:quantile正态分布分位数图:qmormQQ分位数图:qqplot标准化正态概率图:pnorm卡方概率图:pchi37条外部命令:传送门描述统计数据概要描述:summarize或describe生成汇总统计表:tabstat或tabulate相关性:correlate或pwcorr假设检验t检验:ttest方差检验:sdtest比率检验:prtest二项概率检验:bitestK-S检验:ksmirnov符号检验:signtestWilcoxon符号秩检验:signrankWilcoxon秩和检验:ranksumKruskal-Wallis:H检验:kwallis方差分析方差分析:anova单因素方差分析:oneway多元统计分析主成分分析:pca主成分散点图:loadingplot因子分析:factor因子旋转:rotate模型适切度检验:estat smc及estat anti及estat kmo 计算主成分得分或因子得分:predict碎石图:screeplot聚类分析:cluster典型相关分析:canon回归分析OLS线性回归:regress受约束的线性回归:cnsreg非线性最小二乘估计:nl多变量回归:mvreg似不相关回归:suregProbit回归:probitLogistic回归:logit定序probit模型:oprobit定序logit模型:ologit归并模型:cnregTobit模型:tobit多层线性模型:mixed泊松回归:poisson负二项回归:nbreg时间序列分析定义时间序列:tssetARIMA,ARMAX和其它动态回归模型:arima 自相关:ac偏自相关:pac预测:predict时间序列图:tsline蒙特卡罗模拟:simulateADF单位根检验:dfullerPP单位根检验pperronDF-GLS单位根检验:dfgls跨相关图:xcorr结构向量自回归模型:svar自回归条件异方差模型:arch门限回归:threg状态空间模型:sspace面板数据分析定义面板:xtset面板数据结构:xtdescribe面板OLS模型:xtreg面板GLS模型:xtgls面板GEE模型:xtgee面板probit模型:xtprobit面板logit模型:xtlogit差分GMM模型:xtabond系统GMM模型:xtdpdsysHausman检验:hausman似然比检验:lrtest空间计量从截面数据到空间面板:传送门。
stata基本命令
![stata基本命令](https://img.taocdn.com/s3/m/18ccab14182e453610661ed9ad51f01dc3815770.png)
stata基本命令
Stata是一种数据分析软件,常用于统计分析、经济学和社会科学研究中。
以下是一些Stata基本命令的解释:
1. use命令:用于打开数据文件,例如:“use data.dta”。
2. describe命令:用于查看数据文件的结构和变量信息,例如:“describe data”。
3. summarize命令:用于统计变量的描述性统计量(如均值、标准差、最大最小值等),例如:“summarize var1 var2”。
4. tabulate命令:用于制作交叉表和频数表,例如:“tabulate var1 var2”。
5. regress命令:用于进行回归分析,例如:“regress depvar indepvar”。
6. scatter命令:用于制作散点图,例如:“scatter depvar indepvar”。
7. histogram命令:用于制作直方图,例如:“histogram var”。
8. twoway命令:用于制作多种类型的图表,例如:“twoway scatter
depvar indepvar”。
9. merge命令:用于将两个数据文件按照某一变量合并,例如:“merge 1:1 var using data.dta”。
10. sort命令:用于对数据文件按照某一变量进行排序,例如:“sort var”。
以上是Stata基本命令的简单解释,使用这些命令可以进行数据的读取、处理和分析。
在实际应用中,还需要结合具体情况选择合适的命令进行使用。
stata常用命令总结
![stata常用命令总结](https://img.taocdn.com/s3/m/b4d9d72c0a4e767f5acfa1c7aa00b52acfc79c9e.png)
stata常用命令总结Stata是一种统计分析软件,常用于数据处理、数据分析和统计建模等领域。
以下是一些常用的Stata命令的总结:1. 数据加载与保存:- `use`:加载Stata数据文件。
- `import`:导入其他文件格式的数据。
- `save`:保存当前数据文件。
- `export`:将数据导出到其他文件格式。
2. 数据处理与变量操作:- `generate`:创建新变量。
- `replace`:替换变量值。
- `drop`:删除变量或观测。
- `rename`:重命名变量。
- `sort`:对数据进行排序。
- `merge`:合并数据集。
3. 描述性统计与数据分析:- `summarize`:计算变量的描述性统计量。
- `tabulate`:制表统计。
