人教版八年级数学上册13.4 课题学习 最短路径问题 (4)
人教版八年级数学上册:13.4课题学习最短路径问题(将军饮马为题)教案
三、教学难点与重点
1.教学重点
-理解并掌握轴对称的性质,以及在实际问题中的应用。
-学会利用轴对称性质解决最短路径问题,特别是将军饮马问题。
-掌握通过直观感知、操作确认、推理证明等数学活动来解决几何问题。
其次,小组讨论环节,学生的参与度很高,大家积极分享自己的观点。但我注意到,有些小组在讨论时可能会偏离主题,讨论一些与最短路径问题不相关的内容。这提示我在今后的教学中,需要更加明确讨论的主题和目标,适时引导学生回到主题上来。
另外,实践活动的设计上,我觉得还可以进一步优化。虽然实验操作能够帮助学生理解最短路径的概念,但我觉得可以增加一些更具挑战性和实际意义的任务,让学生在实践中遇到更多的问题,从而激发他们更深层次的思考和探索。
教学内容:
(1)回顾线段的性质,强调线段是两点间距离最短的路径。
(2)引入将军饮马问题,探讨在给定条件下如何找到最短路径。
(3)学习轴对称的性质,掌握将问题转化为轴对称问题的方法。
(4)应用轴对称性质解决将军饮马问题,得出最短路径的解法。
(5)通过例题和练习,巩固最短路径问题的求解方法。
二、核心素养目标
在难点和重点的讲解上,我尽量使用了简单的语言和生动的例子,但仍有部分学生在理解上存在障碍。我考虑在下一节课前,通过一些小测验来检测学生对这些概念的理解程度,以便我能够更有针对性地进行辅导。
此外,我也意识到,对于一些接受能力较强的学生,他们在掌握了基本概念后,可能需要更多拓展性的内容来满足他们的学习需求。因此,我计划在后续的课程中,提供一些难度较高的题目,让他们在挑战中进一步提升自己的能力。
3.重点难点解析:在讲授过程中,我会特别强调轴对称性质和线段性质这两个重点。对于难点部分,我会通过具体例题和图形比较来帮助大家理解。
数学人教版八年级上第十三章134 课题学习 最短路径问题
13.4 课题学习最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】课本P85页问题1练习、如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B两村的水管最短,应建在什么地方?2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址【例2】P86页问题2【课堂检测】课本P93页、15题。
八年级上册 课题学习《最短路径问题》说课稿
课题学习《最短路径问题》说课稿各位领导、专家、同仁们大家好:今天我说课的的内容是:人教八年级上册第13章第四节课题学习最短路径问题。
下面我将从:教材分析、学情分析、教学目标、教学重难点、教法、学法、教学手段、教学过程、板书设计、反思十个方面展开我的说课。
一、教材分析:本节课的内容是在学习了轴对称图形及两点之间线段最短知识的基础上学习的最短路径问题。
同时为我们今后解决坐标系下线段和最短的问题打下基础。
所以本节课的学习既是对前面所学知识的应用又为今后学习新知识做了铺垫,起到了呈上起下的作用。
二、学情分析1、已有的知识与能力:八年级学生已经学习了“两点之间线段最短”“垂线段最短”这些关于距离最短问题的解决依据。
也初步接触了逻辑推理证明的方法。
2、未接触的知识能力:由于八年级学生首次遇到线段和最小,所以无从下手,另外证明两条线段和最小时要选取另外一点,学生想不到、不会用,所以利用轴对称将最短路径问题转化为线段和最小问题,逻辑推理证明所求距离最短是本节课的难点。
3.综合能力方面:八年级学生这一阶段的学生思维能力发展较快,自我意识增强,有较强的求知欲和表现欲,在情感方面他们能进行自我教育。
经过一年多新课程理念的熏陶及实践,学生已有了初步的自主学习、合作探究的能力,但部分学生存在不自信,羞于表现等思想顾虑,但又希望能得到他人的肯定。
因此我的教学目标分了三层,照顾不同程度的学生。
在教学活动中尽量让他们参与到活动中来,减少他们的恐惧感,通过学生间的合作学习,降低他们的学习难度,使各层次的学生都有所收获,使他们体验到成功的喜悦。
通过以上教材与学情分析我制定了本节课教学目标:三、教学目标:1、知识与能力目标:(1)能利用轴对称解决简单的最短路径问题。
(2)能将实际问题中的“地点”、“河”抽象为数学中的“点”、“直线”,把实际问题抽象为数学问题。
2、过程与方法目标:(1)使学生经历提出问题——合作探究——动手操作——组间对比——理论证明——解决问题的过程。
数学人教版八年级上册最短路径问题.4 最短路径问题.pptx
数学人教版八年级上册最短路径问题.4 最短路径问题.pptx1、13.4课题学习最短路径问题相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜见海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边l饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?BAl 精通数学、物理学的海伦稍加思索,利用轴对称的学问回答了这个问题.这个问题后来被称为“将军饮马问题”.你能将这个问题抽象为数学问题吗?BAl 将A,B两地抽象为两个点,将河l抽象为一条直线.B··Al设C为直线上的一个动点,上面的问题就转化为:当点C在l的什么位置时,AC与CB的和最小〔如图〕.BAlC例题1:如下图:从A地到B地有三条路可供选择,你会选择哪条路距离最短?你的理由是什么?答:选择中间一条路线。
