电子课程设计--二级晶体管放大电路
电子课程设计-二级晶体管放大电路Word版
五邑大学电子技术课程设计报告题目:二级晶体管放大电路院系机电工程学院专业机械工程及其自动化学号 AP100学生姓名指导教师黄东完成日期 2 0 1 2 / 1 / 7一、设计题目:晶体管放大电路(1)设计一级晶体管放大电路,输入信号幅度≥20mv, 频率为1KHz,电源电压+5V,要求完成下面的技术指标:a. 电压增益A u ≥20b. 输入电阻Ri ≥2KΩc. 输出电阻Ro ≤50Ω(2)测量出输入电阻值,并说明该值于那些元件有关系。
(3)可选用的器件与元件二、方案的论证和设计1)工作原理:输入信号加到前级的输入端,经过前级放大后加到后级的输入端,再经后级放大。
在两级放大器中,放大器的输入端事实上就是前级的输入端,前级的输出也就是后级的输入,后级的输出也就是两级放大的输出;前级是后级的信号源,后级是前级的负载。
因此,两极放大的线性电压放大倍数就等于前后两级放大倍数的乘积;放大器的输入电阻就是前级的输入电阻;放大器的输出电阻就是后级的输出电阻。
2)设计电路的主要功能该电路具有实现输入信号放大的功能,能将较小的输入信号通过二级放大电路实现信号放大,从而获得必要的电压幅值或足够的功率,最终达到推动负载工作的使用要求。
3)设计原理图4)参数的设定1.计算后级电路电阻参数 节点B 电流方程为 1R I =2R I +B I 为了稳定静态工作点,令参数满足1R I >>B I因此,B 点位为CCB B B BE U R R R U 212+≈取1E I =1.mA ,并选β=91,则126)1(200E be I r β++= =200+(1+91)*26/1=2.592k第一级的放大倍数是beLC r R R A //u1β-=取1U A =120,取Ω=5101E R ,代入公式求出=C R 3.6k ΩCCCECC E R I U U R --=1, 取CEU =2V, 求得1E R =500Ω所以1E R 、1C R 取标称值 Ω=Ω=500,6.311C E R K R从而0.610.51 1.11B BE E E U U I R V =+=+⨯=1210100CCR B U I I AR R μ≈==+求得: Ω=Ω=k R R B B 15,k 5121 2、计算后级电路电阻参数(1)CCB B E U I R R β=++CE CC E U U U -=EE E I U R =2BBECC B I U U R -=3取标称值:3B R =150K Ω , ΩK R E 3.32=依据所计算的各个零件的数值列元件清单5)元件清单:6)数据记录:(1K )表1表27)数据计算:由表1可知,Au=Uo/Ui=1990/20=99.5用万用表测得β=91Vb1=Rb2*Ucc/Rb1+Rb2=15000*5/(51000+1500)=1.14VVe=Vb-Ube=1.14-0.6=0.54VIe=Ve/Re=0.54/510=1.06mARbe1=200+(1+β)26/1.06=2.50 KΩIb2=(Ucc-Ube)/Rb+(1+B)Re=(5-0.60)/150000+(1+91)*3300=0.0097 mAIc=Ie=(1+β)*Ib=0.0097*(91+1)=0.90mARbe2=200+(1+β)*26/Ie=200+(1+91)*26/0.90=2.86 KΩ所以,Ri=Rb11//Rb12//rbe1=51//15//2.5≈2.1 KΩRo=Re2//(Re1+rbe2)/(1+β)=2.86*(2.50+2.86)*(91+1)/2.86+(2.50+2.86)≈26.80Ω8)结论与分析:由计算结果可知该电路的输入电阻Ri=2.1KΩ,大于2 KΩ,输出电阻Ro=26.80Ω,小于50Ω,电压增益Au=99.5,大于50。
晶体管放大电路实验报告
实验2 晶体管放大电路专业学号姓名实验日期一、实验目的1.掌握如何调整放大电路的直流工作的。
