核磁共振光谱基本原理

核磁共振光谱基本原理
核磁共振光谱基本原理

红外吸收光谱法试题和答案解析

红外吸收光谱法 一、选择题 1. CH 3—CH 3的哪种振动形式是非红外活性的(1) (1)υC-C (2)υC-H (3)δasCH (4)δsCH 2. 化合物中只有一个羰基.却在1773cm -1和1736 cm -1处出现两个吸收峰.这是因 为(3) (1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻 3. 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体 4. 预测H 2S 分子的基频峰数为(2) ~ (1)4 (2)3 (3)2 (4)1 5. 下列官能团在红外光谱中吸收峰频率最高的是(4) (1) (2)—C ≡C — (3) (4)—O —H 二、解答及解析题 1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数是弹簧A 的力常数的两倍.每个球从静止位置伸长1cm.哪一个体系有较大的势能。 答:M h hv E k 2π= = ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器.同紫外可见分光光度法有哪些相似和不同之处 答: 红外 \ 紫外 基本原理 当物质分子吸收一定波长的光能.能引起分子振动和转动的能及跃迁.产生的吸收光谱一般在中红外区.称为红外光谱 当物质分子吸收一定波长的光能.分子外层电子或分子轨道电子由基态跃迁到激发态.产生的吸收光谱一般在紫外-可见光区。 仪器 傅立叶变换红外光谱仪 紫外可见光分光光度计 相同:红外光谱和紫外光谱都是分子吸收光谱。 不同:紫外光谱是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV; 而红外光谱是分子的振动能级跃迁引起的.同时伴随转动能级跃迁.一般振动能级间隔约为

红外光谱法基本原理

红外光谱法基本原理 红外光谱是反映分子的振动情况。当用一定频率的红外光照射某物质分子时,若该物质的分子中某基团的振动频率与它相同,则此物质就能吸收这种红外光,使分子由振动基态跃迁到激发态。因此,若用不同频率的红外光依次通过测定分子时,就会出现不同强弱的吸收现象。用T%-λ作图就得到其红外光吸收光谱。红外光谱具有很高的特征性,每种化合物都具有特征的红外光谱。用它可进行物质的结构分析和定量测定。 气相色谱法基本原理 气相色谱法是以气体(此气体称为载气)为流动相的柱色谱分离技术。在填充柱气相色谱法中,柱内的固定相有两类:一类是涂布在惰性载体上的有机化合物,它们和沸点较高,在柱温下可呈液态,或本身就是液体,采用这类固定相的方法称为气液色谱法;另一类是活性吸附剂,如硅胶、分子筛等,采用这类固定相的方法称为气固色谱法。它的应用远没有气液色普法广泛。气固色谱法只适用于气体及低沸点烃类的分析。在毛细管气相色谱法中,色谱柱内径小于lmm,分为填充型和开管型两大类。填充型毛细管与一般填充柱相同,只是径细、柱长,使用的固定相颗粒在几十到几百微米之间。开管型固定相则通过化学键组合或物理的方法直接固定在管壁上,因此这种色谱柱又称开管理柱,它的应用日益普遍。原则上,在填充柱中能够使用的固定液,在毛细管柱中也能使用,但毛细管柱比普通填充柱柱效更高,分离能力更强。气相色谱法的应用面十分广泛,原则上讲,不具腐蚀性气体或只要在仪器所能承受的气化温度下能够气化,且自身又不分解的化合物都可用气相色谱法分析。 当样品加到固定相上之后,流动相就要携带样品在柱内移动。流动相在固定相上的溶解或吸附能力要比样品中的组分弱得多。组分进柱后,就要在固定相和流动相之间进行分配。组分性质不同,在固定相上的溶解或吸附能力不同,即它们的分配系数大小不同。分配系数大

红外光谱法习题参考答案

第十二章 红外吸收光谱法 思考题和习题 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 33,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1。 烯烃主要特征峰为H C C C H C -==-=γνν ,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1。 νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γ νν ,,,其中H C -≡ν 峰位在3333-3267cm -1。C C ≡ν 峰位在 2260-2100cm -1,是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ 分裂为双峰。如果是异丙基,双峰分别 位于1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1和1395 cm -1左右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动(ν=C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动(νc=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动(γ =C-H ),910~665cm -1 14.试用红外吸收光谱区别羧酸、酯、酸酐。 羧酸的特征吸收峰为v OH 、v C=O 及γOH 峰。v OH (单体)~3550 cm -1 (尖锐),v OH (二聚体)3400~2500(宽而散),v C=O (单体)1760 cm -1 (S),v as C=O (二聚体)1710~1700 cm -1 (S)。羧酸的γOH 峰位在955~915 cm -1范围内为一宽谱带,其形状较独特。 酯的特征吸收峰为v C=O 、v c-o-c 峰,具体峰位值是:v C=O ~1735cm -1 (S);v c-o-c 1300~1000cm -1 (S)。v as c-o-c 峰的强度大而宽是其特征。 酸酐的特征吸收峰为v as C=O 、v s C=O 双峰。具体峰位值是:v as C=O 1850~1800 cm -1(s)、v s C=O 1780~1740 cm -1 (s),两峰之间相距约60 cm -1,这是酸酐区别其它含羰基化合物主要标志。 7.某物质分子式为C 10H 10O 。测得红外吸收光谱如图。试确定其结构。

