C-E复合材料螺旋铣孔技术研究

浅析飞机复合材料结构修理技术

浅析飞机复合材料结构修理技术 随着科技的不断进步,复合材料逐渐出现在航空领域,在现代航空领域的发展中被广泛应用。由于复合材料已经成为现代飞机结构的重要组成部分,并且其损伤机理与金属损伤存在差异,对复合材料结构修理技术研究具有重要的现实意义。文章主要基于飞机复合材料结构修理基础之上进行研究,促进飞机复合材料的可持续发展。 标签:飞机复合材料;结构修理;技术分析 前言 国内对于先进复合材料在航空领域的应用已经取得一定成效,但对于飞机复合材料结构修理技术的研究依旧需要不断完善。由于现代航空领域需求的不断增加,对复合材料的使用要求逐渐严格。同时在具体的应用过程中需要对复合材料进行维护,体现出飞机复合材料结构修理技术的重要性。 1 飞机复合材料结构类型以及损伤类型 目前,国内外的复合材料在航空领域的应用具有广泛性特点,材料用量占总体用量总重的25%-40%,其中民用飞机占11%-16%,直升机高达60%以上。由此可见,飞机复合材料结构在航空领域的应用具有广泛性特点。对于复合材料以及损伤类型进行分析,加深对复合材料修理技术的理解。 1.1飞机复合材料结构类型 1.1.1 压层板。复合材料当中的压层板主要是由单层板粘合而成,同时构成材料可为不同材质的单层板,也可为各向异性单层板进行构成。由于单层板构成存在复杂性以及非匀质性,导致单层板的实际构成具有各向异性的特点。 1.1.2 蜂窝夹芯结构。蜂窝夹芯机构主要是由薄面板与中间胶接低密度的夹芯构成,具体的面板结构为层压板,面板较薄。其中具体的使用材料为纤维玻璃布、单向碳纤维、编织布、芳纶有机纤维布等材料。蜂窝夹芯结构比常规金属结构具有较高的比强度、抗弯强度、高结构阻尼、消音以及耐声震、隔热性等良好的性能,在航空领域应用具有较好效果。 1.1.3 蜂窝壁板。蜂窝壁板主要是承力面以及蜂窝夹芯构成,蜂窝夹芯位于承力面板之间,使得整个蜂窝壁板的强度增加[1]。此外还有骨架元件以及众多的不锈钢板材料进行实际构成。在蜂窝壁板的实际结构当中,承力面板所承受的质量一般只是自身在平面内的负荷,骨架元件在具体应用中保证局部刚劲,提升固定地点的安全性以及耐用性。 1.2 飞机复合材料损伤类型

叶片修复复合材料 - 副本

风机叶片修复材料浅谈 内容摘要 风力发电机组长期在恶劣的自然环境中暴露运行,不仅要承受强大的风载荷,还要经受气体冲刷、砂石粒子冲击,以及强烈的紫外线照射等外界侵蚀。为了提高损伤修复过程中所使用复合材料的载荷、耐腐蚀和耐冲刷等性能, 必须对所使用叶片修复材料中的树脂基体系统进行精心研究和筛选, 对传统叶片修复工艺进行创新。采用性能优异的环氧树脂, 改善玻璃纤维/树脂界面的粘结性能, 提高叶片的承载能力, 扩大玻璃纤维在大型叶片中的应用范围。研究结果表明叶片修复过程中合理使用的复合材料完全可以达到在恶劣工作环境中长期使用的性能要求。 关键词:风力机; 叶片; 环氧树脂;

引言 随着风力发电机单机功率的不断提高,叶片的质量和尺寸也越来越大,对叶片的要求也越来越高:要求叶片质量轻且分布均匀,外形尺寸精度控制准确;具有最佳的疲劳强度和机械性能,能经受暴风等极端恶劣条件和随机负荷的考验;叶片旋转时的振动频率特性曲线正常,传递给整个发电系统的负荷稳定性好;耐腐蚀、抗紫外线照射和抗雷击的性能好;发电成本较低,维护费用最低。叶片的材料越轻、强度和刚度越高,叶片抵御载荷的能力就越强,叶片就可以做得越大,它的捕风能力也就越强。因此,轻质高强、耐蚀性好、具有可设计性的玻璃纤维增强环氧树脂复合材料是目前国内大型风机叶片生产及修复的首选材料。 本文主要探讨了风机叶片生产和修复过程中所用的主要材料玻璃纤维增强环氧树脂复合材料,以及PVC材料。

一、叶片损伤原因 为了提高风机的发电效率,风机绝大多数处在地理、气候环境相对恶劣的地区,从而导致风机叶片容易遭受损伤。 其中对于风机叶片发生故障率最大的损伤原因是雷击,而且雷击往往会给风机叶片带来较严重的损伤甚至报废。 其次为风沙磨损、酸雨腐蚀,导致叶片表面出现麻点,影响风机使用寿命。 飞鸟撞击也是造成风机叶片损伤的一大杀手,由于风机所在地人眼稀少,所以飞鸟较多,飞鸟撞击往往会使风机叶片表面大面漆胶衣脱落。 另外由于风机叶片质量和体积较大,所以运输和吊装存在较大难度,不可避免的造成一定程度的损伤,发生率较小但若发生后果不堪设想,可能直接导致叶片报废,不可修复。 最后叶片材料老化也是导致风机叶片损伤的一大原因,但是由于材料质量在不断提高,所以发生概率会越来越小。

