汽轮机胀差
汽轮机运行中胀差的分析和控制
汽轮机运行中胀差的分析和控制当汽轮机在启动加热、停机冷却过程中,或在运行中工况变化时,汽缸和转子会产生热膨胀或冷却收缩,由于转子的受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大,因此,在相同的条件下,转子的温度变化比汽缸快,使得转子与汽缸之间存在膨胀差,而这差值是指转子相对于汽缸而言的,把转子与汽缸之间热膨胀的差值称为相对膨胀差,简称胀差。
当转子轴向膨胀大于汽缸的轴向膨胀时,称为正膨胀;反之若转子轴向膨胀小于汽缸的轴向膨胀时,称为负膨胀。
一.汽轮机胀差的产生汽缸和转子之间出现胀差的主要原因是它们的结构和工作条件不同。
由于转子与汽缸之间存在温差,各自受热状况不一样,转子质量小但接触蒸汽的面积大,温升和热膨胀较快,而汽缸质量大,温升和热膨胀就比较慢,因此在转子和汽缸热膨胀还没有达到稳定前,他们之间就有较大的胀差。
同理,由于转子比汽缸体积小,转子的冷却收缩也比汽缸的冷却收缩快,这时它们之间也会产生较大胀差。
汽轮机启动加热,从冷态变为热态,汽缸受热发生热膨胀,汽缸向高压侧或低压侧伸长。
同样转子也因受热发生热膨胀。
转子膨胀大于汽缸,其相对膨胀差被称为正胀差。
汽轮机带负荷后,转子和汽缸受热面逐渐于稳定,热膨胀逐渐区于饱和,它们之间的相对膨胀差也逐渐减小,最后达到某一稳定。
二.胀差过大的危害胀差的大小意味着汽轮机动静轴向间隙相对于静止时的变化,正胀差表示自喷嘴至动叶间隙增大;反之,负胀差表示该轴向间隙减小。
汽轮机轴封和动静叶片之间的轴向间隙都很小,若汽轮机启停或运行中胀差变化过大,超过了轴封以及动静叶片间正常的轴向间隙时,就会使轴向间隙消失,导致动静部件之间发生摩擦,引起机组振动,以至造成机组损坏事故。
因此,汽轮机都规定有胀差允许的极限值,它是根据动静叶片或轴封轴向最小间隙来确定的。
当转子与汽缸间隙相对膨胀差值达到极限值时,动静叶片或轴封轴向最小间隙仍留有一定的合理间隙。
不同容量的汽轮机组胀差允许极限值不同。
汽轮机的 胀差
实例:200MW机组负胀差 大的原因和处理
• 现象:5#机组大修后,发现高压缸负胀差增大,-1.5mm,接近 保护动作值,只能维持120MW。并先后掉闸11次,同时发现高 压缸前后漏汽严重,高压缸绝对膨胀为25~26mm。高旁门杆漏 汽严重,而该漏汽进入轴封排汽系统。 • 机组高压缸与轴承箱间工字键温度比其他机组高(235℃,其他机 组为85℃),对工字键吹风降温,高压缸负胀差降为-0.7。 • 轴封加热器排汽口余汽排汽量大于其他机组,入口应为负压,而 现在为0.5MPa。 • 机组串轴值大修前为0.1mm,而现在为0.3mm,说明转子向发动 机侧推移了0.2mm。 • 分析:造成高压缸负胀差大的原因是高压缸前后轴封漏汽严重, 导致汽缸膨胀量增加,工字键温度高,高压缸比正常膨胀值多向 前移动了一定数值,而串轴又将转子向后移动了0.2mm,造成 高压缸出现负胀差。 • 漏汽来源于高旁门杆漏汽,门杆漏汽造成轴封排汽不畅,轴封漏 汽严重,加热了汽缸和工字键。
• 胀差负值大的原因有:负荷下降速度过快或甩 负荷;置加热过度;轴承油温 过低;双层缸夹层中流入高温蒸汽(如进汽管 漏汽)等。
实例:200MW机组正胀差 大的原因和处理
汽缸过大正胀差的排除 • (一)汽缸膨胀不畅原因 • 原因:大功率汽轮机由于高中压转子达几十吨, 而使第二轴承座(中轴承座)摩擦力很大。 • 采用充油台板,充油不及时,油质不合格、台 板毛刺等原因,造成启动过程汽缸膨胀受阻, 出现正胀差。 • 现象:高中压缸膨胀值达不到设计值,轴承座 启动膨胀曲线出现跳跃,甚至有咚咚的响声。
(2)汽缸侧工字键要比轴 承座侧高1.5~0.3mm,这 个值叫预应力。因为高压 缸是上缸猫爪支撑在轴承 座上,下缸吊在上缸上, 当下缸向下位移时,工字 键保持水平。安装时对此 公差未与重视。 当下缸向下位移时,工字 键低头刚度减弱,降低了 推动力的传递,中轴承箱 膨胀受阻。
汽轮发电机低压缸胀差大原因分析及处理
汽轮发电机低压缸胀差大原因分析及处理汽轮发电机是一种利用汽轮机转动发电机发电的装置。
汽轮发电机的低压缸胀差是指在使用过程中,低压缸前后缸衬之间的胀差变大,导致压力泄漏增加,功率减弱,工作效率下降的问题。
下面将对汽轮发电机低压缸胀差大的原因进行分析,并提供相应的解决方法。
1.低压缸衬材质问题:低压缸衬材质选择不合适,导致其抗热胀性能不足,容易在工作温度下产生较大胀差。
解决方法是更换高性能的衬套材料,如高温合金。
2.温度控制问题:在汽轮发电机运行中,由于管路、冷却系统等问题,导致低压缸温度控制不良,超过了设计要求,造成衬套过度膨胀,胀差增大。
解决方法是优化冷却系统,确保低压缸温度在可控范围内。
3.衬套密封不良:低压缸衬套与缸体之间的密封不良导致压力泄漏,增加了压力差,使得衬套产生较大胀差。