磁共振的基本原理

磁共振基本原理 磁共振成像的依据是与人体生理、生化有关的人体组织密度对核磁共振的反映不同。要理解这个问题,就必须知道核磁共振和核磁共振的特性。 一、核磁共振与核磁共振吸收的宏观描述 由力学中可知,发生共振的条件有二: 一是必须满足频率条件,二是要满足位相条件。 原子核是自旋的,它绕某个轴旋转(颇像个陀螺)。旋转时产生一定的微弱磁场和磁矩。将自旋的原子核放在一个均匀的静磁场中,受磁场作用,原子核的自旋轴会被强制定向,或与磁场方向相同,或与磁场方向相反。重新定向的过程中,原子核的自旋轴将类似旋转陀螺般的发生进动。不同类的原子核有不同的进动性质,这种性质就是旋转比(非零自旋的核具有特定的旋转比),用γ表示。进动的角频率ω一方面同旋转比有关;另一方面同静磁场的磁场强度 B 有关。其关系有拉莫尔(Larmor)公式(ω又称拉莫尔频率) : ω=γ·B (6-1) 静磁场中的原子核自旋时形成一定的微弱势能。当一个频率也为ω的交变电磁场作用到自旋的原子核时,自旋轴被强制倾倒,并带有较强的势能;当交变电磁场消除后,原子核的自旋轴将向原先的方向进动,并释放其势能。这种现象就是核磁共振现象(换言之,当电磁辐射的圆频率和外磁场满足拉莫尔公式时,原子核就对电磁辐射发生共振吸收),这一过程也称为弛豫过程,释放势能所产生的电压信号就是核磁共振信号.也被称为衰减信号(FID)。显然,核磁共振信号是一频率为ω的交变信号,其幅度随进动过程的减小而衰减。 图6-1表示几种原子核的共振频率与磁场强度的关系。这些频率是在电磁波谱的频带之内,这样的频率大大低于 X 线的频率,甚至低于可见光的频率。可见它是无能力破坏生物系统的分子的。在实际情况下,由于所研究的对象都是由大量原子核组成的组合体,因此在转入讨论大量原子核在磁场中的集体行为时,有必要引人一个反映系统磁化程度的物理量来描述核系统的宏观特性及其运动规律。这个物理量叫静磁化强度矢量,用 M表示。由大量原子核组成的系统,相当于一大堆小磁铁,在无外界磁场时,原子核磁矩μ的方向是随机的,系统的总磁矩矢量为 (6-2) 如果在系统的 Z 轴方向外加一个强静磁场B。,原子核磁矩受到外磁场的作用,在自身转动的同时又以 B。为轴进动,核磁矩取平行于 BO 的方向。按照波尔兹曼分布,在平衡状态下,处于不同能级的原子核数目不相等,使得原子核磁矩不能完全互相抵消,从而有 (6-3) 此时可以说系统被磁化了,可见 M 是量度原子核系统被磁化程度的量,是表示单位体积中全部原子核磁矩的矢量和。 图6-1几种原子核的共振频率与磁场强度的关系 1

红外吸收光谱法基本原理电子教案.

《仪器分析》教案 内容中红外光区的四个吸收区域 影响基团频率位移的因素 教学重点红外吸收光谱图 教学难点 产生红外吸收光谱的原因产生红外吸收光谱的原因影响基团频率位移的因素 参考资料仪器分析,黄一石,化学工业出版社 仪器分析,高晓松,科学出版社 分析化学(仪器分析部分),林树昌,曾泳怀,高等教育出版社 一、概述 1、红外光的发现 红外辐射是在1800 年由英国的威廉.赫谢尔(Willian Hersher)发现的。 2、物质对红外光的选择性吸收 赫歇尔通过实验发现,不同的溶液对红外光的吸收程度是不同的,同一种溶液对不同红外光也具有不同程度的吸收。所以说,物质对红外光具有选择性吸收。 3、红外吸收光谱 (1)红外吸收光谱图 一般用T-λ或T-σ曲线表示。

4、红外光谱法的特点 (1)应用面广,提供信息多且具有特征性 (2)不受样品相态的限制,亦不受熔点、沸点和蒸气压的限制。 (3)样品用量少且可回收,不破坏试样,分析速度快,操作方便。 (4)现在已经积累了大量标准红外光谱图可供查阅。 (5)局限:有些物质不能产生红外吸收峰,不能用红外吸收光谱法鉴别,有干扰,准确度和灵敏度均低于可见、紫外吸收光谱法。 二、产生红外吸收光谱的原因 1、分子振动 (1)分子振动方程式 k化学键力常数,单位 N/cm μ分子折合质量 (2)简正振动 分子中所有原子都在其平衡位置附近作简谐振动,其振动频率和位相都相同,是振幅可能不同,即每个原子都在同一瞬间通过其平衡位置,且同时到达其最大位移值,附近作简谐振动,每一个简正振动都有一定的频率,称为基频。 (3)分子的振动形式 ?分子的振动形式可分为两大类:伸缩振动和变形振动。 ?伸缩振动是指原子沿键轴方向伸缩,使键长发生变化而键角不变的振动,动形式可分为两种:对称伸缩振动和反对称伸缩振动; ?变形振动是指使键角发生周期性变化的振动,又称弯曲振动。可分为面内、面外、对称及不对称变形振动等形式。