高中化学 4.3 复合材料的制造先进复合材料主要生产工艺介绍素材1 苏教版选修2

先进复合材料主要生产工艺介绍 先进复合材料,具有轻质、高强、高模量、良好的抗疲劳性、耐腐蚀性、可设计性突出、成型工艺性好和成本低等特点,是理想的航空航天及工业结构材料,在航空产品上得到了广泛应用,已成为新一代飞机机体的主体结构材料。复合材料先进技术的成熟使其性能最优和低成本成为可能,从而大大推动了复合材料在飞机上的应用。一些大的飞机制造商在飞机设计制造中,正逐步减少传统金属加工的比例,优先发展复合材料制造。本文着重介绍复合材料制造过程中所涉及到的主要工艺。 复合材料的性能在纤维与树脂体系确定后,主要取决于成型固化工艺。所谓成型固化工艺包括两方面内容,一是成型,这就是将预浸料根据产品的要求,铺制成一定的形状,一般就是产品的形状。二是进行固化,这就是使已经铺制成一定形状的叠层预浸料,在温度、时间和压力等因素下使形状固定下来,并能达到预计的使用性能要求。 复合材料及其制件的成型方法,是根据产品的外形、结构与使用要求,结合材料的工艺性来确定的。目前,已在生产中采用的成型方法有: 1、手糊成型--湿法铺层成型 2 、真空袋压法成型 3、压力袋成型 4、树脂注射和树脂传递成型 5、喷射成型 6、真空辅助树脂注射成型 7、夹层结构成型 8、模压成型 9、注射成型 10、挤出成型 11、纤维缠绕成形 12、拉挤成型 13、连续板材成型 14、层压或卷制成型 15热塑性片状模塑料热冲压成型 16离心浇注成型 本文主要介绍几种常用的工艺方法 1、手糊成型 手糊成型是聚合物基复合材料制造中最早采用和最简单的方法。其工艺过程是先在模具上涂刷含有固化剂的树脂混合物,再在其上贴一层按要求剪裁好的纤维织物,用刷子挤压织物,使其均匀浸胶并排出气泡后,再涂刷树脂混合物和铺贴第二层纤维织物,反复上述过程直至达到所需厚度。然后在一定压力和温度下加热固化成型,或者利用树脂体系固化时放出的热量固化成型,最后脱模得到复合材料制品。 手工铺贴方法的优点是可使蒙皮厚度有大的变化,进行局部加强,嵌入接头用的金属加强片,形成加强筋和蜂窝夹芯区等。手工铺层的缺点是生产效率低、成本高,不适应大批量生产和大型复杂复合材料制件的生产要求。 目前,手工铺层使用了许多专用设备来控制和保证铺层的质量,如复合材料预浸料自动剪裁下料系统和铺层激光定位系统等,即采用专门的数控切割设备来进行预浸料和辅助材料的平面切割,从而将依赖于样板的制造过程转变为可根据复合材料设计软件产生的数据文件进行全面运作的制造过程。 2、挤出成型 挤出成型又称为挤塑,在加工中利用液压机压力在模具本身的挤出称压出。是指物料通

冲击损伤下航空复合材料修复技术研究进展

冲击损伤下航空复合材料修复技术研究进展 发表时间:2019-01-02T14:25:47.017Z 来源:《信息技术时代》2018年3期作者:李伟栋董少兵郝伟[导读] 随着科学技术的不断发展,越来越多的新型材料被制造并且应用在各行各业的发展中。尤其是先进复合材料的出现并且在航天领域中的广泛应用,推动了中国航天事业的进一步发展 (河南省新乡市飞机场,河南新乡 453000) 摘要:随着科学技术的不断发展,越来越多的新型材料被制造并且应用在各行各业的发展中。尤其是先进复合材料的出现并且在航天领域中的广泛应用,推动了中国航天事业的进一步发展,同时,航天事业也对复合材料的应用提出了新的要求。在航天器材建造中,所使用的复合材料具有各向异性和非均质性的特点,这种特点使得其对于分层损伤和层间断裂十分敏感,为了减少这种损伤对于航天器材的作用发挥的影响,研究人员开始对于冲击损伤下航空复合材料修复技术进行了研究。 关键词:冲击损伤;航空复合材料;修复技术 一、冲击损伤评估 (一)冲击损伤 航天设备在进行使用的过程中,一般所处的环境都是外太空中,这样的外界环境使得在航天器材发挥作用的过程中,可能会出现众多的不可测因素,这些因素的存在会对航天器作用的正常发挥造成一定的影响,为了减少材料的因素对于航天器材的影响,航天器材制作人员在进行材料选择的过程中,一般都会选择高强度、高刚性的复合材料[1]。但是复合材料在使用的过程中,难免会在制造、服役、维修的过程中不可避免的出现缺陷或者损伤,因此复合材料修理的难题就受到了业界的广泛关注。 航空复合材料结构损伤产生的原因或是由制造缺陷引起或是由机械载荷引起,或是由于外界环境引起,在结构损伤中,冲击损伤是对航天器材造成影响最大的。复合材料在进行作用的发挥过程中,由于其各向异性和非均质性对于冲击及其敏感[2]。并且复合材料冲击损伤的机理较为复杂,因此国内外专家针对复合材料的冲击损伤提出了不同的损伤机理计算模型。这些模型的出现有助于研究人员对于航空复合材料修复的进一步研究,推动航天事业的发展与进步。 (二)损伤评估 在对复合材料进行修复时应当提前进行损伤评估,在对复合材料进行损伤评估的过程中,需要进行多方面内容的评估,但是确定修理容限是损伤评估中最为重要的核心工程。在材料修复行业中,所讲的修理容限是指在材料发生故障时观察材料的整体性能是否发生了变化,判断材料是否还存在修理的价值。世界上的航天部门在对复合材料进行修理的过程中一般都会采用冲击后压缩性能来对复合材料的抗冲击和冲击损伤性能进行表征。并且将这种冲击后压缩性能作为复合材料修理容限的一种测量值,通过这种测量值对于复合材料的修理价值做出具体的评价,但是在这种评估方法的使用过程中,也有研究人员提出不应当将这种方法作为唯一的评价标准,因为损伤阻抗与损伤容限是两个不同的概念,在进行研究的过程中,不应当将这两种概念进行混淆,在这种概念的影响下,作者提出用典型铺层试样在规定的冲击条件下得到的冲击损伤破坏曲线的门槛值作为表征复合材料体系损伤容限的物理量[3]。 二、修复技术 (一)机械连接修理 机械连接修理主要是指在复合材料发生损伤时将补板材料与母体材料利用专用的铆钉或螺栓进行联合,这样的修理方法在复合材料的修理过程中由于成本较低,因此在修理过程中较为常见。但是这种修理技术由于在材料修理过程中所使用的铆钉或螺栓密度较高,在修理处易形成二次损伤,导致材料的整体性能下降。随着中国科技技术的不断发展,在机械连接技术的发展中也在不断融入新型制造技术,使机械连接技术向着高智能化方向进行发展[4]。在进行修理的过程中,为了能够较为清晰的观察到复合材料的修理状况,一般会采用数据模型与实验数据相结合的方式。飞机结构在进行连接的过程中一般都是单搭接,所以在进行修理检测的过程中会采用单相静拉伸的方法。并且在近些年对于修复检测的实验中开始考虑到了螺钉载荷分配问题,因而将智能螺栓测试引用到了机械连接之中。智能螺栓在进行检测的过程中,应用其内变形片的变形量输出所形成的电信号来确定在变形片上所形成的具体载荷。 (二)胶结修复技术 在航天材料的修理过程中,除了机械修理外,胶接修复技术也是较为常见的一种修复技术。这种技术在进行应用的过程中,是通过足量的胶粘剂将复合材料补板与母体进行必要的连接,使复合材料的损伤得到修复。胶接修复技术与机械连接修复技术相比,具有更高的实用价值,胶接技术在使用中所形成的胶接区域受力更加均匀,表面更加光滑,受到二次损伤的可能性较小。在胶接修复技术中较为常见的就是贴补法,贴补法在进行应用的过程中,将补板贴于复合材料的损伤处,通过粘贴剂使得材料之间能够进行充分的联合,使用这种技术进行修复的航天材料,在进行使用的过程中,性能比例能够得到相应提高。但是贴补材料在进行使用的过程中易造成修复表面不平滑现象,因此在进行使用的过程中,一般仅仅是在对气动外形要求不高的结构中进行应用。同时这种贴补技术进行的贴补会因为受到外力的影响,发生贴补脱落的情况,因此在贴补过程中,为了避免这种情况的发生,一般都会采用贴板外张扬的方法。除了贴补法外,挖补法也是一种修复技术,在进行挖补修复的过程中,会将复合材料的损伤处打磨成锥形再将修补材料连接到损伤区域,但是这种修复技术在使用的过程中需要高温作用以满足性能和外部结构的需求[5]。 结语: 冲击损伤下航空复合材料修复技术随着航空事业的发展,被越来越多的国家所重视,在进行修复技术的研究过程中投入了大量的资金和技术资源。我国在航天事业的发展上已经取得了重大的成就,但是对于损伤修复技术额研发中依旧存在众多的不足,因此在航天事业的发展过程中,国家航天部应当加大对修复技术的研究力度。 参考文献 [1]韩志杰,刘振宇.航空复合材料薄壁壳体高速冲击损伤特性仿真研究[J].科技与创新,2018(09):19-21. [2]王长越,邢素丽.冲击损伤下航空复合材料修复技术研究进展[J].玻璃钢/复合材料,2017(12):91-98.