2.清楚放大电路主要性能指标的测量方法。
二、实验仪器1.双踪示波器 1台2.函数发生器 1台3.交流毫伏表 1台4.直流稳压电源 1台三、实验原理和内容1.放大电路的调整按照图1安装电路,输入频率为1kHz、峰值为5m V(由示波器测量)的正弦信号vi,观察并画出输出波形;测量静态集电极电流I CQ和集-射电压V CEQ。
用你的测量数据解释你看到现象。
问题1:如何调整元件参数才能使输出不失真?如果要保证ICQ 约为2.5mA,具体的元件参数值是多少?图1 图2 实际使用电路在电路中换入你调整好数值的元件,保持原信号输入,记下此时的I CQ和V CEQ到表1,观察示波器显示的输出波形,验证你的调整方案,记下v0的峰值(基本不失真)。
注:由于实验中器件限制我们使用图2电路2.放大电路性能指标的测量1)保持调整后的电路元件值不变,保持静态电流I CQ为原来的值,输入信号V im=5mV,测量输入输出电阻,计算电路增益A V,Ri,Ro,并与理论值比较。
其原理如下:输出电阻Ro:测量放大器输出电阻的原理电路如图 2所示,其戴维南等效电压源u o’即为空载时的输出电压,等效内阻Ro即为放大器的输出电阻。
显然图3 图4输入电阻 R i:测量放大器输入电阻的原理电路如图3所示,由图可见2)保持Vim=5mV不变,改变信号频率,将信号频率从1kHz向高处调节,找出上限频率f H;同样向地处调节,找出下限频率f L。
作出幅频特性曲线,定出3dB带宽f BW。
四、仿真放大电路的调整2仿真电路如图4,输入频率为1kHz、峰值为5mV的正弦信号并测量I CQ和V CEQ图5 图6结论:1.示波器输出的波形如图5由图可知,电路产生饱和失真,故此时应该增大I b故应该增大R b。
2.在电路中由两个万能表测量得到:I CQ=7.214mA V CEQ=762.5mV。
课程设计(两级放大电路的设计)
新疆大学课程设计报告所属院系:电气工程学院专业:电气工程及其自动化课程名称:电子技术基础A设计题目:两级放大电路的设计班级:学生姓名:学生学号:指导老师:完成日期:3.图2以同样的方法测量出1CV,2B V,2E V.记录到表格4中。
V,1B V,2CV1C V1E V2B V2C V2E VB12.2435V8.5451V 1.6001V3.0847V 7.9905V 2.4317V图3三.放大倍数的测量调整函数发生器,使放大器输入imU=5mA,f=1KHZ的正弦信号,测量输出电压U,计算电压增益。
如下图5。
om图4由示波器得到其输入和输出波形如下图6,两者进行比较。
图5放大倍数的测量输入U im输出U om增益A v5mV 362mV 73图6四.输入电阻和输出电阻的测量运用两次电压法测量两级放大器的输入电阻和输出电阻。
测试输入电阻时,在输入口接入取样电阻R=1KΩ;测试输出电阻时,在输出口接入负载电阻R L=1KΩ。
由于本次试验是电路的两级放大所以有以下性质:1.多级放大器的输入电阻等于第一级放大器的输入电阻;2.多级放大器的输出电阻等于末级放大器的输出电阻;3.后级放大器的输入电阻是前级放大器的负载;4.前级放大器的输出电路是后级放大器的信号源;5.总的电压增益等于各级电压增益相乘。
两次电压法测输入电阻如图:图7输入电阻的测量U s U i取样电阻R R i=R错误!未找到引用源。
U i/(U s错误!未找到引用源。
U i)3.536mV 2.903mV 1K 4322Ω图8两次电压法测输出电阻如下图:图9图10输出电阻的测量U o U o’负载电阻R L R o=R L错误!未找到引用源。
(U o/U o’错误!未找到引用源。
1)264.191mV 125.143mV 1K 901Ω图11五.测量两级放大器的幅频、相频曲线图12频率值(Hz)f L/2f L f0/2f02f0f H10f H总带宽△f 9.318.65001k2k425.1k 4.251MU O29.651.972.872.872.851.97.54425K图13三.总体设计1.总体电路电路的是由电源输入信号到一级共射的放大电路,再到二级的共射的放大电路,最后输出,实现电压或电流的放大。
