北京市北京八中等比数列单元测试题含答案百度文库

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等比数列选择题

1.已知数列{}n a ,{}n b 满足12a =,10.2b =,1112

3

3n n n a b a ++=+,11344

n n n b a b +=+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5

B .7

C .9

D .11

2.已知正项等比数列{}n a 满足11

2

a =

,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( )

A .

312

或112

B .

31

2 C .15

D .6

3.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?此问题中1斗为10升,则牛主人应偿还多少升粟?( ) A .

503

B .

507

C .

100

7

D .

200

7

4.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}

2

n a 的前n 项和为n T ,若2

(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )

A .()3,+∞

B .()1,3-

C .93,5⎛⎫ ⎪⎝⎭

D .91,5⎛

⎫- ⎪⎝

5.等比数列{}n a 中11a =,且14a ,22a ,3a 成等差数列,则()*n

a n N n

∈的最小值为( ) A .

16

25

B .

49

C .

12

D .1

6.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为( ) A .2± B .2

C .3±

D .3

7的等比中项是( )

A .-1

B .1

C .

2

D .2

±

8.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n n

n S a b n =---⨯+,*n N ∈,则

存在数列{}n b 和{}n c 使得( )

A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列

B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列

C .·

n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·

n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 9.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记

{}n a 的前n 项积为n

T

,则下列选项错误的是( ) A .01q <<

B .61a >

C .121T >

D .131T >

10.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列()

{}

1

11n n n a a -+-的

前n 项的和为( )

A .()23

82133n n +--

B .()23

182155

n n +---

C .()2382133

n n ++-

D .()23182155

n n +-+-11.题目文件丢失!

12.在数列{}n a 中,12a =,121n n a a +=-,若513n a >,则n 的最小值是( ) A .9

B .10

C .11

D .12

13.已知q 为等比数列{}n a 的公比,且1212a a =-,31

4a =,则q =( ) A .1- B .4

C .12-

D .12

±

14.在各项均为正数的等比数列{}n a 中,22

6598225a a a a ++=,则113a a 的最大值是

( ) A .25

B .

254

C .5

D .

25

15.等比数列{}n a 中,1234a a a ++=,4568a a a ++=,则789a a a ++等于( ) A .16

B .32

C .64

D .128

16.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3

分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度

相关文档
最新文档