红外吸收光谱法习题与答案解析

六、红外吸收光谱法(193题) 一、选择题 ( 共61题 ) 1. 2 分 (1009) 在红外光谱分析中,用 KBr制作为试样池,这是因为: ( ) (1) KBr 晶体在 4000~400cm-1范围内不会散射红外光 (2) KBr 在 4000~400 cm-1范围内有良好的红外光吸收特性 (3) KBr 在 4000~400 cm-1范围内无红外光吸收 (4) 在 4000~400 cm-1范围内,KBr 对红外无反射 2. 2 分 (1022) 下面给出的是某物质的红外光谱(如图),已知可能为结构Ⅰ、Ⅱ或Ⅲ,试问哪 一结构与光谱是一致的?为什么? ( ) 3. 2 分 (1023) 下面给出某物质的部分红外光谱(如图),已知结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构 与光谱是一致的,为什么? 4. 2 分 (1068) 一化合物出现下面的红外吸收谱图,可能具有结构Ⅰ、Ⅱ、Ⅲ或Ⅳ,哪一结构与 光谱最近于一致? 5. 2 分 (1072) 1072 羰基化合物中, C = O 伸缩振动 频率出现最低者为 ( ) (1) I (2) II (3) III (4) IV 6. 2 分 (1075) 一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 7. 2 分 (1088) 并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) (1) 分子既有振动运动,又有转动运动,太复杂 (2) 分子中有些振动能量是简并的 (3) 因为分子中有 C、H、O 以外的原子存在 (4) 分子某些振动能量相互抵消了 8. 2 分 (1097) 下列四组数据中,哪一组数据所涉及的红外光谱区能够包括CH3- CH2-CH = O的吸收带( ) 9. 2 分 (1104) 请回答下列化合物中哪个吸收峰的频率最高? ( ) 10. 2 分 (1114) 在下列不同溶剂中,测定羧酸的红外光谱时,C=O 伸缩振动频率出现最高者为( ) (1) 气体 (2) 正构烷烃 (3) 乙醚 (4) 乙醇 11. 2 分 (1179) 水分子有几个红外谱带,波数最高的谱带对应于何种振动 ? ( ) (1) 2 个,不对称伸缩 (2) 4 个,弯曲 (3) 3 个,不对称伸缩 (4) 2 个,对称伸缩 12. 2 分 (1180) CO2的如下振动中,何种属于非红外活性振动 ? ( ) (1) ←→ (2) →←→ (3)↑↑ (4 )

红外光谱的原理及应用

红外光谱的原理及应用 (一)红外吸收光谱的定义及产生 分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱 红外吸收光谱也是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱 (二)基本原理 1产生红外吸收的条件 (1)分子振动时,必须伴随有瞬时偶极矩的变化。对称分子:没有偶极矩,辐射不能引起共振,无红外活性。如:N2、O2、Cl2 等。非对称分子:有偶极矩,红外活性。 (2)只有当照射分子的红外辐射的频率与分子某种振动方式的频率相同时,分子吸收能量后,从基态振动能级跃迁到较高能量的振动能级,从而在图谱上出现相应的吸收带。 2分子的振动类型 伸缩振动:键长变动,包括对称与非对称伸缩振动 弯曲振动:键角变动,包括剪式振动、平面摇摆、非平面摇摆、扭曲振动 3几个术语 基频峰:由基态跃迁到第一激发态,产生一个强的吸收峰,基频峰; 倍频峰:由基态直接跃迁到第二激发态,产生一个弱的吸收峰,倍频峰; 组频:如果分子吸收一个红外光子,同时激发了基频分别为v1和v2的两种跃迁,此时所产生的吸收频率应该等于上述两种跃迁的吸收频率之和,故称组频。 特征峰:凡是能用于鉴定官能团存在的吸收峰,相应频率成为特征频率。 相关峰:相互可以依存而又相互可以佐证的吸收峰称为相关峰 4影响基团吸收频率的因素 (1 外部条件对吸收峰位置的影响:物态效应、溶剂效应 (2分子结构对基团吸收谱带的影响: 诱导效应:通常吸电子基团使邻近基团吸收波数升高,给电子基团使波数降低。 共轭效应:基团与吸电子基团共轭,使基团键力常数增加,因此基团吸收频率升高,基团与给电子基团共轭,使基团键力常数减小,因此基团吸收频率降低。 当同时存在诱导效应和共轭效应,若两者作用一致,则两个作用互相加强,不一致,取决于作用强的作用。 (3)偶极场效应:互相靠近的基团之间通过空间起作用。 (4)张力效应:环外双键的伸缩振动波数随环减小其波数越高。 (5)氢键效应:氢键的形成使伸缩振动波数移向低波数,吸收强度增强 (6)位阻效应:共轭因位阻效应受限,基团吸收接近正常值。 (7)振动耦合,(8)互变异构的影响 (三)红外吸收光谱法的解析 红外光谱一般解析步骤 1. 检查光谱图是否符合要求; 2. 了解样品来源、样品的理化性质、其他分析的数据、样品重结晶溶剂及纯度; 3. 排除可能的―假谱带‖; 4. 若可以根据其他分析数据写出分子式,则应先算出分子的不饱和度U