解决方法是检查并修复衬套密封问题,确保衬套与缸体之间的紧密连接。
4.衬材磨损问题:低压缸衬套长时间使用后,由于磨损、疲劳等原因,失去了原有的密封性能,导致胀差增大。
解决方法是定期检查衬套磨损情况,及时更换磨损严重的衬套,延长发电机使用寿命。
5.运行过程中的振动问题:汽轮发电机在运行过程中受到振动的影响,振动过大会导致低压缸衬套松动,增加了胀差。
解决方法是加强对汽轮发电机的振动监测和控制,有效减小振动对衬套的影响。
综上所述,汽轮发电机低压缸胀差大的原因可能是多方面的,包括材料、温度控制、密封、磨损和振动等问题。
针对这些原因,需要进行相应的处理方法,如更换衬套材料、优化温度控制系统、修复密封问题、定期更换磨损的衬套以及加强振动监测和控制。
通过这些措施,可以有效降低低压缸胀差,提高汽轮发电机的运行效率和使用寿命。
汽轮机轴向位移与胀差增大原因及处理
汽轮机轴向位移与胀差汽轮机轴向位移与胀差 (1)一、汽轮机轴向位移增大的原因 (1)二、汽轮机轴向位移增大的处理 (1)三、汽机轴向位移测量失灵的运行对策 (1)汽轮机的热膨胀和胀差 (2)相關提問: (2)1、轴向位移和胀差的概念 (3)2、轴向位移和胀差产生的原因(影响机组胀差的因素) (3)使胀差向正值增大的主要因素简述如下: (3)使胀差向负值增大的主要原因: (4)正胀差 - 影响因素主要有: (4)3、轴向位移和胀差的危害 (6)4、机组启动时胀差变化的分析与控制 (6)1、汽封供汽抽真空阶段。
(7)2、暖机升速阶段。
(7)3、定速和并列带负荷阶段。
(7)5、汽轮机推力瓦温度的防控热转贴 (9)1 润滑油系统异常 (9)2 轴向位移增大 (9)3 汽轮机单缸进汽 (10)4 推力轴承损坏 (10)5 任意调速汽门门头脱落 (10)6 旁路系统误动作 (10)7 结束语 (10)汽轮机轴向位移与胀差轴向位移增大原因及处理一、汽轮机轴向位移增大的原因1)负荷或蒸汽流量突变;2)叶片严重结垢;3)叶片断裂;4)主、再热蒸汽温度和压力急剧下降;5)轴封磨损严重,漏汽量增加;6)发电机转子串动;7)系统周波变化幅度大;8)凝汽器真空下降;9)汽轮机发生水冲击;10)推力轴承磨损或断油。
二、汽轮机轴向位移增大的处理1)当轴向位移增大时,应严密监视推力轴承的进、出口油温、推力瓦金属温度、胀差及机组振动情况;2)当轴向位移增大至报警值时,应报告值长、运行经理,要求降低机组负荷;3)若主、再热蒸汽参数异常,应恢复正常;4)若系统周波变化大、发电机转子串动,应与PLN调度联系,以便尽快恢复正常;5)当轴向位移达-1.0mm或+1.2mm时保护动作机组自动停机。
否则手动打闸紧急停机;6)轴向位移增大虽未达跳机值,但机组有明显的摩擦声及振动增加或轴承回油温度明显升高应紧急停机;7)若轴向位移增大而停机后,必须立即检查推力轴承金属温度及轴承进、回油温度,并手动盘车检查无卡涩,方可投入连续盘车,否则进行定期盘车。
汽轮机胀差保护的作用_解释说明以及概述
汽轮机胀差保护的作用解释说明以及概述1. 引言1.1 概述汽轮机是一种重要的能量转换设备,广泛应用于电力、化工、钢铁等各个领域。
在汽轮机运行中,胀差问题是一个常见且关键的挑战。
胀差指的是在汽轮机快速启动或负载快速变化时,由于热膨胀和冷缩不均匀引起的叶片与壳体之间的间隙变化。
1.2 文章结构本文旨在详细说明汽轮机胀差保护措施及其作用,并进一步介绍胀差对汽轮机性能和安全性的影响。
文章将分为五个部分进行阐述:引言、汽轮机胀差保护的作用、解释说明汽轮机胀差保护措施、汽轮机胀差保护的效果评估与应用案例分析以及结论与展望。
1.3 目的本文旨在深入了解汽轮机胀差保护技术,明确其作用和意义,并探讨相关措施对汽轮机性能和安全性的影响。
通过对现有研究成果和实际运行案例的归纳和总结,旨在为汽轮机胀差保护提供有效的指导和建议。
此外,本文还将展望未来研究方向和发展趋势,以推动汽轮机胀差保护技术的进一步创新和应用。
2. 汽轮机胀差保护的作用2.1 胀差定义与原理汽轮机胀差是指在高温工况下,由于受热面积变化不均匀引起的部分区域膨胀过快,造成设备失稳或损坏。
它是汽轮机运行过程中常见的问题之一。
根据热力学原理,高温导致轴心线和蒸汽流动发生变化,导致设备失稳并可能引发事故。
2.2 胀差对汽轮机的影响胀差会对汽轮机的性能和安全产生严重影响。
首先,胀差会导致转子不平衡,引发振动和噪音,降低设备可靠性。
其次,在极端情况下,过大的胀差可能会导致叶片与固定部件碰撞,造成设备损坏或事故。
此外,由于胀差使得叶片间隙变小,蒸汽流动速度增加,给汽轮机带来额外的负荷和效率下降。
2.3 胀差保护的需求与重要性鉴于胀差对汽轮机的严重影响,保护汽轮机免受胀差所带来的问题至关重要。
胀差保护措施旨在确保设备在高温条件下正常工作,稳定性和安全性得到保障。
由于胀差是由瞬态温度变化引起的,因此及时采取恰当措施以应对并缓解胀差现象对汽轮机的不利影响非常必要。