《电子线路综合设计》晶体管放大器设计实验
《电子线路综合设计》晶体管放大器设计实验一、实验目的1、掌握普通单级放大器的结构及分析方法,了解共射放大器、共集放大器和共基放大器的特点;2、掌握各类晶体管放大电路的设计 Multisim 软件仿真。
3、引导学生制作一个普通放大器,通过亲自动手制作,以达到理解放大器的目的。
二、实验内容项目教学表任务1 电路仿真1、分析电路(1)放大管为 Q1 ,电容为 C1 (填写元器件序号),其上偏电阻为R1 ,下偏电阻为R3 ,输入耦合、输出耦合电容为 C1,C2 ,集电极电阻为R2 ,发射极电阻R4具有稳定静态工作点作用,C3为旁路电容,其作用是增大电压放大倍数。
(2)分析工作点的稳定过程。
温度升高Icq增大,Ieq增大,Ueq增大,Ubeq(Ubq-Ueq)减小,Ibq减小,Icq减小。
2、三极管参数利用网络资源或三极管手册査阅三极管的主要参数,并填入表1中。
工具书可选用《新编国内外三极管速查手册》;网络资源可选用其他网站。
表1三极管参数3、电路仿真(使用Multisim件或其他仿真软件)(1) 画Multisim 理图,并将原理图粘贴在以下位置(注:电路绘制完毕,应通电试运行,看电路连接是否正确,若有故障,则应排除故障)。
(2) 测试电路用软件中的虚拟电压表和电流表测试电路的静态工作点,填写表2。
将接入虚拟电压表和电流表之后的电路粘贴在以下位置。
表2电路静态工作点(3) 波形观测用软件中的虚拟信号源从放大器的输入端输入一个正弦波信号(幅度为5~50mV,频率为1~10kHz),用虚拟双踪示波器同时观测输入波形和输岀波形,并绘出波形图(在波形中标出幅度),比较输入波形和输出波形的相位,填写表3。
表3波形观测输入为50mv任务2 电路设计与制作一、题目要求1、电路设计单管分压式稳定共射极放大电路设计,放大电路如图所示,在Multisim 软件中找出相应元件,连接电路。
输入信号u i=5mv,f=10kHz,输出信号u o=50mv,用分压式稳定单管共射极放大路进行设计。
晶体管放大电路的设计
晶体管放大器的设计与调测一、实验目的1、学习晶体管放大器的设计方法;2、研究静态工作点对输出波形的影响及静态工作点的调整方法;3、掌握静态工作点、电压放大倍数和输入输出电阻的测试方法;4、研究大信号激励下信号源内阻对波形失真的影响;二、实验原理在晶体管放大器的三种组态中,由于共射极放大器既有电流放大,又有电压放大,所以在以信号放大为目的时,一般用共射极放大器。
分压式电流负反馈偏置是共射放大器广为采用的偏置形式,如图3-1所示,由于负反馈的引入它的静态工作点的稳定性较高。
这里就以该电路为例介绍单管放大器的设计方法。
1、确定静态工作点电流I CQI CQ 的选取,在不同的情况下是不同的:(1)小信号工作情况时,非线性失真不是主要矛盾,因此,以其他因素来考虑,若以少耗电为主,工作点应选得低些,如图3-2中的Q 1点;如果耗电不是主要矛盾而需要放大倍数大些, 那么工作点可选得高些,如图3-2中的Q 2点。
一般小信号放大器取I CQ =0.5~2mA 。
图3-1 共发射极放大电路 图3-2 不同的工作点 (2)大信号工作情况时,非线性失真是主要矛盾,因此,考虑的因素主要是尽量大的动态范围又尽可能小的失真。
此时,应设计选择一个最佳负载,工作点尽量选在交流负载线的中央,如图3-2中的Q 3点。
如果设计指标中对放大器的输入电阻R i 有要求,也可以根据对R i 的要求来确定静态工作点I CQ 。
由图3-1可见21////B B be i R R r R = (3-1)CQb b CQ b b be I r I r r 2626)1(ββ+≈++=′′ (3-2) 对于小功率低频管r bb '的典型值为300Ω,小功率高频管r bb ',的典型值为50Ω,由于一般r b 比R B1∥R B2要小得多,因此在初选I CQ 时,可以近似认为R i =r be ,则由上式可确定I CQ 。