理2、由是:两点之间线段最短例题2:如图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?P 解:连接AB,与直线l相交于点P所以泵站建在点P可使输气管线最短如图,点A,B在直线l的同侧,点C是直线上的一个动点,当点C在l的什么位置时,AC与CB的和最小?B·lA·总结阅历:事实上是通过轴对称变换,把A,B在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”加以解决。
作法:〔1〕作点B关于直线l的对称点B′;〔2〕连接AB′,与直线l相交于点C.则点C即为所求.如图,点A,B在直线l的同侧,点C是直线上的一个动点,当点C在l的什么位置时,AC与CB的和最小?B·lA·B′C你能用所学的学问证明AC+3、BC最短吗?证明:如图,在直线l上任取一点C′〔与点C不重合〕,连接AC′,BC′,B′C′.由轴对称的性质知,BC=B′C,BC′=B′C′.∴AC+BC=AC+B′C=AB′,AC′+BC′=AC′+B′C′.在△AB′C′中,AB′<AC′+B′C′,∴AC+BC<AC′+BC′.即AC+BC最短.B·lA·B′CC′练习如图,一个旅游船从大桥AB的P处前往山脚下的Q处接游客,然后将游客送往河岸BC上,再返回P处,请画出旅游船的最短路径.ABCPQ山河岸大桥基本思路:由于两点之间线段最短,所以首先可连接PQ,线段PQ为旅游船最短路径中的必经线路.将河岸抽象为一条直线BC,这样问题就转化为“点P,Q在直线BC的同侧,如何在BC上找到一点R4、,使PR与QR的和最小”.ABCPQ山河岸大桥第4页。
人教版初中八年级数学上册第十三章13. 4 课题学习 最短路径问题 优秀教案
13. 4课题学习最短路径问题通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短和垂线段最短.重点应用所学知识解决最短路径问题.难点选择合理的方法解决问题.一、创设情境多媒体展示:如图,一个圆柱的底面周长为20 cm,高AB为4 cm,BC是底面的直径,一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路径.这是一个立体图形,要求蚂蚁爬行的最短路径,就是要把圆柱的侧面展开,利用“两点之间,线段最短”求出最短路径.那么怎样求平面图形中的最短路径问题呢?二、自主探究探究一:最短路径问题的概念1.多媒体出示图①和图②,提出问题:(1)图①中从点A走到点B哪条路最短?(2)图②中点C与直线AB上所有的连线中哪条线最短?2.教师总结:“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等问题,我们称之为最短路径问题.探究二:河边饮马问题多媒体出示问题1:牧马人从A地出发,到一条笔直的河边l饮马,然后到B地,牧马人从河边什么地方饮马,可使所走的路径最短?提出问题:如果点A和点B分别位于直线的两侧,如何在直线l上找到一点,使得这个点到点A和点B的距离的和最短?思考:如果点A和点B位于直线的同侧,如何在直线l上找到一点,使得这个点到点A 和点B的距离的和最短?教师引导学生讨论,明确找点的方法.让学生对刚才的方法通过逻辑推理的方法加以证明.教师巡视指导学生的做题情况,有针对性地进行点拨.探究三:造桥选址问题多媒体出示问题2.(教材第86页)提出问题:(1)根据问题1的探讨你对这道题有什么思路和想法?(2)这个问题有什么不同?(3)要保证路径AMNB最短,应该怎样选址?学生对这个三个问题展开讨论,得出结论:要保证AMNB最短,就是要保证AM+MN +NB最小.尝试选址作出图形.多媒体展示教材图13.4-7,13.4-8,13.4-9,引导学生分析、观察,让学生根据刚才的分析,完成证明过程.根据问题1和问题2,你有什么启示?三、知识拓展已知长方体的长为2 cm、宽为1 cm、高为4 cm,一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?[让学生讨论有几种爬行的方法,计算出每种方案中的路程,再进行比较]四、归纳总结1.本节课你学到了哪些知识?2.怎样解决最短路径问题?本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题学习,让学生经历将实际问题抽象为数学问题的线段和最小问题,再利用轴对称将线段和最小的问题转化为“两点之间,线段最短”问题.。
人教版八年级上册13.4课题学习(最短路径问题)
的位置
解:AB=AC ,△ABC为等腰三角形,
A
AD平分∠CAB,故点D是BC边的中点,即 点B与点C关于直线AD对称.∵点M在AD上, 故BM=CM.即MB+MN的最小值可转化为求
N
●
●M
MC+MN的最小值,故连接CN即可,线段
CN的长即为MB+MN的最小值.