- `regress`:进行线性回归分析。
- `logit`:进行Logistic回归分析。
- `anova`:进行方差分析。
- `ttest`:进行双样本t检验。
4. 绘图与可视化:- `histogram`:绘制直方图。
- `scatter`:绘制散点图。
- `line`:绘制折线图。
- `boxplot`:绘制箱线图。
- `graph combine`:组合多个图形。
5. 循环与条件语句:- `forvalues`:进行循环操作。
- `if`:根据条件进行数据筛选。
- `foreach`:对变量进行循环操作。
这只是一些常用的Stata命令的总结,Stata还有很多其他强大的功能和命令。
你可以参考Stata官方文档或其他相关资源,深入了解更多命令和用法。
stata常用命令总结
![stata常用命令总结](https://img.taocdn.com/s3/m/8368505d2379168884868762caaedd3383c4b5a7.png)
stata常用命令总结Stata是一款广泛应用于数据分析与统计建模的统计软件,具有强大的功能和广泛的应用领域。
在Stata中,我们可以通过命令来完成数据的读取、整理、分析和可视化等任务。
本文将对一些常用的Stata命令进行总结和介绍,以援助读者更好地理解和应用Stata软件。
一、数据的读取与整理1. 读取数据文件:- use 文件名:读取已经存在的Stata数据文件。
- import delimited 文件名:读取以逗号、制表符或其他分隔符分隔的文本文件。
2. 显示数据:- describe:显示数据文件的基本信息,包括变量名、数据类型、有效观测数等。
- browse:以表格形式显示数据文件的部分观测值。
3. 数据整理:- generate 新变量名=计算公式:创建新的变量,并依据指定公式进行计算。
- egen 新变量名=计算函数:依据指定的计算函数对现有变量进行计算,并创建新的变量。
二、数据的统计分析与建模1. 描述性统计:- summarize 变量名:对指定变量进行描述性统计,包括均值、标准差、最小值、最大值等。
- tabulate 变量名:生成指定变量的频数表和百分比表。
2. 数据筛选与子集选择:- keep 若果条件:保留符合条件的观测值,删除不满足条件的观测值。
- drop 若果条件:删除符合条件的观测值,保留不满足条件的观测值。
- qui keep 若果条件:以无输出方式保留符合条件的观测值并生成新数据集。
- qui drop 若果条件:以无输出方式删除符合条件的观测值并生成新数据集。
3. 参数预估与假设检验:- regress 因变量自变量1 自变量2 ...:进行平凡最小二乘回归分析。
- ttest 变量名, by(分组变量):进行两组样本均值差异的t检验。
4. 数据可视化:- scatter 变量1 变量2:绘制散点图。
- histogram 变量名:绘制直方图。
- graph twoway line 变量1 变量2:绘制折线图。
stata 常用命令
![stata 常用命令](https://img.taocdn.com/s3/m/629a7811ae45b307e87101f69e3143323868f573.png)
stata 常用命令Stata是一款经济学和统计学分析软件,它拥有一个广泛的命令库,可用于数据分析、统计建模、可视化等。
在Stata中,我们可以使用很多命令来完成各种任务。
以下是一些常用的Stata命令:1. import 命令import 命令用于导入数据到Stata中。
我们可以使用 import 命令来导入各种文件格式,如 Excel、CSV、SPSS 等。
如果我们想要导入Excel 文件,我们可以使用以下命令:import excel "data.xlsx", sheet("Sheet1") firstrow clear该命令将导入 data.xlsx 文件中的 Sheet1 中的数据到 Stata 中。
指定的 firstrow 参数将告诉 Stata 该文件中的第一行是变量名,因此我们可以让 Stata 自动读取变量名称。
2. summarize 命令summarize 命令用于计算一个或多个变量的描述性统计量,如均值、标准差、最小/最大值等。
该命令的语法如下:summarize variable1 variable2 variable3…例如,要计算变量 x 的均值、标准差和最大值,我们可以使用以下命令:summarize x, detail3. sort 命令sort 命令用于按一个或多个变量对数据进行排序。
该命令的语法如下:sort variable1 variable2 variable3…例如,要按变量 x 排序数据集,我们可以使用以下命令:sort x4. tabulate 命令tabulate 命令用于计算一个或多个变量的频率分布表(也称为列联表)。
该命令的语法如下:tabulate varia ble1 [variable2] [variable3]…例如,要计算变量 x 和 y 的频率分布表,我们可以使用以下命令:tabulate x y5. regress 命令regress 命令用于估计回归模型。