2、确定偏置电阻R B1,R B2的值根据这个电路的工作原理,只有当I 1远远大于I BQ 时,才能保证U BQ 恒定,;这是工作点稳定的必要条件。
两级晶体管小信号放大电路 -回复
两级晶体管小信号放大电路-回复什么是两级晶体管小信号放大电路?两级晶体管小信号放大电路是一种常见的放大电路,用于放大输入信号的幅度。
它由两个晶体管级联组成,通过适当的偏置和连接方式,实现对输入信号的放大。
该电路可以应用于许多电子设备中,如音频放大器、射频放大器等,起到放大信号的作用。
第一步:晶体管小信号模型分析在理解两级晶体管小信号放大电路之前,需要先了解晶体管的小信号模型。
晶体管可以看作是一个三端口的器件,分为发射极、基极和集电极。
晶体管的小信号模型主要包括两个重要参数:输入电阻和输出电阻。
输入电阻表示晶体管对输入信号电阻大小的影响,即输入信号所感受到的电阻。
输出电阻表示晶体管对输出信号电阻大小的影响,即输出信号所输出到的电阻。
第二步:两级晶体管小信号放大电路原理两级晶体管小信号放大电路由两个级联的晶体管组成。
第一个晶体管作为输入级负责接收并放大输入信号。
第二个晶体管作为输出级负责将放大后的信号输出。
这两个级联的晶体管通过偏置电路和耦合电容连接在一起。
通过正确的电路设计可以实现较大的电压增益。
在该电路中,第一个晶体管增益较高,可以将输入信号放大到一定程度。
然后,经过耦合电容连接到第二个晶体管的基极,进一步被放大。
最后,经过输出电容进行耦合,在输出端口得到放大后的信号。
第三步:两级晶体管小信号放大电路设计步骤1. 选择晶体管:根据应用需求选择合适的晶体管。
根据信号频率考虑高频晶体管或低频晶体管。
2. 偏置电路设计:设计合适的偏置电路来为晶体管提供正确的工作点。
这可以通过电阻和电容网络来实现。
偏置电路的目的是将晶体管的输入和输出电压平均分配在工作范围内。
3. 耦合电容计算:选择合适的耦合电容来连接两个晶体管级联,以传递放大后的信号。
耦合电容的选择应该考虑输出信号频率和输出电阻等因素。
4. 输出电容设计:选择合适的输出电容来保持输出信号的直流分量,以及阻止输出电阻对后级电路的影响。
5. 负载电阻:确定合适的负载电阻以匹配输出级的输出电阻,以增强电路的稳定性。
电子技术基础: 晶体管放大电路
输入电压为零时, 电路输出电压会偏离 初始值,随时间作缓慢、
无规则地变动。
Vcc
三、电路特点
ui
uo
6.4 功率放大电路
6.4.1 功率放大电路的基本特点
一、输出功率足够大
输出足够大的信号电压、足够大的信号电流。
二、转换效率尽可能高
效率:交流输出功率与电源提供的直流功率之比。
6.2.4 稳定静态工作点的放大电路
1.温度对静态工作点的影响 T↑→ICBO↑,温度每升高10oC, ICBO↑一倍 T↑→UBE↓,温度每升高1oC, UBE↓2.5mv T↑→β↑,温度每升高1oC,β↑ 0.5%—1%
100℃ 27℃
0℃
温度扫描分析
6.2.4 稳定静态工作点的放大电路
2. 典型的稳定静态工作点电路 一、电路构成
三、非线性失真尽可能小
工作在大信号状态,难免带来非线性失真。
四、重视功率管的散热和保护
功率放大电路的分类 分类:
1、甲类状态:晶体管在整个信号周期内导通。
2、乙类状态:晶体管只在信号半个周期内导通。 3、甲乙类状态:晶体管导通时间略大于半个周期。
6.4.2 互补对称功率放大电路
1.互补对称乙类功放电路(OCL电路)
(1 )RL rbe (1 )RL
RL = Re // RL
输入电阻Ri
Ri
Ui Ii
Rb
// [rbe
(1 )RL ]
输出电阻Ro
Ro
Uo Io
Re
// (rbe
RS // Rb )
1
特点:Au略小于1;Uo与Ui同相;Ri大,Ro小; 有电流、功率放大作用。
晶体管两级放大电路的设计与制作