B
D
C
3 如图,在直角坐标系中,点A,B的坐标分别为
●A
●
M′
课堂小结
原理:线段公理和垂线段最短
最
短 路
牧马人 饮马问
轴对称知识+线段公理
径题
问 造桥 题 选址 平移知识+线段公理
问题
课外作业: 第93页 第15题
和最短?
连接AB,与直线l相交于一点C.
A
根据是“两点之间,线段
C
最短”,可知这个交点即
l
为所求.
B
问题2 如果点A,B分别是直线l同侧的两个点,又应该如
何解决?
B
想一想:对于问题2,如何将
A
点B“移”到l 的另一侧B′
处,满足直线l 上的任意一
l
点C,都保持CB 与CB′的长
度相等?
利用轴对称,作出点B关于直线l的对称点B′.
练一练:
1 如图,已知正六边形ABCDEF的边长为2,G,H分别 是AF和CD的中点,P是GH上的动点,连接AP,BP,则 AP+BP的值最小时,BP与HG的夹角(锐角)度数为 __6_0°_____
2 如图,在△ABC中,AB=AC,AD平分∠CAB,N点是AB上
的一定点,M是AD上一动点,要使MB+MN最小,请找点M
人教版数学八年级上册13.4课题学习最短路径造桥选址实验教学探究优秀教学案例
4.鼓励学生积极参与评价,培养学生的评价能力和批判性思维。
四、教学内容与过程
(一)导入新课
1.教师通过一个有趣的现实生活中的选址问题,如“如何在两个村庄之间建一座桥,使得两地之间的距离最短?”引起学生的兴趣。
2.学生尝试用自己的知识解决此问题,教师引导学生思考问题的方法论。
人教版数学八年级上册13.4课题学习最短路径造桥选址实验教学探究优秀教学案例
一、案例背景
人教版数学八年级上册13.4课题学习“最短路径造桥选址实验教学”探究优秀教学案例,是基于学生在学习了平面直角坐标系、一次函数和二次函数等知识的基础上,对“线性规划”的初步认识。此章节内容旨在让学生通过实验探究,掌握线性规划的基本方法,解决实际问题。
在教学过程中,我以“最短路径造桥选址”为例,让学生结合生活实际,探讨如何在一个城市中选择最佳的桥梁建设位置,以达到连接两个区域、节省路程、提高效率的目的。通过对问题的探究,引导学生运用所学的数学知识,解决实际问题,提高学生的实践能力和创新能力。
在教学设计上,我充分考虑了学生的认知规律和兴趣,将抽象的数学知识与具体的生活情境相结合,以实验教学为主线,让学生在动手操作、观察分析、合作交流的过程中,掌握线性规划的方法。同时,我注重引导学生进行思考,激发学生的学习兴趣,培养学生的自主学习能力。
4.全面提高学生的数学素养:通过对实际问题的解决,本节课不仅使学生掌握了线性规划的基本方法,还培养了学生的观察力、动手能力、思维能力、沟通能力和团队协作能力,全面提高了学生的数学素养。
5.教学策略灵活多样:教师根据学生的认知规律和兴趣,采用了情景创设、问题导向、小组合作等多种教学策略,使学生在轻松愉快的氛围中学习,提高了教学效果。
2024年人教版八年级上册数学第13章第4节课题学习 最短路径问题
使MN ⊥ m, 且AM 交直线n 于点N,过点N作NM ⊥
+MN+NB 最小
m 于点M,连接AM
感悟新知
特别解读 解决连接河两边两地的最短路
径问题时,可以通过平移桥的方法 转化为求直线异侧两点到直线上一 点所连线段的和最小的问题.
知2-讲
感悟新知
知2-练
例4 如图13.4-5,从A 地到B 地要经过一条小河(河的两岸 平行),现要在河上建一座桥(桥垂直于河的两岸),应 如何选择桥的位置才能使
ቤተ መጻሕፍቲ ባይዱ
课堂小结
设计最短路径 设计最短路径
两点在直 线异侧
两点在直 线同侧
利用轴对称转换
解:如图13 .4 -2,作点B 关于l 的对称点B1,连接 AB1交l 于点M,连接BM, 此时AM+BM 最短,则点 M 即为所求的分支点.
感悟新知
知1-练
1-1.如图,在正方形网格中有M,N 两点,在直线l 上求一 点P 使PM+PN 最短,则点P应选在( C ) A.A 点 B.B 点 C.C 点 D.D 点
四边形P M N Q周 长的最
小值为 P′Q′+ PQ 的值
小
线的交点即为点M,N
感悟新知
知1-讲
特别解读 1.直线异侧的两点到直线上一点的距离的和最短的问
题是根据“两点之间,线段最短”来设计的. 2.直线同侧的两点到直线上一点的距离的和最短的问
题依据两点:一是对称轴上任何一点到一组对称 点的距离相等;二是将同侧的两点转化为异侧的 两点,依据异侧两点的方法找点.
