(辽宁省)2014年高考真题数学(理)试题

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试(辽宁卷)

理科数学

第Ⅰ卷(共60分)

一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有

一项

是符合题目要求的.

1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A

B =( )

A .{|0}x x ≥

B .{|1}x x ≤

C .{|01}x x ≤≤

D .{|01}x x << 2.设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i - 3.已知13

2

a -=,2

1211

log ,log 33

b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥

5.设,,a b c 是非零向量,学科 网已知命题P :若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若

//,//a b b c ,则//a c ,则下列命题中真命题是( )

A .p q ∨

B .p q ∧

C .()()p q ⌝∧⌝

D .()p q ∨⌝

6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( ) A .144 B .120 C .72 D .24

7.某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .82π-

D .84

π

-

8.设等差数列{}n a 的公差为d ,若数列1{2}n a a

为递减数列,则( )

A .0d <

B .0d >

C .10a d <

D .10a d > 9.将函数3sin(2)3

y x π

=+的图象向右平移

2

π

个单位长度,所得图象对应的函数( ) A .在区间7[,

]1212ππ

上单调递减 B .在区间7[

,

]1212ππ

上单调递增

C .在区间[,]63

ππ

-上单调递减 D .在区间[,]63

ππ

-

上单调递增 10.已知点(2,3)A -在抛物线C :22y px =的准线上,学 科网过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .

12 B .23 C .34 D .43

11.当[2,1]x ∈-时,不等式3

2

430ax x x -++≥恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9

[6,]8

-- C .[6,2]-- D .[4,3]--ZXXK 12.已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;

②对所有,[0,1]x y ∈,且x y ≠,有1

|()()|||2

f x f y x y -<

-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( ) A .

12 B .14 C .12π D .18

第Ⅱ卷(共90分)

二、填空题(每题5分,满分20分,将答案填在答题纸上)

13.执行右侧的程序框图,若输入9x =,则输出y = . ZXXK

14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,学科网则质点落在阴影区域的概率是 .

15.已知椭圆C :22

194

x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += . ZXXK

16.对于0c >,当非零实数a ,b 满足22

4240a ab b c -+-=,且使|2|a b +最大时,345

a b c

-

+的最小值为 .

三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)

17.(本小题满分12分)

在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙=,1

cos 3

B =,3b =,求: (1)a 和c 的值; (2)cos()B

C -的值. 18. (本小题满分12分)

一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:

将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.

(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;

(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .

19. (本小题满分12分)

如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0

120ABC DBC ∠=∠=,E 、

F 分别为AC 、DC 的中点. (1)求证:EF BC ⊥;

(2)求二面角E BF C --的正弦值.

20. (本小题满分12分)

圆2

2

4x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P

(如图),双曲线22

122:1x y C a b

-=过点P 且离心率为3.

(1)求1C 的方程;

(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.

相关文档
最新文档