磁共振的原理

磁共振的原理 固体在恒定磁场和高频交变电磁场的共同作用下,在某一频率附近产生对高频电磁场的共振吸收现象。在恒定外磁场作用下固体发生磁化,固体中的元磁矩均要绕外磁场进动。由于存在阻尼,这种进动很快衰减掉。但若在垂直于外磁场的方向上加一高频电磁场,当其频率与进动频率一致时,就会从交变电磁场中吸收能量以维持其进动,固体对入射的高频电磁场能量在上述频率处产生一个共振吸收峰。若产生磁共振的磁矩是顺磁体中的原子(或离子)磁矩,则称为顺磁共振;若磁矩是原子核的自旋磁矩,则称为核磁共振。若磁矩为铁磁体中的电子自旋磁矩,则称为铁磁共振。核磁矩比电子磁矩约小3个数量级,故核磁共振的频率和灵敏度比顺磁共振低得多;同理,弱磁物质的磁共振灵敏度又比强磁物质低。从量子力学观点看,在外磁场作用下电子和原子核的磁矩是空间量子化的,相应地具有离散能级。当外加高频电磁场的能量子hv等于能级间距时,电子或原子核就从高频电磁场吸收能量,使之从低能级跃迁到高能级,从而在共振频率处形成吸收峰。 利用顺磁共振可研究分子结构及晶体中缺陷的电子结构等。核磁共振谱不仅与物质的化学元素有关,而且还受原子周围的化学环境的影响,故核磁共振已成为研究固体结构、化学键和相变过程的重要手段。核磁共振成像技术与超声和X射线成像技术一样已普遍应用于医疗检查。铁磁共振是研究铁磁体中的动态过程和测量磁性参量的重要方法。

磁共振基本原理 磁共振(回旋共振除外)其经典唯象描述是:原子、电子及核都具有角动量,其磁矩与相应的角动量之比称为磁旋比γ。磁矩M 在磁场B中受到转矩MBsinθ(θ为M与B间夹角)的作用。此转矩使磁矩绕磁场作进动运动,进动的角频率ω=γB,ωo称为拉莫尔频率。由于阻尼作用,这一进动运动会很快衰减掉,即M达到与B平行,进动就停止。但是,若在磁场B的垂直方向再加一高频磁场b(ω)(角频率为ω),则b(ω)作用产生的转矩使M离开B,与阻尼的作用相反。如果高频磁场的角频率与磁矩进动的拉莫尔(角)频率相等ω =ωo,则b(ω)的作用最强,磁矩M的进动角(M与B角的夹角)也最大。这一现象即为磁共振。 磁共振也可用量子力学描述:恒定磁场B使磁自旋系统的基态能级劈裂,劈裂的能级称为塞曼能级(见塞曼效应),当自旋量子数S=1/2时,其裂距墹E=gμBB,g为朗德因子, 为玻尔磁子,e和me为电子的电荷和质量。外加垂直于B的高频磁场b(ω)时,其光量子能量为啚ω。如果等于塞曼能级裂距,啚ω=gμBB=啚

红外光谱原理

第二节 红外吸收光谱的基本原理 一、分子的振动与红外吸收 任何物质的分子都是由原子通过化学键联结起来而组成的。分子中的原子与化学键都处于不断的运动中。它们的运动,除了原子外层价电子跃迁以外,还有分子中原子的振动和分子本身的转动。这些运动形式都可能吸收外界能量而引起能级的跃迁,每一个振动能级常包含有很多转动分能级,因此在分子发生振动能级跃迁时,不可避免的发生转动能级的跃迁,因此无法测得纯振动光谱,故通常所测得的光谱实际上是振动-转动光谱,简称振转光谱。 1、双原子分子的振动 分子的振动运动可近似地看成一些用弹簧连接着的小球的运动。以双原子分子为例,若把两原子间的化学键看成质量可以忽略不计的弹簧,长度为r (键长),两个原子分子量为m 1、m 2。如果把两个原子看成两个小球,则它们之间的伸缩振动可以近似的看成沿轴线方向的简谐振动,如图3—2。因此可以把双原子分子称为谐振子。这个体系的振动频率υ(以波数表示),由经典力学(虎克定律)可导出: C ——光速(3×108 m/s ) υ= K ——化学键的力常数(N/m ) μ——折合质量(kg ) μ= 如果力常数以N/m 为单位,折合质量μ以原子质量为单位,则上式可简化为 υ=130.2 双原子分子的振动频率取决于化学键的力常数和原子的质量,化学键越强,相对原子质量越小,振动频率越高。 H-Cl 2892.4 cm -1 C=C 1683 cm -1 C-H 2911.4 cm -1 C-C 1190 cm -1 同类原子组成的化学键(折合质量相同),力常数大的,基本振动频率就大。由于氢的原子质量最小,故含氢原子单键的基本振动频率都出现在中红外的高频率区。 2、多原子分子的振动 1|D|ì2c K m 1m 2m 1m2+ K μ

第五章红外吸收光谱分析

第五章红外吸收光谱分析 §5-1概述 红外光谱分析是现代仪器分析中历史悠久并且还在不断发展的分析技术,对于未知物的定性、定量以及结构分析都是一种非常重要的手段,广泛应用于药物、染料、香料、农药、感光材料、橡胶、高分子合成材料、环境监测、法医鉴定等领域。近年来,由于红外光谱技术的不断发展,红外光谱仪的不断完善,红外光谱和色谱、核磁共振、质谱的连用使红外光谱的应用开辟了更为广阔的途径。 红外吸收光谱又称为分子振动光谱。这是因为分子振动、转动能级跃迁所吸收的电磁波谱正好处于红外区。 一、红外吸收光谱 红外吸收光谱:记录物质对红外光的吸收程度与波长或波数关系图。用T-λ曲线或T-σ曲线来表示。 波数(σ)每cm长光波中波的数目,用CM-1表示。红外光谱图的利用,可提供三方面信息: ①吸收峰的数目②吸收峰的位置(σ)③吸收峰强度(透光率) 红外光区中红外区远红外区波长/μm 0.78~2.5 2.5~50 50~300 波数/cm-112820~4000 4000~200 200~33 三、红外光谱的优点与缺点 1、优点 ①使用范围 g、s、l 无机、有机大分子 ②操作方便③样品用量少④不破坏样品⑤重现性好 2、缺点 ①定量时灵敏度低,准确性差②谱带复杂 §5-2 红外光谱分析基本原理 (同系物难区别,只可判断出属于哪种物质) 一、产生红外吸收的条件 1、能量相等条件:振动或转动能级跃迁的能量与红外辐射光子能量相等。 即△E=-△vhυ△E L =hυL△E=△E LυL=△vυ 2、偶合作用(能量传递条件) 二、双原子分子的振动 振动方程式:库克定律 式中:C-光速(2. 998×10cm·s-1) K-化学键力常数(N·cm-1) μ-折合质量(g)μ=m1m2/(m1+m2) σ=1300