感悟新知
知1-练
例1 [情境题 生活应用]某供电部门准备在输电主干线l 上连 接一个分支线路,分支点为M,同时向新落成的A,B 两个居民小区送电.
人教版八年级数学上册教学设计:13.4 课题学习 最短路径问题
人教版八年级数学上册教学设计:13.4 课题学习最短路径问题一. 教材分析人教版八年级数学上册第十三章第四节“课题学习最短路径问题”主要是让学生了解最短路径问题的背景和意义,掌握利用图的性质和算法求解最短路径问题的方法。
通过本节课的学习,学生能够将所学的图的知识应用到实际问题中,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了图的基本概念和相关性质,如顶点、边、连通性等。
同时,学生也学习了一定的算法知识,如排序、查找等。
因此,学生在学习本节课时,能够将已有的知识和经验与最短路径问题相结合,通过自主探究和合作交流,理解并掌握最短路径问题的求解方法。
三. 教学目标1.了解最短路径问题的背景和意义,能运用图的性质和算法求解最短路径问题。
2.提高学生将实际问题转化为数学问题的能力,培养学生的逻辑思维和解决问题的能力。
3.增强学生合作交流的意识,提高学生的团队协作能力。
四. 教学重难点1.教学重点:最短路径问题的求解方法及其应用。
2.教学难点:理解并掌握最短路径问题的求解算法,能够灵活运用到实际问题中。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.算法教学法:以算法为主线,引导学生了解和掌握最短路径问题的求解方法。
3.合作学习法:学生进行小组讨论和合作交流,共同解决问题,提高团队协作能力。
六. 教学准备1.准备相关实际问题的案例,如城市间的道路网络、网络通信等。
2.准备算法教学的PPT,以便在课堂上进行讲解和演示。
3.准备练习题和拓展题,以便进行课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)通过展示实际问题案例,如城市间的道路网络,引导学生了解最短路径问题的背景和意义。
提问:如何找到两点之间的最短路径?引发学生的思考和兴趣。
2.呈现(10分钟)讲解最短路径问题的求解方法,如迪杰斯特拉算法、贝尔曼-福特算法等。
通过PPT演示算法的具体步骤和过程,让学生清晰地了解算法的原理和应用。
人教版数学八年级上册13.4课题学习最短路径问题将军饮马优秀教学案例
在本章节的学习过程中,学生将经历以下过程与方法:
1.通过小组合作、讨论交流的方式,培养学生的团队协作能力和沟通能力。
2.引导学生从实际问题出发,培养学生的发现问题、分析问题和解决问题的能力。
3.利用数学软件、教具等辅助工具,培养学生的动手操作能力和实际应用能力。
4.通过对最短路径问题的探讨,引导学生掌握数学建模的方法,提高学生的数学思维能力。
4.教师巡回指导,关注每个小组的学习情况,及时解答学生疑问。
(四)反思与评价
1.教师引导学生对所学知识进行总结、反思,帮助学生巩固知识点,形成知识体系。
2.鼓励学生自我评价,反思自己在解决问题过程中的优点和不足,培养学生的自我认知能力。
3.组织小组互评,让学生学会欣赏他人的优点,发现自身的不足,促进团队合作。
3.对学生提出的解决方案进行讨论、分析,找出最优解,并解释其原理。
(三)小组合作
小组合作是实现教学目标的重要途径,具体策略如下:
1.将学生分成若干小组,每组4-6人,确保组内成员在知识、能力、性格等方面具有一定的互补性。
2.各小组针对问题进行讨论、研究,共同寻找解决方案。
3.小组间进行交流、分享,互相学习,取长补短。
4.教师对学生在课堂上的表现进行评价,给予肯定和鼓励,指出需要改进的地方。
(五)作业小结
在作业小结环节,我将布置以下任务:
1.请学生运用所学知识,解决一个生活中的最短路径问题,并以作文或报告的形式提交。
2.要求学生在作业中阐述自己的思考过程、解决方案和心得体会,以提高学生的书面表达能力。
3.鼓励学生进行课后拓展,了解其他求解最短路径的方法,如:A*算法、遗传算法等,提升学生的自主学习能力。
3.小组间进行分享、交流,互相借鉴,完善各自的方法和思路。
八年级数学上册13.4课题学习最短路径问题说课稿(新版)新人教版
八年级数学上册 13.4 课题学习最短路径问题说课稿(新版)新人教版一. 教材分析八年级数学上册13.4课题学习“最短路径问题”是新人教版教材中的一项重要内容。
这一节内容是在学生掌握了平面直角坐标系、一次函数、几何图形的性质等知识的基础上进行学习的。
本节课的主要内容是最短路径问题的研究,通过实例引导学生了解最短路径问题的背景和意义,学会利用图论知识解决实际问题。
教材中给出了两个实例:光纤敷设和城市道路规划,让学生通过解决这两个实例来理解和掌握最短路径问题的求解方法。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于平面直角坐标系、一次函数等知识有了一定的了解。
但是,对于图论知识以及如何利用图论解决实际问题还比较陌生。
因此,在教学过程中,我需要引导学生理解和掌握图论知识,并能够将其应用到实际问题中。