为了实现有效的汽轮机胀差保护,需要综合考虑温度控制策略、压力调节手段和控制系统设计与优化等方面的因素。
(完整word版)汽轮机的胀差控制
汽轮机的胀差控制汽轮机在启停过程中,转子与汽缸的热交换条件不同。
因此,造成它们在轴向的膨胀也不一致,即出现相对膨胀。
汽轮机转子与汽缸的相对膨胀通常也称为胀差。
胀差的大小表明了汽轮机轴向消息间隙的变化情况。
习惯上规定转子膨胀大于汽缸膨胀时的胀差值为正胀差,汽缸膨胀大于转子膨胀时的胀差值为负胀差。
胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣。
转子的相对胀差过大,会使动、静轴向间隙消失而产生摩擦,造成转子弯曲,引起机组振动,甚至出现重大事故。
一、分析胀差时,需考虑的因素:轴封供汽温度和供汽时间的影响:在汽轮机冲转前向轴封供汽时,由于冷态启动时轴封供汽温度高于转子温度,转子局部受热而伸长,出现正胀差,可能出现轴封摩擦现象。
在热态启动时,为防止轴封供汽后出现负值,轴封供汽应选用高温汽源,并且一定要先向轴封供汽,后抽真空。
应尽量缩短冲转前轴封供汽时间。
真空的影响:在升速热机的过程中,真空变化会引起涨差值改变。
认真空降低时,为了保持机组转速不变,必须增加进汽量,摩擦鼓风损失增大,使高压转子受热膨胀,其涨差值随之增加。
认真空进步时,则反之。
使高压转子胀差减少。
但真空高低对中、低压缸通流部分的胀差影响与高压转子相反。
进汽参数影响:当进汽参数发生变化时,首先对转子受热状态发生影响,而对汽缸的影响要滞后一段时间,这样也会引起胀差变化,而且参数变化速度越快,影响越大。
因此,在汽轮机启停过程中,控制蒸汽温度和流量变化速度,就可以达到控制差胀的目的。
汽缸和法兰加热的影响:汽缸水平法兰在升速过程中温度比汽缸要低,阻碍汽缸膨胀,引起胀差增加。
转速影响:泊桑效应也就是汽轮机的轴在转速增加的时候,受到离心力的作用,而变粗,变短.转速减小的时候,而变细,变长滑销系统影响:在运行中,必须加强对汽缸尽对膨胀的监视,防止左右侧膨胀不均以及卡涩造成的消息部分摩擦事故。
汽缸保温顺疏水的影响:汽缸保温不好,会造成汽缸温度分布不均且偏低,从而影响汽缸的充分膨胀,使汽机膨胀差增大;疏水不畅可能造成下缸温度偏低,影响汽缸膨胀,并轻易引起汽缸变形,从而导致相对差胀的改变。
汽轮机胀差原理及控制
汽轮机胀差原理及控制摘要:汽轮机胀差是指由于燃烧迅速地产生温度和压力的变化而引起的机舱内缸壳和缸套之间的瞬时位移。
本文介绍的目的是讨论汽轮机胀差的原因和方法,探讨常见的汽轮机胀差控制技术,以更好地发挥其性能,并提出一些重要的改进建议。
关键词:汽轮机胀差,机舱,缸壳,缸套,控制正文:1 汽轮机胀差的原因及结果汽轮机胀差是由于有效燃烧的温度和压力的急剧改变,从而导致机舱内缸壳和缸套之间的瞬时位移,使缸套产生相对缸壳不同的扩张速率,引起有关部件之间的不匹配和接触损失。
由于汽轮机胀差引起的位移,使机舱内部有效动作难以完成,影响燃烧室的工艺流程,有助于减少汽轮机运行效率。
2 汽轮机胀差控制要有效地控制汽轮机胀差,必须结合机舱结构和材料特性进行科学设计。
通常采取的控制措施包括采用导热材料和能量传输管理技术,减少机缸热量分布不均匀;采用变厚缸套等技术来改善汽轮机结构;采用较大的机舱内缸体空气空隙来抑制胀差等技术。
在设计过程中,要根据具体情况分析结合各种物理因素,在满足结构强度要求的前提下,尽可能采用灵活有效的结构形式。
3 改进建议针对汽轮机胀差的控制,还可以在材料上进行改进,如改变材料抗拉强度、热膨胀系数等,以达到汽轮机胀差控制的要求。
此外,可以利用机械装置将胀差减至可接受的范围,或者使用热屏蔽物质降低温度,以降低机舱内的温度梯度,从而提高汽轮机的效率。
4 结论综上所述,汽轮机胀差的产生是由于温度和压力的变化而引起的。
要有效地抑制汽轮机胀差,需要结合机舱的结构和材料特性进行合理的设计,并采用尽可能多的有效控制方法。
另外,还可以通过修改材料、提高机舱内的温度梯度和采用热屏蔽物质等方法来减少胀差的产生。
目前,汽轮机胀差的控制技术尚未得到广泛应用,仍然需要依靠开发技术来改善汽轮机性能。
5 未来研究未来,可以在多个方面进行深入研究,以减少汽轮机胀差的发生。
例如,针对缸套抗拉强度和热膨胀系数等性能,可以采取新的材料和技术,并改进汽轮机的结构,使缸壳和缸套之间的位移得到更好的控制。
汽轮机启动时胀差大的原因
汽轮机启动时胀差大的原因胀差是指在汽轮机启动过程中,由于热胀冷缩的不均匀性导致的零部件间的间隙变化。
在汽轮机启动初期,由于机组处于冷态,各个零部件的温度不均匀,热胀冷缩不一致,从而引起胀差现象。
汽轮机启动时胀差大会对机组运行安全和可靠性产生不利影响。
本文将从几个方面探讨汽轮机启动时胀差大的原因。
汽轮机启动时胀差大的原因之一是机组处于冷态,各个零部件的温度差异较大。