红外吸收光谱IR的基本原理及应用

红外吸收光谱(IR)的基本原理及应用 基本原理 当红外光照射物质分子时,其具有的能量引起振动能级和转动能级的跃迁,不同的分子和基团具有不同的振动,根据分子的特征吸收可以鉴定化合物和分子的结构。 利用红外光谱对物质分子进行的分析和鉴定。将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。 红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动(例如伸缩振动和变角振动)。 分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。 分子的振动和转动的能量不是连续而是量子化的。但由于在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。所以分子的红外光谱属带状光谱。分子越大,红外谱带也越多。 红外光谱的应用 (一)化合物的鉴定 用红外光谱鉴定化合物,其优点是简便、迅速和可靠;同时样品用量少、可回收;对样品也无特殊要求,无论气体、固体和液体均可以进行检测。有关化合物的鉴定包括下列几种: 1、鉴别化合物的异同 某个化合物的红外光谱图同熔点、沸点、折射率和比旋度等物理常数一样是该化合物的一种特征。尤其是有机化合物的红外光谱吸收峰多达20个以上,如同人的指纹一样彼此各不相同,因此用它鉴别化合物的异同,可靠性比其它物理手段强。如果二个样品在相同的条件下测得的光谱完全一致,就可以确认它们是

红外光谱分析法模拟试题及答案解析

红外光谱分析法模拟试题及答案解析 (1/29)单项选择题 第1题 一种能作为色散型红外光谱仪色散元件的材料为( )。 A.玻璃 B.石英 C.卤化物晶体 D.有机玻璃 下一题 (2/29)单项选择题 第2题 醇羟基的红外光谱特征吸收峰为( )。 A.1000cm-1 B.2000~2500cm-1 C.2000cm-1 D.3600~3650cm-1 上一题下一题 (3/29)单项选择题 第3题 红外吸收光谱的产生是由于( )。 A.分子外层电子、振动、转动能级的跃迁 B.原子外层电子、振动、转动能级的跃迁 C.分子振动、转动能级的跃迁 D.分子外层电子的能级跃迁 上一题下一题 (4/29)单项选择题 第4题 红外吸收峰的强度,根据( )大小可粗略分为五级。 A.吸光度A B.透射比t C.波长λ D.波数ν 上一题下一题 (5/29)单项选择题 第5题 用红外吸收光谱法测定有机物结构时,试样应该是( )。 A.单质 B.纯物质 C.混合物 D.任何试样 上一题下一题 (6/29)单项选择题 第6题 一个含氧化合物的红外光谱图在3600~3200cm-1有吸收峰,下列化合物最可能的是( )。

A.CH3—CHO B.CH3—CO—CH3 C.CH3—CHOH—CH3 D.CH3—O—CH2—CH3 上一题下一题 (7/29)单项选择题 第7题 对高聚物多用( )法制样后再进行红外吸收光谱测定。 A.薄膜 B.糊状 C.压片 D.混合 上一题下一题 (8/29)单项选择题 第8题 一般来说,( )具有拉曼活性。 A.分子的非对称性振动 B.分子的对称性振动 C.极性基团的振动 D.非极性基团的振动 上一题下一题 (9/29)单项选择题 第9题 在红外光谱的光源中,下列( )波长是氩离子激光器最常用的激发线的波长。 A.285.2nm B.422.7nm C.488.0nm D.534.5nm 上一题下一题 (10/29)单项选择题 第10题 若样品在空气中不稳定,在高温下容易升华,则红外样品的制备宜选用( )。 A.压片法 B.石蜡糊法 C.熔融成膜法 D.漫反射法 上一题下一题 (11/29)单项选择题 第11题 液体池的间隔片常由( )材料制成,起着固定液体样品的作用。 A.氯化钠 B.溴化钾 C.聚四氟乙烯 D.金属制品

红外光谱习地的题目答案详解

红外光谱习题 一. 选择题 1.红外光谱是(AE ) A :分子光谱 B :原子光谱 C :吸光光谱 D :电子光谱 E :振动光谱 2.当用红外光激发分子振动能级跃迁时,化学键越强,则(ACE ) A :吸收光子的能量越大 B :吸收光子的波长越长 C :吸收光子的频率越大 D :吸收光子的数目越多 E :吸收光子的波数越大 3.在下面各种振动模式中,不产生红外吸收的是(AC ) A :乙炔分子中对称伸缩振动 B :乙醚分子中不对称伸缩振动 C :CO 2分子中对称伸缩振动 D :H 2O 分子中对称伸缩振动 E :HCl 分子中H -Cl 键伸缩振动 4.下面五种气体,不吸收红外光的是(D ) A:O H 2 B:2CO C:HCl D:2N 5 分子不具有红外活性的,必须是(D ) A:分子的偶极矩为零 B:分子没有振动 C:非极性分子 D:分子振动时没有偶极矩变化 E:双原子分子 6.预测以下各个键的振动频率所落的区域,正确的是(ACD ) A:O-H伸缩振动数在4000~25001 -cm B:C-O 伸缩振动波数在2500~15001 -cm C:N-H 弯曲振动波数在4000~25001 -cm D:C-N 伸缩振动波数在1500~10001 -cm E:C ≡N 伸缩振动在1500~10001 -cm 7.下面给出五个化学键的力常数,如按简单双原子分子计算,则在红外光谱中波数最大者是(B ) A:乙烷中C-H 键,=k 5.1510?达因1 -?cm B: 乙炔中C-H 键, =k 5.9510?达因1 -?cm