复合材料的最新研究进展

复合材料的最新研究进展 季益萍1, 杨云辉2 1天津工业大学先进纺织复合材料天津市重点实验室 2天津工业大学计算机技术与自动化学院, (300160) thymeping@https://www.360docs.net/doc/2b7398343.html, 摘要:本文主要介绍了当前复合材料的最新发展情况,主要集中在复合材料的增强纤维、加工技术、智能材料和非破坏性检测技术等方面。希望能抛砖引玉,激发研究人员更有价值的创意。 关键词:复合材料,最新进展 1. 引言 人类社会正面临着诸多的问题和需求,如矿物能源、资源的枯竭、环境问题、信息技术以及生活质量等,这推动了复合材料的发展,也促进了各种高新技术的发展。但目前人们已不仅仅局限于新材料的创造、发现和应用上,科学研究已进入一个各种材料综合使用的新阶段,即向着按预定的性能或功能设计新材料的方向发展。并且,在复合材料性能取得飞速发展的同时,其应用领域不断拓宽,性能持续优化,加工工艺不断改善,成本不断降低。 复合材料的独特之处在于其可提供单一材料难以拥有的性能,其最大的优势是赋予材料可剪切性,从而优化设计每个特定技术要求的产品,最大限度地保证产品的可靠性、减轻重量和降低成本。近年以来,复合材料在加工领域中取得了一系列重要的进展,由于计算机辅助设计工具的介入和先进加工技术的开发,使复合材料的市场竞争力有了很大的提高,应用领域不断扩大,除用于结构复合材料外,还大量的进入了功能材料市场。我们观察到,复合材料的发展趋势是[1]: (1)进一步提高结构型先进复合材料的性能; (2)深入了解和控制复合材料的界面问题; (3)建立健全复合材料的复合材料力学; (4)复合材料结构设计的智能化; (5)加强功能复合材料的研究。 近年来,复合材料在增强纤维、加工技术、智能材料和非破坏性检测技术等方面研究较多,并且不断有新的市场应用,能够代表复合材料的最新发展方向。 2. 增强纤维环保化[2] 目前,增强纤维的发展趋势主要是强度、模量和断裂伸长的提高。但随着全球环保意识的风行,复合材料产品也逐渐受到环保方面要求的压力,尤其欧洲地区已有相关规定,热固性复材产品由于无法回收再利用而不易销往欧洲。在树脂之外,复材产品中的增强纤维迄今绝大部分都是无法回收再利用的,包括玻璃纤维、碳纤维、芳纶等,全都是如此。 最近有一种新型增强纤维-玄武岩纤维(Basalt Filament),是由火山岩石所提炼而成的,堪称100% 天然且环保,预期在不久的未来,将会取代相当比例的各种纤维,而加入复合 - 1 -