在长时间停机后重新启动汽轮机时,由于机组内部温度下降,各个零部件的温度差异较大,导致热胀冷缩不均匀。
例如,汽轮机的叶片、轴承等零部件冷却后会收缩,而轴、壳体等零部件由于处于低温下,胀缩程度较小。
这样就会导致零部件之间的配合间隙变大,出现胀差现象。
汽轮机启动时胀差大的原因还与机组内部的温度分布不均匀有关。
在汽轮机启动初期,由于各个零部件的热容量和传导能力不同,热量分布不均匀。
例如,汽轮机的叶片、轴承等零部件会因为受到高温蒸汽的冲击而迅速升温,而壳体等零部件由于热容量大、传导能力差,升温较慢。
这样就会导致零部件之间的温差较大,引起胀差现象。
汽轮机启动时胀差大的原因还与机组内的热应力有关。
在汽轮机启动过程中,由于温度变化较大,零部件会产生相应的热应力。
例如,汽轮机的叶片由于受到高温蒸汽的冲击,会产生较大的热应力。
而壳体等零部件由于热容量大、传导能力差,温度变化较小,热应力较小。
这样就会导致不同零部件之间的热应力差异较大,引起胀差现象。
汽轮机启动时胀差大的原因还与机组内的材料性质有关。
不同材料的热胀冷缩系数不同,热胀系数大的材料在温度变化时胀缩程度较大,而热胀系数小的材料胀缩程度较小。
在汽轮机启动初期,由于机组内部的温度变化较大,不同材料之间的胀缩程度差异较大,从而引起胀差现象。
汽轮机启动时胀差大的原因主要包括机组处于冷态、机组内部温度分布不均匀、机组内的热应力以及材料性质等因素。
为了减少汽轮机启动时的胀差现象,可以采取一些措施。
例如,在汽轮机启动前可以进行预热,提高机组的温度,减少温度差异;在设计和制造过程中,可以优化零部件的配合间隙,减少胀差现象的发生;在运行过程中,可以合理控制汽轮机的启动速度,减少温度变化的幅度。
汽轮机胀差、轴向位移的产生原因
当凝汽器真空升高时,排汽温度降低,可能导致负胀差增大 ;反之,真空降低时,胀差可能增大。
轴封供汽温度的影响
轴封供汽温度过高或过低会影响轴封的间隙大小,进而影 响汽轮机的热膨胀。
若轴封供汽温度与汽缸温度不匹配,可能导致胀差异常波 动。
02 汽轮机轴向位移的产生原因
CHAPTER
推力轴承故障
推力轴承损坏或磨损
机组负荷的快速变化
负荷突增或突减
汽轮机在运行过程中,如果机组负荷发生突增或突减,会导致汽缸和转子受到的蒸汽作用力发生变化,从而引起 轴向位移。
甩负荷
甩负荷是指汽轮机突然失去负荷的情况,如电网故障导致负荷突然消失。甩负荷过程中,汽轮机内部的蒸汽压力 和流量会发生剧烈波动,导致轴向位移的发生。
03 汽轮机胀差和轴向位移的关联性
快速响应蒸汽参数和机组负荷的变化
01
快速响应蒸汽参数和机组负荷的变化也是预防汽轮机胀差和轴向位移的重要措 施之一。蒸汽参数和机组负荷的快速变化可能导致转子热弯曲和动静摩擦等问 题。
02
应加强蒸汽参数和机组负荷的监测和控制,确保在出现异常情况时能够及时发 现并处理。同时,应优化控制系统的算法,提高其对蒸汽参数和机组负荷变化 的响应速度。
CHAPTER
胀差与轴向位移的关系
胀差是指汽轮机转子相对于汽缸发生的膨胀或收缩,而轴向位移是指转子轴心的位 置相对于汽缸的变化。
在汽轮机运行过程中,胀差和轴向位移的变化通常是相互关联的。当转子受热膨胀 时,轴向位移也会随之增大,反之亦然。
胀差和轴向位移的变化通常受到多种因素的影响,如蒸汽参数、机组负荷、润滑油 系统等。
推力轴承是汽轮机的重要部件,负责 承受转子的轴向推力。如果推力轴承 出现故障,如磨损或损坏,会导致轴 向位移的发生。
汽轮机胀差异常及处理
1.1 汽轮机胀差异常
1.1.1 现象:
1.胀差异常报警;
2.严重时汽轮机内部有异音,机组振动增大。
1.1.2 原因:
1.汽机启动时,参数选择不当,主、再热蒸汽温度与汽缸温度不匹配;
2.上、下缸温差大,造成汽机胀差异常;
3.运行时主、再热汽急剧变化
4.汽轮机发生水冲击;
5.热工仪表指示失常;
6.汽轮机负荷变化范围大;
7.轴向位移增大引起胀差异常。
8.主汽压力、主汽温度以及真空变化较大。
9.加热器投、停。
10.滑销系统卡涩。
11.轴封汽源参数控制不当。
1.1.3 处理:
1.当发现汽机胀差指示异常时,应核对有关表记指示正确,确认胀差指示异常;
2.检查汽缸上、下温差,超过规定值时应停止汽机运行;
3.控制锅炉负荷不发生大的波动;
4.检查主、再热蒸汽温度不应有太大的波动,检查减温水调节门动作是否正常;
5.机组启动过程中,保持主、再热蒸汽温度与汽缸温度相匹配;
6.发现汽缸胀差异常时应对各种参数进行综合分析,及时发现问题;
7.汽缸胀差异常时,应尽量停止负荷的变化,使胀差不会发生太大的变化趋势;
8.低压差胀:正向增大时,可临时有限降低真空,提高排汽缸温度;负向增大时,投
入低压缸喷水,降低排汽缸温度。
9.当胀差有太大的变化时,应到就地听机组声音,发现有金属摩擦声音时应停止汽机
运行,破坏真空。
10.机组启动时,根据汽缸温度选择轴封汽源,使轴封温度与金属温度相匹配;在热态