C: 乙烷中C-C 键, =k 4.5510?达因1 -?cm D: CH 3C ≡N 中C ≡N 键, =k 17.5510?达因1 -?cm E:蚁醛中C=O 键, =k 12.3510?达因1 -?cm 8.基化合物中,当C=O 的一端接上电负性基团则(ACE ) A:羰基的双键性增强 B:羰基的双键性减小 C:羰基的共价键成分增加 D:羰基的极性键成分减小 E:使羰基的振动频率增大 9.以下五个化合物,羰基伸缩振动的红外吸收波数最大者是(E ) A: B: C: D: E: 10.共轭效应使双键性质按下面哪一种形式改变(ABCD ) A:使双键电子密度下降 B:双键略有伸长 C:使双键的力常数变小 D.使振动频率减小 E:使吸收光电子的波数增加 11.下五个化合物羰基伸缩振动的红外吸收波数最小的是(E ) A: B: C: D: E: 12.下面四个化合物中的C=C 伸缩振动频率最小的是(D ) A: B: C: D: 13.两 个化合物(1) ,(2) 如用红外光谱鉴别,主要依 据的谱带是(C )

现代仪器分析 第五章

第五章红外吸收光谱分析 5.1红外光谱法概述 5.11红外光谱与红外光谱分析法 红外吸收光谱:又称分子振动-转动光谱,是物质的分子在吸收了红外辐射后引起分子的振动-转动能级跃迁而形成的光谱,因为出现在红外区,所以称之为红外光谱。 红外吸收光谱分析法:是根据物质对红外辐射的选择性吸收特性而建立起来的一种光谱分析方法,即利用红外光谱进行定性、定量分析的方法。 5.12红外光区的划分 红外辐射(即红外光)是波长接近于可见光但能量比可见光低的电磁辐射,其波长范围约为0.75μm?1000μm。 根据所采用的实验技术和获得信息的不同,可将红外光按波长分为三个区(表),其中大多数有机物和无机物的基频吸收带都出现在中红外区,因此中红

5.13红外光谱的表示方法 当用一定波长的红外光作用于物质时,物质分子将吸收一定频率的红外辐射。将分子吸收红外辐射的情况用仪器纪录下来,即得到红外光谱图。 红外光谱图一般用T-σ或T-λ曲线来表示,其中横坐标为波长λ(μm) 及波数 σ(cm-1) ,表示吸收峰所在的位置;纵坐标一般为透射比T(%)。 波数σ和波长λ的关系为: 5.14红外光谱法的特点 ①. 红外光谱是分子振动-转动光谱,主要研究在分子振动中伴随有偶极矩变化的化合物。因此,除单原子分子和同核分子(如Ne、He、O2、N2、Cl2等少数

分子)外,几乎所有的化合物均可用红外光谱法进行研究。 ②.气态、液态和固态样品均可进行红外光谱测定。 ③.分析速度快、灵敏度高、样品用量少(可减少到微克级)且不破坏样品。 ④.常规红外光谱仪价格低廉,易于购置。 ⑤. 针对特殊样品的测试要求,发展了多种测量新技术,如光声光谱(PAS)、衰减反射光谱(ATR)、漫反射、红外显微镜等。 5.15红外光谱的应用 红外光谱法还广泛应用于化学、化工、催化、石油、地矿、材料、生物、医药和环境保护等许多领域。 红外光谱的应用大体上可分为两个方面: 用于分子结构的技术研究:如应用红外光谱可以测定分子的键长、键角,以此推断出分子的立体结构;根据所得的力学常数可以知道化学键的强弱;由简正振动的频率来计算热力学函数等。 用于化学组成的分析:根据光谱中吸收峰的位置和形状来推断未知物结构;依照特征吸收峰的强度来测定混合物中各组分的含量。 5.16红外光谱发展 红外辐射是在1800年由英国的威廉.赫谢尔发现的。一直到1903年,才有人研究了纯物质的红外吸收光谱。 二次世界大战期间,由于对合成橡胶的迫切需求,红外光谱才引起了化学家的重视和研究,并因此而迅速发展。 随着计算机的发展,以及红外光谱仪与其它大型仪器的联用,使得红外光谱在结构分析、化学反应机理研究以及化学组成分析中发挥着极其重要的作用,是“四大波谱”中应用最多、理论最为成熟的一种方法。 5.2红外光谱分析基本原理 5.21红外吸收光谱的产生 1.红外光谱的产生条件 物质分子吸收红外辐射而发生振动-转动能级跃迁必须满足两个条件:一是辐射光子的能量必须与发生振动和转动能级间的跃迁所需的能量相等;二是分子振动必须伴随有偶极矩的变化,辐射与物质之间必须有相互作用。