螺旋铣程序

螺旋铣 O0001 : G01X20Y50 预设G52坐标点 G65P2014B20C16J0K20F300 宏程序调用子程序号2014,B附值为孔直径,C附值为刀具径, J附值为Z轴增量基数,K附值为铣孔深度,F附值为进给量。 % O2014 子程序号为2014 G52X#24Y#25 设置刀轴当前点为局部坐标系X0Y0点(以下移动使用局部坐标系)G0X0.Y0. 快速移动至坐标系零点 #4=[#2-#3]/2 孔直径减刀具直径后除以2(做为起点在X向偏置) Z3. 快速移动至Z3 G01Z0.5F500 直线插补Z轴以500MM/分钟进给至Z0.5 X#4Z0.F200 直线插补至X轴偏置,Z0 进给200MM/分钟 WHILE[#5LT#6]DO1 如果#5小于#6时执行DO到END之间的程序,如果#5大于#6时 执行END后的程序。DO为条件执行符号 #5=#5+0.5 Z轴每次增量为0.5 G03X#4Y0Z-[#5]I-[#4]F#9 逆时针圆弧插补至上一个坐标Z轴增量点(X.Y不变) END1 END为条件执行符号 G03X#4Y0.I-[#4]F#9 指定螺旋铣终点 G01X[#4-0.5] 在停止点向圆心方向偏置0.5(准备抬刀) G0Z50. 抬刀至Z50 G52X0.Y0. 回局部坐标零点 M99 子程序结束 % 自变量指定: 自变量中不允许出现地址:G、L、N、O、P 。不需要的地址省略,对应变量为空。除I、J、K有字母顺序要求外其余为顺序要求。

坐标系旋转 % O0001 G40 G17 G90 G91 G28 Z0.0 T01 M06 G54G0 G90 X-50 Y50 S3500 M03 Z50 G43 Z50. H01 M98P2014 子程序调用号2014 G68X0Y0R45 坐标旋转45度(角度第一象限至第四象限渐增)M98P2014 调用子程序号2014 G68X0Y0R90 坐标旋转90度 M98P2014 调用子程序号2014 G49Z50 取消刀具长度补偿 G69M05 取消坐标系旋转 M30 % % O2014 G41G01X20Y5D02F300 : G40X0Y0 :M99

现代大飞机复合材料应用与制造技术浅析

现代大飞机复合材料应用与制造技术浅析 发表时间:2019-05-05T15:40:13.587Z 来源:《基层建设》2019年第4期作者:宋慧[导读] 摘要:由于复合材料具有比强度高、比刚度大、可设计性强及良好的抗疲劳损伤性能和耐腐蚀性能的优点,大批飞机零、部件相继采用复合材料,并且采用复合材料的部位、面积和重量也日趋增加。 沈阳飞机工业(集团)有限公司辽宁沈阳 110850 摘要:由于复合材料具有比强度高、比刚度大、可设计性强及良好的抗疲劳损伤性能和耐腐蚀性能的优点,大批飞机零、部件相继采用复合材料,并且采用复合材料的部位、面积和重量也日趋增加。将先进复合材料应用于飞机结构中可相应减重20%~30%,这是其他先进技术很难实现的效果。复合材料已成为铝、钢、钛之后,迅速发展的四大航空材料之一,所占比例也越来越高,在民用飞机上获得了大 量应用。基于此,本文主要对现代大飞机复合材料应用与制造技术进行分析探讨。 关键词:现代大飞机;复合材料应用;制造技术前言 复合材料工艺技术的发展为实现民用飞机大部件的整体设计与整体制造提供了可能,使得飞机结构零部件的数量大大减少,提高了飞机的生产效率和可靠性。目前采用复合材料取代金属和非金属等常规材料制造结构件已经成为世界民机制造业的主流趋势,这对中国自主研制的大型民用飞机的市场竞争力提出了严峻的考验。 1复合材料在大型民用飞机中的应用复合材料呈多层次结构,其复杂程度远高于金属材料,大型结构件的整体成型和集成制造使得问题更加复杂化,因此其在大型民用飞机上的应用历经坎坷。波音B757和波音B767中复合材料占总质量的4%;波音B777和空客A340中复合材料的质量分数上升到11%和14%;对于空客A380,复合材料的质量分数为25%;对于代表当今世界民用飞机制造技术最高水平的波音B787和空客A350,复合材料的质量分数高达50%和52%。 可以说,先进复合材料质量占飞机结构总质量的多少,在某种程度上已经成为评价该飞机技术先进程度和市场竞争力的重要指标。从国外的情况来看,复合材料在大型民用飞机结构中的应用主要表现为如下发展趋势。 1.1复合材料在大型民用飞机中所占质量分数越来越大 以空中客车公司为例,复合材料占飞机结构的质量分数从A310—300机型的5wt%,上升到A380的25wt%,再到A400M的35wt%,在A350飞机上这一质量分数高达52wt%,第一次实现了复合材料的用量超过了金属材料的用量,被称为“塑料飞机”。 1.2复合材料被大量应用于主承力结构 复合材料最初应用于飞机的舱门、整流罩、安定面等次承力结构,随着材料性能的不断提高,目前复合材料已经被广泛应用于机身机翼等主承力结构。空中客车A380的中央翼盒、翼肋、机身上蒙皮壁板、机身后段、机身尾段、地板梁、后承压框、垂尾等大量主承力结构都采用碳纤维复合材料。 1.3由复合材料制造的复杂曲面结构件越来越多 复合材料在复杂曲面结构件上的应用存在一定的挑战性:(1)受制于制造变形的问题;(2)在铺层设计方面也具有较大的难度。大量先进制造工艺的出现使得由复合材料制造的复杂曲面结构件越来越多,如A380机身19段和球面后压力框等具有复杂曲面的大尺寸受力部件,分别采用复合材料纤维自动铺丝技术和树脂膜渗透(RFI)工艺制造。 1.4飞机结构件的制造向整体成型和共固化方向发展 复合材料之所以在大型民用飞机中所占质量分数不断提高,甚至能够取代金属材料大量应用于飞机结构件的制造,不仅仅是因为其轻质高强的特点,更重要的是因为复合材料易于集成制造,从而可实现大型构件的整体成型。复合材料结构件的共固化和整体成型技术能够显著减少零件和紧固件的数量,缩短生产周期,减少制造和装配工时,大幅度降低生产成本。 2大型飞机复合材料制造技术(1)复合材料成本过高仍是制约飞机结构大量应用复合材料的主要障碍,造成成本下不来、用量上不去的状况。复合材料成本的70%以上来自制造工艺,因此,低成本的制造技术仍是复合材料发展中亟待解决的关键问题。目前,国外复合材料最新的制造理念是整体制造(即尽量将复合材料设计成整体结构),采用诸如像自动铺放、共固化或共胶接等技术实现整体制造。在满足结构总体性能要求的前提下,复合材料整体成型技术的意义在于可以通过减少零件数目、紧固件数量和协调/连接装配工作量进一步减轻结构重量,降低成本(尤其是制造成本)。同时,由于相应钉孔数量下降,可改善结构的承载能力,采用整体成型技术还可以减少分段、对接、间隙和台阶,使机体表面光滑,降低RCS值,提高隐身性能。 (3)采用自动铺放技术可显著降低具有复杂形状复合材料构件的制造成本。最早的自动铺放技术研究始于复合材料机身的制造,由于采用缠绕技术制造机身时缠绕张力使凹面产生缝隙,并使纤维滑移而偏离原来位置,且传统的缠绕工艺无法有效改变厚度,纤维铺放技术解决了上述问题,在大型复杂型面上铺放和压实连续预浸纤维,使得纤维在芯模上的铺放完全在无压力状态下进行;铺放预浸带时可按要求调整其宽度,还能通过加热或冷却调节其粘度,自动铺放精度可达0.005ram。自动铺放(ATL/AFP)自动化制造技术可以提高制件质量和工艺效率,减少零件数量,降低制造及装配成本,目前该技术已得到广泛应用。 (4)自动铺带适用于尺寸较大,曲率相对较小的零件,如整体壁板类零件、大梁、长桁等,而纤维自动铺放适用于尺寸较大,形状相对较复杂的零件,如机身段、进气道等。目前哈飞集团已经引进了自动铺带设备,下面以自动铺带为例,简要介绍机翼整体壁板的制造流程。大型飞机机翼整体壁板结构尺寸较大,不适于手工制造,只能采用自动铺带制造技术。整体壁板分为包括横、纵向加强筋的格栅式整体壁板和只包括横向加强筋的整体壁板。加强筋还分为工字形、T形等结构形式,带有工字形加强筋的格栅式整体壁板成型最为复杂,而只带有横向T形加强筋的整体壁板相对较易制造,但无论采用何种形式,其制造流程基本是一致的。 3结语 (1)波音和空客公司在波音787和空客A350上大量使用复合材料的事实表明,复合材料结构不仅减轻了飞机的结构质量,而且改善了飞机的耐腐蚀性能和抗疲劳性能,降低了飞机的维护费用,大幅度提高了民用飞机的经济性、舒适性和环保性,成为现代大型客机先进性和市场竞争力的标志。