启动时,防止负差胀增大,尽快升负荷至对应缸温下的负荷。
汽轮机轴向位移和胀差危害、分析与控制技术措施
汽轮机轴向位移和胀差危害、分析与控制技术措施一、轴向位移和胀差的危害:1、泊桑效应影响机组低压胀差约10%,所以开机冲转前,低压胀差应保证10%以上。
在停机过程中尽量减少低压胀差(最好控制在90%以下),当低压胀差超过110%,必须紧急停机,这时随着转速下降,低压胀差会超过120%,在低转速区可能会有动静摩擦。
2、在冬季低压胀差过高时,要注意轴封气母管压力,若压力过高可适当调低,也可用降低真空方法来减少低压胀差。
冬季减少开窗的地方,这是冬季减少低压胀差有效措施。
3、极热态启动时,轴封供气尽量选择高温气源,辅气作为气源时,必须保证其温度控制在270℃左右,若温度太低,将造成高压轴封段大轴急剧冷却收缩,有可能导致前几级动静摩擦。
4、冷态启动时,轴封气源高于大轴金属温度,大轴将局部受热伸长,出现较大的正胀差。
因此要选择与轴封金属温度相匹配的气源,不拖延启动时间。
低压胀差过大,可采用降低真空来调节,尽量提前冲转升速。
机组启动阶段低压正胀差超过限值时,可破坏真空停轴封气,待胀差正常后重新启动。
5、机组倒缸前,主蒸汽气温至少比高压缸金属温度高50℃以上,倒缸前应考虑轴向位移对高压胀差影响。
机组启停阶段胀差变化幅度大,影响因素多,调整难度大,因此要严格按规程操作,根据汽缸金属温度选择适当的冲转参数,适当的升温升压曲线,确定合适升温速度,控制升速和暖机时间,带负荷后根据具体情况,及时分析和采取有效方法,才能有效控制胀差。
二、机组启动时胀差变化的分析与控制:汽轮机在启停过程中,转子与汽缸的热交换条件不同。
因此,造成他们在轴向的膨胀也不一致,即出现相对膨胀。
相对膨胀通常也称为胀差。
胀差的大小表明了汽轮机轴向动静间隙的变化情况。
监视胀差是机组启停过程中的一项重要任务。
为避免轴向间隙变化而使动静部分发生摩擦,不仅应对胀差进行严格的监视,而且胀差对汽轮机运行的影响应该有足够的认识。
受热后汽缸是从“死点”向机头方向膨胀的,所以,胀差的信号发生器一般安装在汽缸相对基础的“死点”位置。
汽机胀差正负
汽机胀差正负
汽轮机的胀差是指转子与汽缸的相对膨胀差值。
当转子膨胀大于汽缸膨胀时,称为正胀差;反之,则称为负胀差。
胀差的概念在汽轮机运行中非常重要,因为它关系到机组的安全和稳定运行。
以下是关于胀差的更多信息:
1. 正胀差:
- 正常情况下,转子因为升温较快,所以会膨胀得比缸体多,这种现象称为正胀差。
- 制造商在设计汽轮机时会预留一定的间隙来适应正胀差,以确保在一定范围内的正胀差属于安全工况。
- 正胀差过大可能是由于启动时暖机时间太短、升速或升负荷太快等原因造成的。
2. 负胀差:
- 负胀差通常发生在极热态或热态冲转时,这种情况下容易造成缸体积水或水冲击,对低压缸末级叶片也不利。
- 负胀差可能会导致机组内部间隙减小,从而增加摩擦和损坏的风险。
3. 胀差的监控:
- 汽轮机的胀差需要通过专门的监控系统来实时监测,以确保机组在安全范围内运行。
- 胀差的正常控制对于预防机组损坏和延长使用寿命至关重要。
4. 影响因素:
- 胀差的正常与否受多种因素影响,包括启动程序、加热系统的效能、滑销系统或轴承台板的滑动性能、轴封温度和供气量等。
正胀差和负胀差都是汽轮机运行中必须严格监控的参数。
操作人员需要根据机组的实际情况和运行规程,合理控制温升速率和负荷变化,以保持胀差在安全范围内。
在汽轮机的日常运行和维护中,对胀差的管理是保证机组安全运行的重要环节。
试论汽轮机胀差过大的危害及预防
试论汽轮机胀差过大的危害及预防汽轮机给人们的生活和生产提供了很大的便利,但是一旦汽轮机出现问题,就会严重影响人们的生活。
本文系统地分析了汽轮机组停止工作的原因,对运行的转子和汽缸膨胀所产生的胀差进行分析,探讨胀差过大产生的影响,并且提出了一些预防措施,提出在实际操作中应注意的一些事项,对汽轮机的生产运行具有较大的意义。
在汽轮机正常运行过程中,转子与汽缸坚持大致相同的轴向膨胀速度是很重要的。
膨胀值反映的是转子和汽缸膨胀或在轴向位置相对变化的值,是一个非常重要的参数,胀差太大或太小都会使机组轴向间隙消失,导致动态和静态摩擦,这样对设备的损坏是十分严重的,工作人员进行操作时应严格监视胀差的变化。
为了能够更好的指导生产操作,必须要对胀差过大产生的原因进行有效分析,探讨其变化规律,形成一套科学有效的预防控制措施,这对操作人员是大有帮助的。
1.汽轮机胀差过大的影响因素1.1.负载变化率太大当负荷发生变化时,各级涡轮机的蒸汽流量也会死随之发生变化,特别是在低负荷的范围内,蒸汽温度变化越大,负荷的增长速度就会越大,蒸汽温度上升得就更快。
当与金属表面之间的温度差较大时,汽缸的温度上升就会推动转子加快速度。
负荷增加的速度加快,胀差就会增大;相反状况就会出现负胀差,如果是单位的负荷运行稳定的时候,胀差将随时间的变化而变化,最后稳定在一个定值。