红外光谱法答案详解

习题 1、下列两个化合物,C=O的伸缩振动吸收带出现在较高的波数区的是哪个为什么 答案: a(共轭效应)>b(空间位阻效应让共轭效应减小)。 2、下图为不同条件下,丁二烯(1,3)均聚物的红外光谱图, 试指出它们的键结构。 3、有一化合物C7H8O,它出现以下位置的吸收峰:3040;3380;2940;1460;690;740;不出现以下位置吸收峰:1736;2720;1380;1182.试推断其结构式 作业 1、试述分子产生红外吸收的条件。 2、何谓基团频率影响基团频率位移的因素有哪些 3、仅考虑C=O受到的电子效应,在酸、醛、酯、酰卤和酰胺类化合物中,出现C=O伸缩振动频率的大小顺序应是怎样 4、从以下红外特征数据鉴别特定的苯取代衍生物C8H10: ①化合物A:吸收带在约790和695cm-1处。 ②化合物B:吸收带在约795cm-1处。 ③化合物C:吸收带在约740和690cm-1处。 ④化合物D:吸收带在约750cm-1处。 5、分别在95%乙醇和正已烷中测定2-戊酮的红外光谱,试预测C=O的伸缩振动吸收峰在哪种溶剂中出现的较高为什么 8. 某化合物的化学式为C6H10O,红外光谱如下图所示,

试推断其结构式。 答案: μ=1+6-5=2说明可能是不饱和烃 3000以上无小尖峰,说明双键不在端碳上 1680-羰基1715连接双键导致共轭移到低波位 1618-碳碳双键 1461-CH- 1380、1360-分裂说明异丙基存在 1215、1175-双峰强度相仿验证双甲基在端碳 816-三取代呈链状 。 9. 某化合物的化学式为C8H14O3,红外光谱如下图所示,试推断其结构式。 答案: μ=1+8-7=2 3000以上无小尖峰,1370峰没分裂,说明没有cc双键

傅立叶变换红外光谱仪的基本原理

傅立叶变换红外光谱仪的 基本原理及其应用 红外光谱仪是鉴别物质和分析物质结构的有效手段,其中傅立叶变换红外光谱仪(FT-IR)是七十年代发展起来的第三代红外光谱仪的典型代表。它是根据光的相干性原理设计的,是一种干涉型光谱仪,具有优良的特性,完善的功能,并且应用围极其广泛,同样也有着广泛的发展前景。本文就傅立叶变换红外光谱仪的基本原理作扼要的介绍,总结了傅立叶变换红外光谱法的主要特点,综述了其在各个方面的应用,并对傅立叶变换红外光谱仪的发展方向提出了一些基本观点。 关键词:傅立叶变换红外光谱仪;基本原理;应用;发展

目录 摘要................................................................................... I ABSTRACT......................................................................... II 1 傅里叶红外光谱仪的发展历史 (1) 2 基本原理 (4) 2.1光学系统及工作原理 (4) 2.2傅立叶变换红外光谱测定 (6) 2.3傅立叶变换红外光谱仪的主要特点 (7) 3 样品处理 (8) 3.1气体样品 (8) 3.2液体和溶液样品 (8) 3.3固体样品 (8) 4 傅立叶变换红外光谱仪的应用 (9) 4.1在临床医学和药学方面的应用⑷ (9) 4.2在化学、化工方面的应用 (10) 4.3在环境分析中的应用 (11) 4.4在半导体和超导材料等方面的应用⑼ (11) 5 全文总结 (12) 参考文献 (13)

红外光谱分析法习题含答案

红外光谱分析法试题 一、简答题 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 2.以亚甲基为例说明分子的基本振动模式. 3.何谓基团频率?它有什么重要用途? 4.红外光谱定性分析的基本依据是什么?简要叙述红外定性分析的过程. 5.影响基团频率的因素有哪些? 6.何谓指纹区?它有什么特点和用途? 二、选择题 1.在红外光谱分析中,用 KBr制作为试样池,这是因为 ( ) A KBr晶体在 4000~ 400cm -1 范围内不会散射红外光 B KBr在 4000~ 400 cm -1 范围内有良好的红外光吸收特性 C KBr在 4000~ 400 cm -1 范围内无红外光吸收 D 在 4000~ 400 cm -1 范围内,KBr 对红外无反射 2.一种能作为色散型红外光谱仪色散元件的材料为 ( ) A 玻璃 B 石英 C 卤化物晶体 D 有机玻璃 3.并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) A 分子既有振动运动,又有转动运动,太复杂 B 分子中有些振动能量是简并的 C 因为分子中有 C、H、O以外的原子存在 D 分子某些振动能量相互抵消了 4.下列四种化合物中,羰基化合物频率出现最低者为 ( ) A I B II C III D IV 5.在下列不同溶剂中,测定羧酸的红外光谱时,C=O伸缩振动频率出现最高者为 ( ) A 气体 B 正构烷烃 C 乙醚 D 乙醇 6.水分子有几个红外谱带,波数最高的谱带对应于何种振动? ( )