复合材料修复资料

玻璃纤维材料的修复 -----------------------------------------------------------------------------------------其他行业的玻璃纤维修复 1.汽车保险杠是玻璃钢的,损坏了只能用玻璃纤维和树脂来修补,首先你需要买树脂和玻璃纤维毡,这些卖玻璃钢产品的门市都有的,树脂论公斤卖的,叫他们给你配好了,因为其实它有三种材料:树脂、催干剂和固化剂,问清楚怎么用?因为都是化学材料,三者放在一起会起化学反应,放热的,量大的话还会爆炸的,所以要注意安全,不要被烫到了,不要被溅到眼睛里;玻璃纤维布注意最好买毡,因为毡是丝状的,可以一根根抽出来,便于修复修平汽车保险杠表面。两者都买好了,开始修理了:拿个容器另外装树脂,少装些,别一次倒完了,然后再放几滴固化剂,注意搅拌均匀,固化剂可以少放,因为他起固化作用,少放固化慢一些就是了,放多了几分钟就完全固化了,你还没来的及修补呢!用个毛刷刷到到损坏的地方,然后贴些玻璃纤维毡,再刷些树脂上去,刷一次贴一次就可以了!干了以后打磨表面,最后喷漆就可以了!做玻璃这行看起来简单,其实也是技术活,要熟练才刷的平,没有空隙才行!液体是不饱和聚酯树脂【型号一般时191和196】但是要加固化剂和促进剂【俗称红水和白水】比例根据温度而不同,调和后要在规定时间内糊完,否则就会固化 2.买玻璃丝布,环氧树脂,固化剂和柔软剂,先把破口处理一下,再刷环氧树脂混合液,后铺玻璃丝布,这样做三脂两布,固化后,打磨平整。 玻璃钢(FRP)亦称作GFRP,即纤维强化塑料,一般指用玻璃纤维增强不饱和聚酯、环氧树脂与酚醛树脂基体。以玻璃纤维或其制品作增强材料的增强塑料,称谓为玻璃纤维增强塑料,或称谓玻璃钢,注意与钢化玻璃区别开来。由于所使用的树脂品种不同,因此有聚酯玻璃钢、环氧玻璃钢、酚醛玻璃钢之称。质轻而硬,不导电,性能稳定.机械强度高,回收利用少,耐腐蚀。可以代替钢材制造机器零件和汽车、船舶外壳等。 3.树脂和纤维都是玻璃钢的原材料,在混合固化剂和促进剂、在一定温度作用下,粘有树脂的玻璃纤维,因树脂的固化而被粘合在一起,就形成了玻璃钢材质。玻璃钢具有高强、轻质、耐腐蚀的特点,属于复合材料,也就是集合了多种材料的优点而制作出的一种材料。玻璃钢有狭义范畴和广义范畴的说法,狭义就是指玻璃纤维和树脂制作而成的,而广义的玻璃钢,还包括树脂和其它纤维制作成的复合材料,比如碳纤维玻璃钢(比如多数钓鱼竿)、涤纶纤维玻璃钢等等。 4.玻璃钢开裂怎么办 沿着裂缝周围用粗砂纸磨成粗糙,后用树脂和玻璃钢纤维补上 那如果非要修的话,也不是没有办法。树脂选用好点的,一般的也行,还有促进剂、固化剂、优质玻璃纤维布。粉子就不要放了。现在是秋季,温度低,所以固化剂要比夏天时多放,至于精确的比例,我随便估摸一下应该是:固化剂、促进剂、树脂;1:1.5:8 配合玻璃纤维缠在管道上,要让配好的玻璃钢迅速的涂在玻璃纤维布上,要让玻璃钢把玻璃纤维布充分浸透,等待玻璃钢充分固化后,再反复做上几层。就会结实了 航空复合材料结构修理方法 --------------------------------------------------------------------------------------适用于整流罩和玻璃纤维蒙皮1. 1复合材料的缺陷/ 损伤与修理容限