晶体管两级放大电路的设计与制作1. 引言晶体管是一种半导体器件,广泛应用于电子电路中。
晶体管可以实现信号放大的功能,而晶体管两级放大电路是一种常见的电路结构,用于增强输入信号的幅度。
本文将介绍晶体管两级放大电路的设计与制作过程。
2. 电路设计晶体管两级放大电路由两个级联的放大器组成,每个放大器中都包含一个晶体管。
在设计过程中,需要考虑以下几个方面:2.1 放大倍数根据实际需求确定所需的放大倍数。
放大倍数越高,输出信号的幅度将越大。
2.2 输入与输出阻抗匹配为了最大限度地传递信号能量,输入与输出阻抗应该尽可能地匹配。
这可以通过合适选择元件值和连接方式来实现。
2.3 直流偏置为了使晶体管工作在合适的工作点上,需要对其进行直流偏置。
这可以通过添加适当的偏置网络来实现。
2.4 反馈网络为了提高电路的稳定性和线性度,可以添加反馈网络。
反馈网络可以减小电路的非线性失真,并改善频率响应。
2.5 负载电阻为了使输出信号能够驱动负载,需要添加适当的负载电阻。
负载电阻的选择应该考虑负载的阻抗和所需的输出功率。
3. 电路制作3.1 元件选择根据设计要求选择合适的晶体管、电容和电阻等元件。
在选择过程中,需要考虑元件参数、性能和可获得性等因素。
3.2 PCB设计使用PCB设计软件进行电路布局和布线。
合理规划元件位置和连线路径,以确保信号传输的稳定性和可靠性。
3.3 焊接与组装根据PCB设计将元件焊接到PCB板上。
注意焊接质量和连接可靠性,确保每个连接点都牢固可靠。
3.4 测试与调试完成焊接后,对电路进行测试与调试。
使用示波器、信号发生器等仪器检测输入输出信号,并根据实际情况调整元件值或连接方式。
4. 结论晶体管两级放大电路是一种常见的电路结构,用于增强输入信号的幅度。
在设计与制作过程中,需要考虑放大倍数、输入输出阻抗匹配、直流偏置、反馈网络和负载电阻等因素。
通过合理选择元件和进行电路布局、焊接与组装,可以实现晶体管两级放大电路的设计与制作。
晶体管放大电路的原理
晶体管放大电路的原理介绍晶体管放大电路是现代电子设备中广泛应用的一种电路结构。
它利用晶体管的放大特性来增加输入信号的幅度,并输出一个放大后的信号。
晶体管放大电路有着许多优点,例如高增益、低噪声等,因此在放大、调节和传输信号方面发挥着重要作用。
本文将深入探讨晶体管放大电路的原理。
三极管基本原理三极管是一种常用的晶体管,它由三个掺杂不同类型材料的半导体层构成:发射区、基区和集电区。
三极管常用的两种工作方式是共射极和共基极。
共射极放大电路共射极放大电路是最常见的三极管放大电路之一。
它的特点是输入信号接在基极上,输出信号从集电极上取出。
这种电路常用于需要较大电压增益的应用。
共射极放大电路的工作原理1.基极-发射区电流控制:输入信号通过耦合电容C1进入基极,使得基极电压发生变化。
当输入信号为正半周时,与基极相连的电容C1充电,基极电流增大,发射区电流也随之增大;当输入信号为负半周时,电容C1放电,基极电流减小,发射区电流也随之减小。
2.集电极电流变化:发射区电流的变化会导致集电区电流的变化。
当发射区电流增大时,集电区电流也会增大;反之,当发射区电流减小时,集电区电流也会减小。
3.输出信号增强:由于晶体管的放大特性,集电极电流的变化会引起输出信号的放大,即得到了较大幅度的输出信号。
共射极放大电路的特点•高输入电阻:晶体管的基极-发射极之间电流极小,所以输入电阻较高,可以减小输入信号源的负载效应。
•低输出电阻:输出信号是取集电极电流,因此输出电阻较低。
•相位反转:输入信号和输出信号之间相位存在180度的反转。
共基极放大电路共基极放大电路是另一种常用的三极管放大电路,它的特点是输入信号接在发射区上,输出信号从集电极上取出。
这种电路常用于需要较大电流增益的应用。
共基极放大电路的工作原理1.输入信号作用:输入信号通过耦合电容C1进入发射区,使得发射区电流发生变化。
2.集电极电流控制:发射区电流的变化会导致集电区电流的变化。
晶体管两级放大电路的设计与制作