三. 说教学目标1.知识与技能目标:让学生了解最短路径问题的背景和意义,掌握利用图论知识解决最短路径问题的方法。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,让学生体验到数学在实际生活中的应用价值。
四. 说教学重难点1.教学重点:最短路径问题的求解方法。
2.教学难点:如何将实际问题转化为图论问题,并利用图论知识解决。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过解决实际问题来学习和掌握最短路径问题的求解方法。
2.教学手段:利用多媒体课件辅助教学,通过展示实例和动画效果,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示光纤敷设和城市道路规划的实例,引导学生了解最短路径问题的背景和意义。
2.新课导入:介绍图论中最短路径的概念和相关的数学知识。
3.实例分析:分析光纤敷设和城市道路规划两个实例,引导学生将其转化为图论问题。
4.方法讲解:讲解如何利用图论知识解决最短路径问题,包括迪杰斯特拉算法和贝尔曼-福特算法等。
人教版八年级数学上册 13、4 课题学习 最短路径问题
由轴对称的性质知: BC =B′C,BC′=B′ C′
B
·
A
∴AC +BC = AC +B′C = AB′,
·
AC′+BC′ = AC′+B′C′
●●
l
在△AB′C′中 AC′ +B′C′ > AB′ C′C
∴ AC′+BC′ > AC +BC
即AC +BC最短。
●
B′
知识小结
原 理
线段公理和垂线段最短
解:作点N关于BC的对 称点N′,连接 N′M与BC 的交点就是点P
知识回顾 问题探究 课堂小结 随堂检测
探究二:“一点两线型”的最短周长问题
能不能类比探究一,证明一下“周长最短作图”的正确性?
A' M C
EA E'
O F' F D N
【理由简要分析】
图2 A''
如图2,在OM上任取一个异于E的点E′,在ON上任取一个异于F的点
13、4 课题学习 最短路径问题
白日登山望烽火,黄昏饮马傍交河
温故知新
两点之间,线段最短
② ①
请勿 践 踏!
③
界石界南 街
点到直线距离垂线段最短
探究一:“两点一线”的最短路径问题
重点、难点知识★▲
活动1 创设情境,引入新知
相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫 海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的 问题:
最短 路径 问题
将军饮 马问题
数学 思想
解题方 法
轴对称知识+线段公理
转化
实际问题→数学问题 未知问题→已知问题
八年级数学上册 13.4 课题学习 最短路径问题教学设计 (新版)新人教版
八年级数学上册 13.4 课题学习最短路径问题教学设计(新版)新人教版一. 教材分析“课题学习最短路径问题”是人教版八年级数学上册第13.4节的内容。
这部分内容主要让学生了解最短路径问题的实际应用,学会使用图论中的最短路径算法来解决实际问题。
教材通过引入一个实际问题,引导学生探讨并找出解决问题的方法,从而培养学生解决问题的能力和兴趣。
二. 学情分析八年级的学生已经掌握了图论的基本知识,如图的定义、图的表示方法等。
但是,对于图的最短路径问题,学生可能还没有直观的理解和认识。
因此,在教学过程中,教师需要结合学生的已有知识,通过实例讲解、动手操作等方式,帮助学生理解和掌握最短路径问题。
三. 教学目标1.知识与技能目标:让学生了解最短路径问题的实际应用,学会使用图论中的最短路径算法来解决实际问题。
2.过程与方法目标:通过探讨实际问题,培养学生解决问题的能力和兴趣。
3.情感态度与价值观目标:培养学生对数学的热爱,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:最短路径问题的实际应用,图论中的最短路径算法。
2.教学难点:如何引导学生从实际问题中抽象出最短路径问题,并运用图论知识解决。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.实例讲解法:通过具体的实例,讲解最短路径问题的解决方法,帮助学生理解和掌握。
3.动手操作法:让学生亲自动手操作,加深对最短路径问题的理解。
六. 教学准备1.教学素材:准备一些实际问题的案例,以及相关的图论知识介绍。
2.教学工具:多媒体教学设备,如PPT等。
3.学生活动:让学生提前预习相关内容,了解图论的基本知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入最短路径问题,激发学生的学习兴趣。
例如,讲解从一个城市到另一个城市,如何找到最短的路线。
2.呈现(15分钟)讲解最短路径问题的定义,以及图论中最短路径算法的基本原理。
通过PPT等教学工具,展示相关的知识点,让学生直观地了解最短路径问题。
人教版初中数学八年级上册第十三章 课题学习 最短路径问题
l
都保持CB 与CB′的长度相等?
利用轴对称,作出点B关于直线l的对称点B′.
探究新知
13.4 课题学习 最短路径问题/
作法:
B
(1)作点B 关于直线l 的对称点B′; A
C
(2)连接AB′,与直线l 相交于点C.
l
则点C 即为所求.