中航西飞公开世界最先进复合材料生产技术

中航西飞公开世界最先进复合材料生产技术 聚焦阎良航空城——中航工业第五届媒体日活动侧记 参加中航工业第五届媒体日的很多记者是“跑航空口”的资深记者,但走进飞机生产科研试验一线的机会却是少之又少,因此大家都十分珍惜这次难能可贵的机会。在不到两天的时间里,他们先后参观了中航工业试飞中心、西飞、一飞院和强度所4家单位,内容丰富而充实,记者们都纷纷表示不虚此行。 本次媒体日活动由试飞中心、一飞院和西飞共同承办。为了便于管理,组织者们将来自全国20个省市近150名记者分成3个小组活动,每个小组都有志愿者全程陪同,这些志愿者和各单位的组织者们给媒体朋友留下了深刻印象。 由于当天一些航班的延误,在注册台服务的志愿者们一直等到深夜。在参观科研生产试验一线时,组织者为每个小组配备一台可移动的无线扩音器,志愿者全程拉着这台重达20公斤的扩音器跟在记者团的身后,让记者们能够清晰地听到讲解。媒体日活动现场到处可见志愿者忙碌的身影,保障了活动的顺利开展。 从飞机设计、生产、试验到试飞,都是极其专业的科技或工艺,但讲解员们都尽量用浅显易懂的语言来描述,用形象生动的比喻让大家更容易理解,耐心细致地解答记者们提出的问题。记者们最后交流时笑着说:“这次媒体日我们是上课来了。” 参加本次媒体日活动的记者们也并不清闲,无论走到哪里,专家、院士、总师的身旁都会围绕一群记者。走进实验室和生产一线时,记者们认真听着工作人员的讲解,有的还拿着笔记本做笔记,时不时提出疑问。一位厂长在活动结束后表示,记者们提出的问题往往都“正中要害”,十分专业。 在本届媒体日活动中,记者们来到西飞公司参观了数控厂房、数控喷丸生产线、复材厂房等,这些生产线代表了我国、甚至是世界最先进的生产技术。来自《国际航空》杂志的记者告诉我,从前一直报道复合材料的消息,但这次在西飞的厂房看到复材的蜂窝、碳纤维等原材料以及加工合成后的复合材料时,才真正明白复材工艺,这比看多少资料都要明了。 很多记者都是军事迷,看到歼15舰载机、歼10战斗机和直10武装直升机就在眼前时,他们兴奋的围着这些重量级选手360度无死角拍照,生怕错过任何一个好的角度。各位专家、总师、院士也成了各位记者追逐的主角。在参观一飞院见到唐长红院士时,一位来自中央电视台的记者在采访之余拉着唐院士要求合影,并强调唐院士是她的偶像。 在11月5日晚,组织者为参加活动的记者们准备了一台小型文艺演出。无论是职工艺术家的美声演唱还是年轻职工组创的乐队,演出的水准完全可以用专业级来评价,尽兴时记者也跑上舞台和职工合唱一段。后来了解到,这些职工艺术家都是工作在一线的员工,工作之余大家聚在一起排练节目,节假日时表演给广大职工。同行的记者说,别看阎良小,还真是卧虎藏龙,不仅造飞机,更出艺术家。

复合材料损伤及其修复技术研究

复合材料损伤及其修复技术研究 【摘要】:复合材料是一种新材料,因为其许多特有的优点已经在航空航天、建筑桥梁等领域得到广泛应用,复合材料的损伤修复也逐渐成为研究项目中的热点。其中光修复技术是用得较多的一种,本研究以较常用的复合材料为试件,在简要介绍复合材料的基础上对光修复技术做了详细介绍,期望能为进一步研究复合材料的光修复技术奠定基础。 【关键词】:复合材料;损伤;光修复 引言 复合材料无论是力学性能、损伤情况、失效方面都要比单一材料复杂很多。由于其基体的强度要比增强纤维的强度低很多,导致它抗冲击的性能较差,横向强度以及层间的剪切强度也比较低,当受到局部的冲击时,复合材料普遍会出现纤维断裂、凹痕、剥层、基体破裂等一些损伤现象。而且一旦发生损伤,损伤的区域会在周期性的应力作用下逐渐扩大,进一步影响到复合材料的继续使用。从上个世纪的80年代初,国外已经着手研究和解决复合材料的修复问题,先后投入了大量的人力、物力和资金。到目前为止,美国和欧洲的一些大公司对关于飞机复合材料损伤修理问题开展了较为广泛的研究,并且己经取得一定的成果,但仍然在不断的发展中。早在上个世纪80年代中期,欧美的许多大公司就在飞机的设计文件以及使用手册里面详细规定了复合材料的修复方法,比如美国波音公司的A320维护手册和F-16修理手册。近年来,国内航空航天系统的相关部门对这个问题的紧迫性和重要性已经有所认识,在复合材料的修复问题上也作了许多工作并取得了一些进展,相继成立了空中客车亚洲复合材料结构维修和中国东方航空公司空中客车复合材料结构修理专家系统等致力于研究复合材料修复的机构。但从总体上来看,重视程度依然不够、投资也不足,所以基本上没解决什么问题。对许多缺陷和损伤没有制定明确的修理方法,修理材料、工艺设备等也不够完善。因此,我们通过研究制定关于复合材料的修复手册,更加高效地解决有关复合材料修复的问题,使复合材料能够得到更加广泛的应用。 1.复合材料的性能与特点 复合材料具有很多良好的性能,复合材料代替铝合金结构,可大大降低飞行