1.2.蒸汽温度上升速度的影响机组正常启动时,蒸汽温度的变化是正常的。
它将影响所有等级的蒸汽温度,主蒸汽温度上升越快的话,汽缸和转子之间的胀差就会越大,而且有时候会出现负胀差,这样会严重影响汽轮机的运行。
1.3.轴封供汽温度的影响密封体嵌入在汽轮机汽缸的两端,在汽缸的轴向长度几乎没有影响,但是当转子轴封段的发展影响了转子的膨胀时,就会造成膨胀差。
由于轴密封部分的转子长度比较短,所以对膨胀产生比较小的影响,但密封胀差比较大的地方就会产生胀差过大的影响。
如果蒸汽温度太高就会密封,轴向间隙就会消失,随之出现静态和动态摩擦。
汽轮机的胀差
• 一、基本概念 • 胀差: • 转子与汽缸沿轴向膨胀之差值,称为转子与汽 缸的相对膨胀差,简称胀差 。 • 胀差的变化规律:热正冷负 • 汽轮机在启动及加负荷过程中,转子温度升高 比汽缸快,因而转子膨胀值大于汽缸膨胀值, 胀差为正;相反,在停机或减负荷过程中,汽 缸收缩比转子慢,胀差为负。
• 处理:修研高旁门杆,处理漏汽 • 调整高中压转子位置,由于该机中压缸存在正胀差大, 高压缸出现负胀差,故对推力瓦做了调整,在中压转 子侧加垫0.3mm,在高压转子侧减垫0.3mm。,使整 个转子向机头方向移动0.3mm。调整后高压转子速度 级间隙为1.2~1.45mm,(调整前为0.9~1.15mm)符 合制造厂要求。 • 结果:经上述处理后,启动带负荷200MW,高压缸负 胀差为-0.2~0.4mm之间。
(2)汽缸侧工字键要比轴 承座侧高1.5~0.3mm,这 个值叫预应力。因为高压 缸是上缸猫爪支撑在轴承 座上,下缸吊在上缸上, 当下缸向下位移时,工字 键保持水平。安装时对此 公差未与重视。 当下缸向下位移时,工字 键低头刚度减弱,降低了 推动力的传递,中轴承箱 膨胀受阻。
• 处理: • (1)检修中台板,打磨,加油,更换加油嘴 • (2)调整1#对轮的下张口0.44mm(2#、3#瓦 上抬),为保证动静间隙,下汽缸上抬,正好 满足制造厂规定的汽缸侧工字键要比轴承座侧 高1.5~0.3mm的预应力值。 • (3)处理水蚀
推力轴承壳体的轴向位置调整
• 汽轮机汽缸膨胀死点:横销和纵销交点,一般 在排汽缸 • 转子和汽缸之间的相对死点:推力轴承瓦块工 作面
• 推力轴承壳体在轴承座内的轴向位置由定位块决定, 见附图4-1.定位块包括调整螺钉、可调楔块、固定楔 块与垫片。当需要得到汽轮机在汽缸内正确位置时, 可用调整螺钉,使可调楔快上下移动,从而,改变推 力轴承壳体在轴承座内的的轴向位置。 • 当进行调整时,应拆去锁紧线,并松开锁紧螺母,才 能转动调整螺钉。 • 如果轴端测微计指示出转子不在正确位置,即使在机 组运行时,有必要的话,也能进行调整。 • 调整螺钉转一圈,可改变推力轴承壳体的轴向位置 0.1mm。如果要求移动量大于0.8mm左右,必须更换 垫片。
汽轮机胀差详解课件
胀差的影响
01
02
03
机械性能下降
胀差过大可能导致汽轮机 动静部分摩擦、碰撞,甚 至引起严重事故。
寿命缩短
胀差引起的热应力可能导 致汽轮机部件疲劳裂纹的 产生,缩短设备的使用寿 命。
能耗增加
胀差过大时,蒸汽流量增 大,导致能量损失增加, 汽轮机的效率降低。
02
胀差的分类
正胀差
定义
正胀差是指汽轮机在运行 时,转子膨胀大于汽缸膨 胀的差值。
原因
主要是由于转子受热膨胀 较快,而汽缸受热膨胀较 慢。
影响
正胀差过大可能会引起汽 轮机动静部分摩擦,导致 机组振动或损坏。
负胀差
定义
负胀差是指汽轮机在运行时,转子膨胀小于汽缸 膨胀的差值。
原因
主要是由于转子受热膨胀较慢,而汽缸受热膨胀 较快。
影响
负胀差过大可能会引起汽轮机动静部分脱离接触 ,导致机组振动或损坏。
汽轮机胀差详解课件
• 胀差概述 • 胀差的分类 • 胀差的变化规律 • 胀差的监测与控制 • 胀差异常的处理方法 • 案例分析
01
胀差概述
胀差的定义
胀差
汽轮机转子与汽缸的相对膨胀差 ,通常以转子膨胀值减去汽缸膨 胀值的差值表示。
胀差变化
随着汽轮机负荷、蒸汽参数、冷 却条件等因素的变化,胀差值也 会发生变化。
胀差的监测
定义胀差
胀差是指汽轮机转子与汽缸之间的相对膨胀差,通常以转子轴向位移与汽缸轴向位移的差值来衡量。
胀差监测的重要性
胀差是汽轮机运行中的重要参数之一,如果胀差超过允许范围,可能会导致汽轮机轴向位移变化、动静摩擦、叶片断 裂等严重后果。
胀差监测系统
胀差监测系统用于连续监测汽轮机的胀差值,当胀差值超过预设阈值时,系统会触发报警并采取相应的 控制措施。
汽轮机胀差相关内容
当汽轮机启动加热或停止运行冷却时以及负荷发生变化时,汽缸和转子都会产生热膨胀或冷却收缩。
由于转子受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大。