STATA基本操作入门
![STATA基本操作入门](https://img.taocdn.com/s3/m/43770d5b11a6f524ccbff121dd36a32d7375c7b1.png)
STATA基本操作入门1.数据导入在STATA中,可以导入多种格式的数据文件,如Excel、CSV和文本文件。
最常用的命令是"import excel"和"import delimited"。
例如,要导入名为"data.xlsx"的Excel文件,可以使用以下命令:```import excel using "data.xlsx", sheet("Sheet1") firstrow clear```这里,"using"指定了文件路径和文件名,"sheet"指定了工作表名称(如果有多个工作表),"firstrow"表示第一行是变量名。
2.数据清洗在导入数据后,通常需要进行数据清洗,包括处理缺失值、异常值和重复值等。
STATA提供了一些常用的命令来处理这些问题。
- 缺失值处理:使用"drop"命令删除带有缺失值的观测值,使用"egen"命令创建新变量来表示缺失值。
- 异常值处理:可以使用描述性统计命令(如"summarize")来查找异常值,并使用"drop"命令删除异常值所对应的观测值。
- 重复值处理:使用"deduplicate"命令删除重复的观测值,或使用"egen"命令创建新变量来表示重复值。
3.变量操作在STATA中,可以对变量进行各种操作,如创建变量、重命名变量、计算变量和合并变量等。
- 创建变量:可以使用"generate"命令创建新变量,并赋予其数值或字符值。
- 重命名变量:使用"rename"命令将变量重命名为新的名称。
- 计算变量:使用"egen"命令计算新变量,例如,可以使用"egen mean_var = mean(var)"计算变量"var"的均值,并将结果赋值给新的变量"mean_var"。
stata入门常用命令
![stata入门常用命令](https://img.taocdn.com/s3/m/fee2989864ce0508763231126edb6f1aff00719b.png)
stata入门常用命令
Stata是一种数据分析软件,广泛用于社会科学、医学研究等领域。
本文将介绍Stata入门常用命令,帮助初学者快速掌握基本操作。
主要涉及以下内容:
1.数据导入和导出
Stata支持多种数据格式的导入,包括Excel、CSV、SPSS等。
常用命令包括:import excel、import delimited、use等。
导出数据可以使用命令save和export。
2.数据清洗和管理
数据清洗是数据分析的重要步骤,常用命令包括:drop、keep、rename、gen等。
数据管理的常用命令包括:sort、merge、append 等。
3.描述性统计分析
描述性统计是数据分析的基础,可以使用命令summarize、tabulate、graph等进行数据的可视化展示。
4.回归分析
回归分析是社会科学研究中常用的方法,可以使用命令regress、logit、probit等进行回归分析。
5.面板数据分析
面板数据分析可以对有时间序列和横截面数据的数据进行分析,常用命令包括:xtset、xtreg等。
总之,Stata是一款功能强大的数据分析软件,熟练掌握常用命
令对于数据分析工作非常重要。
STATA常用命令总结(34个含使用示例)
![STATA常用命令总结(34个含使用示例)](https://img.taocdn.com/s3/m/29b2457f5627a5e9856a561252d380eb6394236f.png)
STATA常用命令总结(34个含使用示例)1. sum:计算变量的简要统计信息,如均值、标准差等。
示例:sum variable2. tabulate:生成变量的频数表。
示例:tabulate variable3. describe:显示数据集的基本信息,如变量名和数据类型。
示例:describe dataset4. drop:删除数据集中的变量。
示例:drop variable5. keep:保留数据集中的变量,删除其他变量。
示例:keep variable6. rename:重命名变量。
示例:rename variable newname7. gen:根据已有变量生成新的变量。
示例:gen newvar = expression8. egen:根据已有变量生成新的变量,可以使用更复杂的函数和运算符。
示例:egen newvar = function(variable)9. recode:对变量的取值进行重新编码。
示例:recode variable (oldvalues= newvalues) 10. dropif:根据条件删除观测。
示例:dropif condition11. keepif:根据条件保留观测。
示例:keepif condition12. sort:对数据集按指定变量进行排序。
示例:sort variable13. merge:将两个数据集按照共享变量合并。
示例:merge 1:1 variable using dataset214. reshape:将数据从宽格式转换为长格式或反之。