Ti基复合材料及其制备技术研究进展评述

先进材料制备科学与技术课题报告 ——Ti基复合材料及其制备技术研究进展报告 学院:材料科学与工程学院 学号:SY1401210 姓名:刘正武 2014年12月24日

摘要 钛基复合材料(TMCS)以其高的比强度、比刚度和良好的抗高温、耐腐蚀性能,在航空航天、汽车等领域有着广阔的应用前景,引起了材料研究者的广泛兴趣。国外对钛基复合材料的研究已有近40年的历史,发展相当迅速,开发出来的原位合成工艺、纤维涂层等制备技术已经成功用于制备高性能钦基复合材料。国内TMCS研究起步较晚,虽取得了一定成绩,但与国外相 比还有一定差距。 本文主要从钛基复合材料的研究背景,强化原理,以及存在的主要问题方面做了总结,并对国内外的研究现状作了简要评述。钛合金本身具有较高的室温和高温比强度、低密度、高弹性模量。加入增强相,又进一步提高比弹性模量、比强度和抗蠕变能力。颗粒增强钛基复合材料(PTMCS)与纤维增强钛基复合材料(FTMCS)相比,具有制备工艺较简单,成本较低,无各向异性,可得到近净型零件等优点,是很有前途的复合材料。自生钛基复合材料基体将由纯钛基体向Ti6Al转化,并加入其它的合金元素,会得到实际应用。 关键词:钛基复合材料;性能;制备;研究进展

目录 第1章前言 ----------------------------------------------------------------------------------------------------------------------------- 4 1.1研究背景及原理-------------------------------------------------------------------------------------------------------------- 4 1.2 主要问题 ---------------------------------------------------------------------------------------------------------------------- 5 第2章国内外研究进展及评述 ---------------------------------------------------------------------------------------------------- 6 2.1 Ti基复合材料增强体的种类---------------------------------------------------------------------------------------------- 6 2.2陶瓷颗粒增强钛基复合材料 ---------------------------------------------------------------------------------------------- 7 2.2 自生钛基复合材料--------------------------------------------------------------------------------------------------------- 11 第3章结论 --------------------------------------------------------------------------------------------------------------------------- 13 参考文献 -------------------------------------------------------------------------------------------------------------------------------- 14

复合材料大作业

先进复合材料制造技术复合材料表面的金属化 姓名丁志兵

班级05021104 学号2011301263 复合材料表面的金属化 材料作为社会进步的物质基础和先导,在人类历史发展的过程中一直都是人类进步的里程碑。每一种新材料的发现和利用都会为社会生产力的提高以及人类生活品质的提升带来巨大的变化。同时,材料制造的水平也是衡量一个国家科学技术和经济发展的重要因素之一。 复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的发展具有悠久的历史,自20 世界40 年代因航空工业发展的需要而发展出的玻璃纤维增强复合材料(也称玻璃钢),复合材料这一新材料的名称因此而进入人们的视线。复合材料的出现,使得材料科学的内容产生了极大的丰富,并且因其自身的广泛而优异的性能而得到快速的发展,人们将复合材料的出现视为人类进步发展的里程碑。科学家预言:“复合材料在21 世纪中将支撑着科学技术的进步和挑起经济实力的脊梁”,“21 世纪将是复合材料的时代”,“先进复合材料在21世纪中将在航空航天技术领域中发挥越来越重要的作用”。随着时代的进步和科技的发展,复合材料结构已经广泛应用于航空航天、船舶、车辆、建筑工程等多个领域,的确,21 世纪将是复合材料的时代,复合材料必将肩负着重要的责任。 树脂基复合材料以其质轻、高比强度、高比模量、热膨胀系数小、性能可设计性等一系列优点,已经成为国内外航天器结构部件的首选材料,广泛应用于各类卫星天线、相机结构组件、裕架、太阳能电池板等。在航天器中,用复合材料代替金属材料,在保持原有力学性能,甚至更高的同时,可有效减轻航天器的重量,节约发射成本。但是,由于特殊的空间使用环境和航天技术新的发展需求,树脂基复合材料面临以下的问题,严重影响了该类材料的进一步应用。 1)空间防护能力不足,制约航天器向长寿命方向发展。 航天器在空间运行过程中要经受严酷的空间环境考验。近地轨道以大量的原子氧、紫外环境为主。原子氧是一种很强的氧化剂,对树脂基体具有很强的腐蚀作用,当航天器以极高的速度在其中运行时,相当于将航天器浸泡于高温的氧原子气体中,裸露在外的树脂基复合材料结构件表面与其作用形成挥发性的氧化物;在地球同步轨道,空间辐射环境以带电高能粒子如电子,质子和紫外线等为主,带电粒子对卫星结构件的辐射损伤主要是通过以下两个作用方式:一是电离作用,即入射粒子的能量通过被照物质的原子电离而被吸收,另外一种是原子的位移作用,即被高能粒子中的原子位置移动而脱离原来所处的晶格位置,造成晶格缺陷。高能的质子和重粒子既能产生电离作用,又能产生位移作用。所有这些作用都会导致树脂基