因此,在相同条件下,转子的温度变化比汽缸快,转子与汽缸之间存在膨胀差,而这差值是指转子相对于汽缸而言,故称为相对膨胀差(即胀差)。
习惯上规定转子膨胀大于汽缸膨胀时的胀差值为正胀差。
例如当进入汽轮机的蒸汽温度明显升高或汽轮机暖机时,转子和汽缸同时受热膨胀,转子由于质量相对汽缸要小,受热后膨胀要快,在轴向上膨胀量要大于汽缸的膨胀量,表现为正胀差。
汽缸膨胀大于转子膨胀时的胀差值为负胀差。
当进入汽轮机的蒸汽温度明显降低或汽轮机滑参数停机时,转子和汽缸同时受冷收缩,转子由于质量相对汽缸要小,受冷后收缩要快,在轴向上收缩量要大于汽缸的收缩量,表现为负胀差。
二、差胀保护的意义:汽轮机启动、停机和异常工况下,常因转子加热(或冷却)比汽缸快,产生膨胀差值(简称差胀)。
无论是正差胀还是负差胀,达到某一数值,汽轮机轴向动静部分就要相碰发生摩擦。
为了避免因差胀过大引起动静摩擦,大机组一般都设有差胀保护,当正差胀或负差胀达到某一数值时,立即停机,防止汽轮机损坏。
当胀差超过规定值时,就会使汽轮机动静间的轴向间隙消失,发生动静摩擦,引起汽轮机组振动增大,甚至掉叶片、大轴弯曲等严重事故。
四、汽轮机在启动、停机及运行过程中,胀差的大小与下列因素有关:1.启动机组时,汽缸与法兰加热装置投用不当,加热汽量过大或过小。
(注意:我公司法兰加热联箱左、右法兰供汽管道与法兰供汽管道距离不一样,这就造成在投入法兰加热初期时容易造成因左、右法兰进汽不均匀而引起左、右法兰温差变大的情况,所以在投入初期一定要根据左、右法兰温度上升情况来调整左、右分门的开度。
)2.暖机过程中,升速率太快或暖机时间过短。
3.正常停机或滑参数停机时,汽温下降太快。
4.增负荷速度太快。
5.甩负荷后,空负荷或低负荷运行时间过长。
为什么汽轮机的负胀差比正胀差危险
一、汽轮机胀差定义胀差:汽轮机转子与汽缸的相对膨胀差,称为胀差。
汽轮机启动时,随着温度的上升,转子与汽缸分别以各自的死点为基准膨胀。
汽缸质量大,单面接触蒸汽膨胀慢;转子质量小,并旋转在蒸汽中,膨胀快;汽缸-转子的相对膨胀差称为胀差。
转子膨胀大于汽缸膨胀称为正胀差,反之称为负胀差。
根据汽缸分类可分为高差、中差、低I差、低II差。
二、正胀差过大的原因:1)启动时暖机时间短,升速太快或升负荷太快。
2)汽缸夹层、法兰加热装置的加热汽温太低或流量低,加热作用弱。
3)滑销系统或轴承台板的滑动性差、卡涩。
4)轴封温度过高或轴封供气量大,引起轴颈过分伸长。
5)机组启动时,主汽压力、温度、流量参数过高。
6)推力轴承磨损,轴向位移大。
7)汽缸保温效果差,保温层脱落,机房汽温低。
9)胀差指示器零点不准或触点磨损,引起数字偏差。
10)多转子机组,相邻转子胀差变化带来互相影响。
11)真空及转速变化的影响。
12)各级抽气量的影响。
例如一级抽汽停用,则对高差影响较。
13)轴承油温太高。
14)机组停机惰走过程中由于“泊桑效应”的影响。
三、正胀差过大时应采取措施:1)检查主蒸汽温度是否过高,适当降低主蒸汽温度;2)使机组在稳定转速和稳定负荷下暖机;延长暖机时间。
3)适当提高凝汽器真空,减小蒸汽流量;4)增加汽缸加热进汽量,使汽缸迅速胀出。
四、负胀差过大的原因:1)负荷迅速下降或机组甩负荷;2)主汽温剧降或启动时的进汽温度低于金属温度;3)水冲击;4)汽缸夹层、法兰加热装置的加热过度;5)轴封汽温度太低;6)轴向位移变化;7)轴承油温太低;8)启动时转速突升,由于转子在离心力的作用下轴向尺寸缩小,尤其低差变化明显;五、负胀差过大应采取措施:1)机组启动与停机时及时投入加热蒸汽装置,控制各部金属温差在规定范围内;2)当负荷下降或甩负荷时,控制主蒸汽与再热蒸汽温度的下降率。
机组启动时,一般应用汽加热装置来控制汽缸的膨胀量。
转子主要依靠汽轮机的进汽温度和流量及轴封汽的汽温和流量控制转子的膨胀量。
汽轮机轴向位移与胀差增大原因及处理
汽轮机轴向位移与胀差1一、汽轮机轴向位移增大的原因1二、汽轮机轴向位移增大的处理1三、汽机轴向位移测量失灵的运行对策2汽轮机的热膨胀和胀差2相關提問:21、轴向位移和胀差的概念32、轴向位移和胀差产生的原因〔影响机组胀差的因素〕4使胀差向正值增大的主要因素简述如下:4使胀差向负值增大的主要原因:5正胀差- 影响因素主要有:53、轴向位移和胀差的危害74、机组启动时胀差变化的分析与控制71、汽封供汽抽真空阶段。
72、暖机升速阶段。
83、定速和并列带负荷阶段。
85、汽轮机推力瓦温度的防控热转贴91 润滑油系统异常92 轴向位移增大93 汽轮机单缸进汽104 推力轴承损坏105 任意调速汽门门头脱落116 旁路系统误动作117 完毕语11轴向位移增大原因及处理一、汽轮机轴向位移增大的原因1〕负荷或蒸汽流量突变;2〕叶片严重结垢;3〕叶片断裂;4〕主、再热蒸汽温度和压力急剧下降;5〕轴封磨损严重,漏汽量增加;6〕发电机转子串动;7〕系统周波变化幅度大;8〕凝汽器真空下降;9〕汽轮机发生水冲击;10〕推力轴承磨损或断油。