B′
探究新知
13.4 课题学习 最短路径问题/
问题3:你能用所学的知识证明AC +BC最短吗?
接GF,与河岸相交于E ′,D′.作DD′,EE′即为桥. C
DF
理由:由作图法可知,AF//DD′,AF=DD′, 则四边形AFD′D为平行四边形,
C′ D ′
于是AD=FD′, 同理,BE=GE′,
E E′
由两点之间线段最短可知,GF最小.
BG
课堂检测
13.4 课题学习 最短路径问题/
拓广探索题
巩固练习
13.4 课题学习 最短路径问题/
如图,已知牧马营地在P处,每天牧马人要赶着马群先到河 边饮水,再带到草地吃草,然后回到营地,请你替牧马人 设计出最短的放牧路线.
解:如图AP+AB即为最 短的放牧路线.
探究新知
13.4 课题学习 最短路径问题/
知识点 2 利用平移知识解决造桥选址问题 如图,A和B两地在一条河的两岸,现要在河上造一座桥 MN.桥造在何处可使从A到B的路径AMNB最短(假定河的两岸 是平行的直线,桥要与河垂直)?
解:连接AB,与直线l相交于一点C.
A
C
根据“两点之间,线段最
l
短”,可知这个交点即为所求.
B
探究新知
13.4 课题学习 最短路径问题/
人教版数学八年级上册13.4课题学习最短路径问题将军饮马说课稿
在教学过程中,我将设计多样化的师生互动和生生互动环节,以促进学生的参与和合作。在师生互动环节,我将通过提问、回答和讨论等方式,与学生进行实时互动,了解学生的学习情况,并及时给予引导和反馈。在生生互动环节,我将组织小组讨论、合作探究等活动,让学生相互交流、分享想法和解决问题,培养他们的团队合作能力和沟通能力。此外,我还将鼓励学生积极参与课堂讨论,提出问题和建议,激发他们的学习兴趣和主动性。通过这些互动方式,我将创造积极的学习氛围,促进学生的参与和合作,提高他们的学习效果。
(二)学习障碍
在学习本节课之前,学生需要具备平面几何的基本知识,如点、线、面的基本概念,图形的性质和运算能力。他们还需要具备一定的问题解决能力和逻辑思维能力,能够理解和运用几何图形的性质来解决问题。然而,部分学生可能对将军饮马问题的背景和意义不够了解,可能会对其解决方法感到困惑。此外,对于一些复杂的最短路径问题,学生可能存在理解上的困难和解决上的挑战。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解。首先,我会介绍将军饮马问题的定义和特点,让学生明确问题的实质。接着,我会通过图形的直观演示和几何绘图软件的应用,向学生展示将军饮马问题的解决方法。我会引导学生观察图形的变化,解释和证明解决方法的合理性。在这个过程中,我会鼓励学生积极参与,提出问题和想法,并与同学们进行交流和讨论。通过这种方式,学生能够深入理解知识点,并培养他们的逻辑思维能力和解决问题的能力。
(五)作业布置
课后作业的布置目的是帮助学生巩固所学知识,并培养他们的自主学习能力。我计划布置一道将军饮马问题的综合练习题,要求学生在课后解决并提交。此外,我还会布置一些相关的阅读材料,让学生进一步了解将军饮马问题的背景和应用。通过这些作业,学生能够在课后继续巩固和运用所学知识,提高他们的学习效果。
人教版八年级上册数学说课稿《13.4课题学习最短路径问题》
人教版八年级上册数学说课稿《13.4 课题学习最短路径问题》一. 教材分析《13.4 课题学习最短路径问题》是人教版八年级上册数学的一章内容。
本章主要介绍了最短路径问题的相关知识和方法。
通过本章的学习,学生能够理解最短路径问题的意义,掌握解决最短路径问题的方法,并能够应用到实际问题中。
在教材中,首先介绍了最短路径问题的定义和意义,然后通过图的表示方法引出最短路径问题的解决方法。
接着,教材介绍了两种常用的最短路径算法:迪杰斯特拉算法和贝尔曼-福特算法。
最后,教材通过一些实际问题,让学生应用所学的知识解决实际问题。
二. 学情分析学生在学习本章内容之前,已经学习了图的概念和相关性质,对图的基本操作有一定的了解。
同时,学生也学习了算法的基本概念和方法,具备一定的编程能力。
然而,学生对于最短路径问题的理解和应用可能还存在一些困难。
因此,在教学过程中,需要引导学生理解最短路径问题的意义,并通过实际问题激发学生的学习兴趣。