碳纤维复合材料不同制孔工艺技术的探究

碳纤维复合材料不同制孔工艺技术的探究 发表时间:2019-06-24T15:19:34.440Z 来源:《中国西部科技》2019年第8期作者:徐斯斯 [导读] 在科学技术水平不断提升的影响下,许多新的技术、材料被研发出来,在应用的过程中应用性能和应用优势较为明显。碳纤维复合材料就是一种新型材料,重量轻、性能好,在航空航天领域应用的比较广泛。飞机在制造的过程中,钻孔是制造过程中的最后一道工序,将所有结构连接在一起。但是碳纤维复合材料在钻孔的过程中容易出现分层的现象,这就会对整体结构的质量和稳定性造成影响。需要结合实际情况,采取科学的制孔工艺,来保证钻孔质量 航空工业哈飞工程技术部 碳纤维复合材料的应用可以减少能源的消耗,提升飞机整体的应用效果,而且在后续维修的过程中也不用投入大量的资金。飞机不同部位在装配的过程中,都需要进行制孔才能进行连接,如果应用传统的制孔工作,则容易出现毛刺、撕裂,表面不平整,影响连接和装配的有效性。为了避免这种情况的出现,则需要将现代化科学技术融入到制孔工作中,对制孔工艺技术进行改进和创新,确保可以满足飞机的制造要求,提升整体结构的稳定性。 一、轴向力模型的制作 复合材料分层主要分为两类,一是入口的剥离分层,主要由于钻削过程中,沿刀具螺旋槽斜面会产生一个轴向剥离的力,使纤维材料在外缘方向上发生分层;二是出口的推出分层,也是复合材料分层最严重的部分,此类分层的产生是源于复合材料钻削加工过程中,随着刀具接近出口平面,未切削层厚度减小,所承受轴向推力也逐渐减小,一旦轴向推力超过临界轴向力,则会发生分层现象。 1、麻花钻(无预制孔)轴向力模型 传统麻花钻钻削复合材料时,基于轴向力的制孔分层圆板模型。在此模型中,复合材料层压板呈现出弹性和各向同性等性能,根据线弹性断裂力学,对钻削能量平衡进行计算 2、预制孔钻削加工轴向力模型 有预制孔的复合材料层合板在钻削加工时,对分层轴向力模型,在已有预制孔的情况下,对麻花钻制孔裂纹扩展时轴向推力进行计算。 3、阶梯钻轴向力模型 阶梯钻制孔可视为初始钻削阶段和次级钻削阶段。结合阶梯钻使用过程中的实际情况是进行进行轴向力模型的建立。 二、实验与分析 1、实验方案 实验一:主轴转速和进给率分别保持在 1000prm 和 10 mm/min,阶梯钻和预制孔分别在 0. 1<k<0.63 范围中取 7 个不同的直径比率进行钻削,观察其各自临界轴向力随直径比率的变化趋势,对比传统麻花钻,分析得出临界轴向力与直径比率的关系。 实验二:主轴转速和进给率与实验一相同,三种不同工艺分别在 0<h<2. 4 mm 中取 24 个等距位置,得出轴向力并绘制折线图分别进行对比,确定轴向力与未切削层厚度的关系曲线。 实验三:在主轴转速为 1000 rpm 的条件下,采用三种工艺对CFRP层合板在进给率分别为 5 mm/min、10 mm/min、15 mm/min、20 mm/min 的参数下进行无预制孔钻削,研究轴向力与进给率的关系。 2、实验结果分析 (1)临界轴向力与直径比率分析 临界轴向力是由材料属性、未切削层厚度及直径比率三者的关系式确定的。为评估无分层钻削方案,对比了阶梯钻和预制孔随直径比k 值变化时,临界轴向力与麻花钻临界轴向力的比值。当 0. 1<k<0. 63 时,两种工艺临界轴向力均随直径比率的扩大而增加。当阶梯钻0. 561<k<0.63 时,临界轴向力超过同等条件时麻花钻(k=1)的临界轴向力。此时,阶梯钻能使层合板在更高的进给率下完成无分层制孔,提高了生产效率。预制孔的直径比率在 0. 27<k<0. 63 时,所产生的临界轴向力大于麻花钻(k=1)的临界轴向力。综上,对于阶梯钻 0. 561<k(k = b/c) <0. 63 和预制孔0. 27<k(k=2b/d)<0. 63,均较同等条件下的麻花钻有更高的临界推力,因此也会达到更高的制孔质量。 (2)轴向力与未切削层厚度分析 在 1000 rpm、10 mm/min 参数下,三种工艺钻削轴向力的变化均呈现先增大后减小的趋势,如图 6所示。在钻削入口处,切削刃与层合板的接触面积较小,则切削轴向推力较小;随着切削刃工作量的增加,与层合板的接触面积逐渐增大,轴向力也随之增大,且相对趋于稳定;当未切削层不足以承担推力时,轴向推力则会呈现下降的趋势。 阶梯钻和预制孔的钻削轴向力较传统麻花钻分别减小了约 30%和 60%,差异较为显著。因为预制孔和阶梯钻有利于消除刀具横刃所产生的轴向力,这部分轴向力是导致出口分层的主要因素。预制孔孔径和刀具横刃长度均为 3 mm,使得钻削过程中预制孔抵消横刃的影响,扩孔全部由切削刃完成,因此出口处不发生橫刃推挤。阶梯钻初始阶段横刃为 2mm,这一阶段加工完成后层合板孔径为 5 mm,为次级钻削去除了部分中心材料,第二阶段沿阶梯外缘进行扩孔能够去除第一阶段产生的分层,并降低横刃推出作用。 (3)孔质量对比 通过对三种制孔工艺技术的孔质量相比较发现,如果在相同的作业环境中,各项参数都相同,各方面因素都保证科学合理,采用麻花钻制孔技术钻出的孔,整体质量要比较差,而且分层现象较为严重,孔的周围存在大量的毛刺;采用预制孔钻削加工,孔的周围产生了轻微的毛刺,没有出现分层的情况;应用阶梯钻制孔,孔的周围也存在着少量的毛刺,但是没有分层现象。由此可见,采用预制孔钻孔加工和阶梯钻的制孔方法,可以提高制孔的质量,避免分层现象的发生,对飞机制造质量的提升有着积极的影响,在后续飞机制造的过程中可以加强这两种制孔工艺的应用。 结语:采用阶梯钻或者预制孔可以避免分层现象的出现,制孔的效率得到了显著的提升。可以应用建立的分层临界轴模型对不同制孔工艺技术的应用效果进行体现。上文主要对阶梯钻、麻花钻和预制孔钻削加工进行了分析,通过实验发现,刀具横刃产生的轴向力是导致分层现象发生的主要原因,可以对这方面进行控制,来避免制孔过程中分层现象的出现。 阶梯钻制孔工艺在应用的过程中,如果初级阶段和次级阶段直径比超过一定的范围,或者高于其他两种钻孔工艺的直径比,那么轴向推力就会增加,这样可以在一定程度上避免分层现象的出现;带预制孔钻削工艺在应用的过程中削弱了横刃的轴向力,这样可以降低轴向

相关文档
最新文档