二、汽轮机轴向位移增大的处理1〕当轴向位移增大时,应严密监视推力轴承的进、出口油温、推力瓦金属温度、胀差及机组振动情况;2〕当轴向位移增大至报警值时,应报告值长、运行经理,要求降低机组负荷;3〕假设主、再热蒸汽参数异常,应恢复正常;4〕假设系统周波变化大、发电机转子串动,应与PLN调度联系,以便尽快恢复正常;5〕当轴向位移达-1.0mm或+1.2mm时保护动作机组自动停机。
否那么手动打闸紧急停机;6〕轴向位移增大虽未达跳机值,但机组有明显的摩擦声及振动增加或轴承回油温度明显升高应紧急停机;7〕假设轴向位移增大而停机后,必须立即检查推力轴承金属温度及轴承进、回油温度,并手动盘车检查无卡涩,方可投入连续盘车,否那么进展定期盘车。
必须经检查推力轴承、汽轮机通流局部无损坏前方可重新启动。
三、汽机轴向位移测量失灵的运行对策1〕严密监视推力轴承的进、出口油温、推力瓦金属温度,当有超过两块推力瓦金属温度均异常升高,应立即汇报值长,按规程要求采取相应的措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、汽轮机胀差的定义当汽轮机启动加热或停止运行冷却时以及负荷发生变化时,汽缸和转子都会产生热膨胀或冷却收缩。
由于转子受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大。
因此,在相同条件下,转子的温度变化比汽缸快,转子与汽缸之间存在膨胀差,而这差值是指转子相对于汽缸而言,故称为相对膨胀差(即胀差)。
习惯上规定转子膨胀大于汽缸膨胀时的胀差值为正胀差,例如当进入汽轮机的蒸汽温度明显升高或汽轮机暖机时,转子和汽缸同时受热膨胀,转子由于质量相对汽缸要小,受热后膨胀要快,在轴向上膨胀量要大于汽缸的膨胀量,表现为正胀差。
汽缸膨胀大于转子膨胀时的胀差值为负胀差。
当进入汽轮机的蒸汽温度明显降低或汽轮机滑参数停机时,转子和汽缸同时受冷收缩,转子由于质量相对汽缸要小,受冷后收缩要快,在轴向上收缩量要大于汽缸的收缩量,表现为负胀差。
二、差胀保护的意义:差胀保护的意义:汽轮机启动、停机和异常工况下,常因转子加热(或冷却)比汽缸快,产生膨胀差值(简称差胀)。
无论是正差胀还是负差胀,达到某一数值,汽轮机轴向动静部分就要相碰发生摩擦。
为了避免因差胀过大引起动静摩擦,大机组一般都设有差胀保护,当正差胀或负差胀达到某一数值时,立即破坏真空紧急停机,防止汽轮机损坏。
三、胀差大的危害:当胀差超过规定值时,就会使汽轮机动静
间的轴向间隙消失,发生动静摩擦,引起汽轮机组振动增大,甚至掉叶片、大轴弯曲等严重事故。
四、汽轮机在启动、停机及运行过程中,胀差的大小与下列因素有关:
1.启动机组时,汽缸与法兰加热装置投用不当,加热汽量过大或过小。
2.暖机过程中,升速率太快或暖机时间过短。
3.正常停机或滑参数停机时,汽温下降太快。
4.增负荷速度太快。
5.甩负荷后,空负荷或低负荷运行时间过长。
6.汽轮机发生水冲击。
7.正常运行过程中,蒸汽参数变化速度过快。
8.轴位移变化。
使胀差向正值增大的主要原因如下:
1)启动时暖机时间太短,升速太快或升负荷太快。
2)汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱。
3)滑销系统或轴承台板的滑动性能差,易卡涩。
4)轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长。
5)机组启动时,进汽压力、温度、流量等参数过高。
6)推力轴承磨损,轴向位移增大。
7)汽缸保温层的保温效果不佳或保温层脱落,在严禁季节里,汽机房室温太低或有穿堂冷风。
8)双层缸的夹层中流入冷汽(或冷水)。
9)胀差指示器零点不准或触点磨损,引起数字偏差。
10)多转子机组,相邻转子胀差变化带来的互相影响。
11)真空变化的影响。
12)转速变化的影响。
13)各级抽汽量变化的影响,若一级抽汽停用,则影响高差很明显。
14)轴承油温太高。
15)机组停机惰走过程中由于“泊桑效应”的影响。
使胀差向负值增大的主要原因:
1)负荷迅速下降或突然甩负荷。
2)主汽温骤减或启动时的进汽温度低于金属温度。
3)水冲击。
4)汽缸夹、法兰加热装置加热过度。
5)轴封汽温度太低。
6)轴向位移变化。
7)轴承油温太低。
8)启动进转速突升,由于转子在离心力的作用下轴向尺寸缩小,尤其低差变化明显。
9)汽缸夹层中流入高温蒸汽,可能来自汽加热装置,也可能来自进汽套管的漏汽或者轴封漏汽。
五、汽轮机启动时怎样控制胀差:
1、选择适当的冲转参数。
2、制定适当的升温、升压曲线。
3、及时投汽缸、法兰加热装置,控制各部分金属温差在规定的范围内。
4、控制升速速度及定速暖机时间,带负荷后,根据汽缸温度掌握升负荷速度。
5、冲转暖机时及时调整真空。
6、轴封供汽使用适当,及时进行调整。
7、调整轴承润滑油供油温度。