此外,学生需要通过实践活动,掌握解决最短路径问题的方法,并能够应用到实际问题中。
三. 说教学目标1.知识与技能目标:学生能够理解最短路径问题的定义和意义,掌握解决最短路径问题的方法,并能够应用到实际问题中。
2.过程与方法目标:学生能够通过实践活动,培养解决问题的能力和团队合作的能力。
3.情感态度与价值观目标:学生能够培养对数学的兴趣和好奇心,培养积极的学习态度和团队合作的精神。
四. 说教学重难点1.教学重点:学生能够理解最短路径问题的定义和意义,掌握解决最短路径问题的方法。
2.教学难点:学生能够理解和应用迪杰斯特拉算法和贝尔曼-福特算法解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过实际问题引导学生学习最短路径问题的解决方法。
2.教学手段:利用多媒体课件和网络资源,展示实际问题和算法流程,帮助学生理解和应用知识。
六. 说教学过程1.引入新课:通过一个实际问题,引出最短路径问题的定义和意义。
人教版数学八年级上册13.4课题学习最短路径问题微课说课稿
三、教学方法与手段
(一)教学策略
我将采用的主要教学方法包括启发式教学、情境教学和合作学习。选择这些方法的理论依据如下:
1.启发式教学:这种方法鼓励学生主动思考、探究和解决问题,有助于培养学生的创新能力和解决问题的能力。通过提问、讨论等方式,引导学生从已知知识中发现规律,逐步深入理解新知识。
2.增强学生运用数学知识解决实际问题的意识,提高学生的应用能力;
3.培养学生的团队合作精神,让学生在合作交流中学会倾听、尊重他人。
(三)教学重难点
根据对学生的了解和教学内容的分析,本节课的教学重点为:
1.最短路径问题的概念及其求解方法;
2.欧几里得算法和迪杰斯特拉算法的应用。
教学难点为:
1.求解最短路径的算法过程,特别是迪杰斯特拉算法的理解和运用;
(二)学习障碍
学生在学习本节课之前,已经掌握了线段的性质、两点间的距离公式、勾股定理等前置知识。但在学习过程中,可能存在以下障碍:
1.对最短路径问题的概念理解不够深入,难以将实际问题抽象为数学模型;
2.欧几里得算法和迪杰斯特拉算法的过程较为复杂,理解起来有一定难度;
3.在解决实际问题时,可能不知道如何选择合适的方法求解。
(三)互动方式
为实现师生互动和生生互动,我计划设计以下环节:
1.师生互动:在课堂教学中,通过提问、讨论等方式,引导学生主动思考、表达观点。教师给予及时反馈,激发学生的学习兴趣和动机。
2.生生互动:将学生分成小组,针对最短路径问题进行讨论、交流。小组成员分工合作,共同完成探究任务,提高团队合作能力。
3.课堂小结:组织学生进行课堂小结,分享学习心得和成果。教师对学生的表现给予评价,鼓励优秀学生,激发学生的学习积极性。
人教版初二数学上册13.4课题学习 最短路径问题.4 课题学习 最短路径问题
A· ·B
N
谢谢!
证明:如图.
B
在直线 l 上任取另一点C′ , A
连接AC′ 、BC′ 、B′ C′ .
l
∵直线 l 是点B、B′的对称轴, C′ C
点C、C′在对称轴上,
∴BC=B′C,BC′=B′C′.
B′
∴AC+BC=AC+B′C=AB′.
在△AB′C′中,AB′< AC′+B′C′,
∴AC+BC < AC′+B′C′,
到草地边某一处牧马,再到河边饮马,然后回到马厩. 请你 帮他确定这一天的最短路线.
A
小
河
草地
A
小
河
M
A
N
小河
转化为数学问题
当点M在草地的什么位置,点N在小河的什么位置时, AM,MN,AN的和最小?
如图,作点A关于草地和小河的对称点A1、A2, 连接A1A2,交草地于M点,交小河于N点. 连接AM和 AN,则AM+MN+NA最小.因此,那天这样走路线最短.
A1
M A
草地
N
A2
小河
B A
l
解决实 际问题
B
A l
C
B′
归纳1
B
A
抽象为数学问题
l
C
联想旧知
A
l
用旧知解决新知
C
B
归纳2 1、今天你的收获有哪些? 2、本节课运用了哪些数学思想?
思考题
如图:A为马厩,B为帐篷,牧马人从A地出发,先到草地边 某一处牧马,再到河边饮马,然后回到B,请画出最短路径.