示例:reshape long var, i(id) j(year)15. regress:进行线性回归分析。
示例:regress dependent_var independent_vars 16. logistic:进行逻辑回归分析。
示例:logistic dependent_var independent_vars 17. probit:进行Probit回归分析。
STATA常用命令总结(34个含使用示例)
![STATA常用命令总结(34个含使用示例)](https://img.taocdn.com/s3/m/c5a6110c2f3f5727a5e9856a561252d380eb2081.png)
STATA常用命令总结(34个含使用示例)1. clear:清空当前工作空间中的数据。
示例:clear2. use:加载数据文件。
示例:use "data.dta"3. describe:查看数据文件的基本信息。
示例:describe4. summarize:统计数据的描述性统计量。
示例:summarize var1 var2 var35. tabulate:制作数据的列联表。
示例:tabulate var1 var26. scatter:绘制散点图。
示例:scatter x_var y_var7. histogram:绘制直方图。
示例:histogram var8. boxplot:绘制箱线图。
示例:boxplot var1 var29. ttest:进行单样本或双样本t检验。
示例:ttest var, by(group_var)10. regress:进行最小二乘法线性回归分析。
示例:regress dependent_var independent_var1 independent_var211. logistic:进行逻辑斯蒂回归分析。
示例:logistic dependent_var independent_var1 independent_var212. anova:进行方差分析。
示例:anova dependent_var independent_var13. chi2:进行卡方检验。
示例:chi2 var1 var214. correlate:计算变量之间的相关系数。
示例:correlate var1 var2 var315. replace:替换数据中的一些值。
示例:replace var = new_value if condition16. drop:删除变量或观察。
示例:drop var17. rename:重命名变量。
示例:rename old_var new_var18. generate:生成新变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
stata入门常用命令
Stata是一种统计分析软件,在社会科学、医学等研究领域很常用。
以下是Stata入门常用命令:
1.数据加载
use "文件路径":加载Stata数据,文件路径为数据文件所在的路径。
describe:显示数据集的变量名、数据类型、缺失值和数据分布等。
2.变量处理
generate 变量名=表达式:生成新变量(如指数变量),并可以使用算数、统计和逻辑运算。
replace 变量名=新值:替换某变量中的指定值(如缺失值)为新值。
drop 变量名:删除数据集中的变量。
rename 旧变量名 = 新变量名...:将变量改名。
recode 变量名(包含的值) = 新值:根据变量取值对其离散化。
3.数据子集
sort 变量名...:按指定变量排序数据。
by 变量名:...:在一个或多个变量上划分数据集,然后对每个子集应用命令。
if (条件):指定一个条件,只选取满足条件的数据记录。
merge 命令:将两个或多个数据集根据指定变量进行合并。
4.数据汇总
summarize:按变量计算数值统计(如平均值、标准差、中位数和四分位数)。
tabulate 变量名:对变量进行交叉分析,并产生表格输出。
5.数据可视化
histogram 变量名:绘制直方图。
scatter 变量名1 变量名2:绘制散点图。
graph 命令:绘制多种类型的图表,例如线图和条形图。
6.线性回归
regress 因变量自变量1 自变量2...:通过最小二乘法拟合多元线性回归模型。
test 命令:进行t检验、F检验、方差分析等统计检验。
predict 新变量名:计算回归模型的预测值或残差值,并存储在新的变量中。
7.度量方法计算
correlate 命令:计算并存储所有变量的相关系数矩阵。
haase 命令:计算哈斯变换矩阵。
Inflate 命令:计算一个变量的方差膨胀因子和条件数。
8.模态分析(模拟)
simulate 命令:用随机抽样模拟数据,计算一个或多个变量的特定函数或方程,并存储结果。
bootstrap 命令:通过有放回抽样生成一组随机样本,然后通过对样本进行统计分析来获得样本的分布。
9.面板数据分析
xtset 命令:指定一个数据集作为面板数据集。
xtreg 命令:估计面板数据的回归模型。
xtsum 命令:提供面板数据的一些度量信息。
以上就是Stata入门常用命令,希望对大家在Stata数据处理、分析等方面的工作有所帮助。