A 2个,不对称伸缩 B 4个,弯曲 C 3个,不对称伸缩 D 2个,对称伸缩 7.苯分子的振动自由度为( ) A 18 B 12 C 30 D 31 8.在以下三种分子式中C=C双键的红外吸收哪一种最强? (1) CH3-CH = CH2(2) CH3-CH = CH-CH3(顺式)(3) CH3-CH = CH-CH3(反式)( ) A(1)最强 B (2)最强 C (3)最强 D 强度相同 9.在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带( ) A 向高波数方向移动 B 向低波数方向移动 C 不移动 D 稍有振动 10.以下四种气体不吸收红外光的是( ) A H2O B CO 2 C HCl D N2 11.某化合物的相对分子质量Mr=72,红外光谱指出,该化合物含羰基,则该化合物可能的分子式为( ) A C4H8O B C3H4O 2 C C3H6NO D (1) 或(2) 12.红外吸收光谱的产生是由于( ) A 分子外层电子、振动、转动能级的跃迁 B 原子外层电子、振动、转动能级的跃迁 C 分子振动-转动能级的跃迁 D 分子外层电子的能级跃迁 13. Cl2分子在红外光谱图上基频吸收峰的数目为( ) A 0 B 1 C 2 D 3 14.红外光谱法试样可以是( ) A 水溶液 B 含游离水 C 含结晶水 D 不含水 15.能与气相色谱仪联用的红外光谱仪为( ) A 色散型红外分光光度计 B 双光束红外分光光度计 C 傅里叶变换红外分光光度计 D 快扫描红外分光光度计 16.试比较同一周期内下列情况的伸缩振动(不考虑费米共振与生成氢键)产生的红外吸收峰,频率最小的是( ) A C-H B N-H C O-H D F-H 17.已知下列单键伸缩振动中C-C C-N C-O键力常数k/(N?cm-1) 4.5 5.8 5.0吸收峰波长λ/μm 6 6.46 6.85问C-C, C-N, C-O键振动能级之差⊿E顺序为( ) A C-C > C-N > C-O B C-N > C-O > C-C C C-C > C-O > C-N D C-O > C-N > C-C 18.一个含氧化合物的红外光谱图在3600~3200cm -1有吸收峰,下列化合物最可能的是( )

固体核磁共振基础学习知识基础原理

固体核磁共振 19.1 固体核磁共振基本原理 19.1.1 核磁共振的基本原理及固体核磁中主要的相互作用 如果我们将样品分子视为一个整体,则可将固体核磁中探测到的相互作用分为两大类:样品内部的相互作用及由外加环境施加与样品的作用。前者主要是样品内在的电磁场在与外加电磁场相互作用时产生的多种相互作用力,这主要包括:化学环境的信息(分子中由于内在电磁场屏蔽外磁场的强度、方向等),分子内与分子间偶极自旋偶合相互作用,对于自旋量子数为>1/2的四极核尚存在四极作用。外部环境施加与样品的主要作用有: 1)由处于纵向竖直方向的外加静磁场作用于特定的核磁活性的核上产生的塞曼相互作用(Zeeman Interaction), 核子相对映的频率为拉莫尔频率(Larmor Frequency); 2) 由处于x-y平面的振荡射频场产生的作用与待测样品的扰动磁场。与溶液核磁共振技术测定化学结构的基本思路,在固体核磁共振实验中也是首先利用强的静磁场是样品中核子的能级发生分裂,例如对于自旋量子数I=1/2的核会产生两个能级,一个顺着静磁场方向从而导致体系的能量较低;另一个则逆着静磁场排列的方向使得体系相对能量较高。 经能级分裂后,处于高能级与低能级的核子数目分布发生改变,并且符合波尔兹曼分布原理:即处于低能级的核子数目较多而高能级的数目较少,最终产生一个沿竖直向上的净磁化矢量。此磁化矢量在受到沿x-y平面的振荡射频磁场作用后产生一扭矩最终将沿竖直方向的磁化矢量转动一特定的角度。由于这种射频脉冲施加的时间只是微秒量级,施加完射频脉冲后,体系中剩下的主要相互作用将会使这种处于热力学不稳定状态的体系恢复到热力学稳定的初始状态。在磁化矢量的恢复过程中,溶液核磁中主要存在的相互作用有:化学位移,J-偶合等相对较弱的相互作用,而相

核磁共振的原理及其应用发展

核磁共振的原理及其应用发展 摘要:核磁共振是能够深入到物质内部而不破坏被测量对象的一种分析物质构造的现代技术,它通过利用原子核在磁场中的能量变化来获得关于原子核的信息,具有迅速、准确、分辨率高等优点,因而在科研和生产中获得了广泛的应用。本文主要介绍了核磁共振技术的基本原理,以及核磁共振在化学化工、生物化学、医药等方面的应用,并指出核磁共振波谱技术将成为21世纪一个异常广阔的谱学研究领域. 关键词:核磁共振;NMR谱仪 引言 核磁共振( Nuclear Magnetic Resonance,NMR)波谱学是一门发展非常迅速的科学。核磁共振是根据有磁的原子核,在磁场的作用下会引起能级分裂,若有相应的射频磁场作用时,在核能级之间将引起共振跃迁,从而得到化学结构信息的一门新技术。最早于1946年由哈佛大学的伯塞尔(E. M. Purcell)和斯坦福大学的布洛赫(F. Bloch)等人用实验所证实[1]。两人由此共同分享了1952年诺贝尔物理学奖[2]。核磁共振技术可以提供分子的化学结构和分子动力学的信息,已成为分子结构解析以及物质理化性质表征的常规技术手段[3],在物理、化学、生物、医药、食品等领域得到广泛应用,在化学中更是常规分析不可少的手段。从70年代开始,在磁共振频谱学和计算机断层技术等基础上,又发展起一项崭新的医学诊断技术,即核磁共振成像技术,并在医学临床上获得巨大成功。本文主要介绍了核磁共振技术及其在化学领域的应用进展。 1.核磁共振原理 泡利(W.Pauli)在1924年首先提出原子核具有磁矩,并认为核磁矩与其本身的自旋运动相联系,用此理论成功地解释了原子光谱的超精细结构[4]。核磁矩μ与核自旋角动量L之间的关系为:

相关文档
最新文档