A
l
C
B
人教版八年级上册数学13.4课题学习最短路径问题优秀教学案例
(三)情感态度与价值观
1.让学生在解决实际问题的过程中,体验数学的乐趣,提高学生学习数学的兴趣。
2.培养学生面对困难时积极思考、勇于挑战的精神,增强学生的自信心。
3.使学生认识到数学在生活中的重要性,培养学生的数学应用意识和社会责任感。
三、教学重难点
2.跨学科教学:结合其他学科的知识,如地理、信息技术等,拓宽学生的知识视野,培养学生的综合能力。
六、教学资源
1.教材:人教版八年级上册数学教材。
2.辅助材料:相关的最短路径问题的案例、练习题和拓展问题。
3.现代教育技术:多媒体课件、网络资源等。
七、教学评价
1.学生评价:通过学生的课堂表现、作业完成情况和练习成绩等方面进行评价。
(二)讲授新知
在导入新课后,我会开始讲解最短路径问题的相关知识。首先,我会向学生们介绍最短路径问题的定义,让学生们明白什么是最短路径。接着,我会讲解解决最短路径问题的基本方法,如坐标系法、函数法等。在讲解的过程中,我会结合具体的例子,让学生们更直观地理解这些方法。
(三)学生小组讨论
在讲授完新知识后,我会让学生们进行小组讨论。我会给每个小组提供一个实际问题,让他们运用所学知识,合作解决这个最短路径问题。这样的讨论,可以培养学生的团队合作精神,也可以让学生们在实践中加深对知识的理解和应用。
3.互动评价:小组之间进行互动评价,相互学习和提高。
(四)反思与评价
1.自我反思:引导学生对自己的学习过程进行反思,发现自身的优点和不足,制定改进措施。
2.同伴评价:学生之间相互评价,给予意见和建议,促进共同进步。
3.教师评价:教师对学生的学习情况进行评价,关注学生的个体差异,给予鼓励和指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.4.课题学习《最短路径》教学设计
一、教材分析
1、地位作用:随着课改的深入,数学更贴近生活,更着眼于解决生产、经营中的问题,于是就出现了为省时、省财力、省物力而希望寻求最短路径的数学问题。
这类问题的解答依据是“两点之间,线段最短”或“垂线段最短”,由于所给的条件的不同,解决方法和策略上又有所差别。
初中数学中路径最短问题,体现了数学来源于生活,并用数学解决现实生活问题的数学应用性。
2、目标和目标解析:
(1)目标:能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想.
(2)目标解析:达成目标的标志是:学生能讲实际问题中的“地点”“河”抽象为数学中的线段和最小问题,能利用轴对称将线段和最小问题转化为“连点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最算路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想.
3、教学重、难点
教学重点:利用轴对称将最短路径问题转化为“连点之间,线段最短”问题
教学难点:如何利用轴对称将最短路径问题转化为线段和最小问题
突破难点的方法:利用轴对称性质,作任意已知点的对称点,连接对称点和已知点,得到一条线段,利用两点之间线段最短来解决. 二、教学准备:多媒体课件、导学案
三、教学过程
基本思路:由于两点之间线段最短,所以首先可连接PQ ,线段PQ 为旅游船最短路径中的 必经线
路.将河岸抽象为一条直线BC ,这样问题就转化为“点P ,Q 在直线BC 的 同侧,如何在BC 上找到一点R ,使PR 与QR 的 和最小”. 问题5 造桥选址问题 如图,A 和B 两地在一条河的 两岸,现要在河上造一座桥MN.乔早在何处才能使从A 到B 的 路径AMNB 最短?(假定河的 两岸是平行的 直线,桥要与河垂直)
思维分析:1、如图假定任选位置造桥MN,连接AM和BN,从A 到B 的 路径是AM+MN+BN ,那么怎样确定什么情况下最短呢?
2、利用线段公理解决问题我们遇到了什么障碍呢?
思维点拨:改变AM+MN+BN 的 前提下把桥转化到一侧呢?什么图形变换能帮助我们呢?(估计有以下方法) 1、把A 平移到岸边.
独立完
成,交
流经验
观察思考,动
手画图,用轴对称知识进
行解决
各抒己
见
合作与
体会转化思想,
体验轴对称知识的 应用 B A
M N B A A B C P Q 山 河岸
大桥
(2)求直线同侧的 两点与直线上一点所连线段的
和最小的 问题,只要找到其中一个点关于这条直线的 对称点,连接对称点与另一个点,则与该直线的 交点即为所求. 如图所示,点A ,B 分别是直线l 同侧的 两个点,在l 上找一个点C ,使CA +CB 最短,这时先作点B 关于直线l 的 对称点B′,则点C 是直线l 与AB′
的 交点. 2.如图,A 和B 两地之间有两条河,现要在两条河上各造一座桥MN 和PQ.桥分别建在何处才能使从A 到B 的 路径最短?(假定河的 两岸是平行的 直线,桥要与河岸垂直)
如图,问题中所走总路径是AM+MN+NP+PQ+QB.桥MN 和PQ 在中间,且方向不能改变,仍无法直接利用“两点之间,线段最短”解决问题,只有利用平移变换转移到两侧或同一侧先走桥长.平移的 方法有三种:两个桥长都平移到A 点处、都平移到B 点处、MN 平移到A 点处,PQ 平移到B 点处
.
(二)变式训练:
问题
独立思考,合作交流. 透转化思想.
提炼方法,为课本例题奠定基础.
Q N
A B
M P A B
(1)若要使厂部到
哪建厂?
(2)若要使厂部到
么地方?
(三)综合训练:
图a 图b
四、反思小结布置作业
小结反思
)本节课研究问题的基本过程是什么?
)轴对称在所研究问题中起什么作用?
解决问题中,我们应用了哪些数学思想方法?。