晶体管两级放大电路的设计与制作1. 引言晶体管两级放大电路是一种常见的电子电路设计,在许多电子设备中都得到了广泛的应用。
本文将详细介绍晶体管两级放大电路的设计原理、电路结构以及制作过程。
2. 设计原理晶体管两级放大电路通过使用晶体管作为放大器,将输入信号放大到更高的电压或电流,以便驱动其他设备或用于信号处理。
该电路由两个放大级组成,其中第一个级别负责放大信号并提供适当的输入阻抗,而第二个级别则进一步放大信号以增加输出功率。
3. 电路结构晶体管两级放大电路通常由三个主要部分组成:输入级、驱动级和输出级。
具体结构如下:3.1 输入级输入级是整个电路的第一级,用于接收输入信号并将其放大到适当的电平。
输入级由一个信号源接入,通常采用电容耦合方式。
输入级的目标是提供足够的放大和阻抗匹配以确保信号能够顺利传递到下一级驱动级。
3.2 驱动级驱动级是整个电路的第二级,目的是进一步放大输入信号并将其驱动到输出级。
驱动级通常由晶体管级联组成。
通过适当选择晶体管的工作点,可以实现线性放大和输出功率的最大化。
3.3 输出级输出级是整个电路的最后一级,负责将放大的信号转化为输出功率。
输出级通常由功率晶体管组成,因其能够提供足够的电流和电压驱动能力。
输出级还可能包含负载电阻,以将信号有效地传递给负载。
4. 制作过程下面将介绍晶体管两级放大电路的制作过程,包括器件选择、电路布局、电路连接和焊接。
4.1 器件选择在设计晶体管两级放大电路之前,首先要选择合适的晶体管和其他电子器件。
晶体管的选择应基于其放大能力、工作频率范围和耐压等参数。
其他电子器件的选择也应与电路设计相匹配,以确保性能和兼容性。
4.2 电路布局在开始制作电路之前,需要进行电路布局设计。
电路布局应考虑信号路径的最短化、阻抗匹配和噪声抑制等因素。
同时,良好的电路布局还应避免晶体管以及其他器件之间的干扰和串扰。
4.3 电路连接完成电路布局后,开始进行电路连接。
这包括连接晶体管和其他器件之间的引脚,以及连接适当的外部元件,如电容和电阻等。
实验二晶体管放大电路的设计
晶体管放大电路的设计(设计性实验)一.设计题目:单极晶体管阻容耦合放大器的设计(1)已知条件Vcc =+12V,RL=2.4KΩ,V i=10mV,R s=2KΩ(2)性能指标要求Av >40,Ri>l KΩ,R O<2KΩ,F L<100Hz,F H>100kHz二.设计步骤及要求(1)根据已知条件及性能指标要求,确定电路器件,设置静态工作点,计算电路元件参数。
(2)在实验线路板上安装电路。
调整并测量静态工作点,使其满足设计计算值的要求。
(3)测试性能指标,调整与修改元件参数值,使其满足放大器性能指标的要求。
三.实验方案与设计过程1.工作原理图2-1为电阻分压式工作点稳定单管放大器实验电路图。
它的偏置电路采用R b1和Rb2组成的分压电路,并在发射极中接有电阻Re,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui 相位相反,幅值被放大了的输出信号u,从而实现了电压放大。
图2-1 单管放大器实验电路图2.设计过程首先,选择电路形式及晶体管。
采用如图2-1所示的分压式电流负反馈偏置电路,可以获得稳定的静态工作点。
因放大器的上限频率要求较高,故选用高频小功率管,其特性参数IcM =20mA,V(BR)CEO≥20V,fT≥150MHz。
通常要求β的值大于Av的值,故选β=60。
其次,设置静态工作点并计算元件参数。
由于是小信号放大器,故采用公式法设置静态工作点Q ,计算如下:要求R i >l K Ω(R i ≈r be ),根据公式26()26()(1)300()()be b eQ cQ mV mV r r I mA I mA ββ=++≈+26 2.21000300cQ I mA mA β<=-取2cQ I mA = 若取3bQ V V =,由 1.15bQ bee cQV V R k I -≈=Ω,取标称值1k Ω由120(5~10)bQ b V R k β==Ω2157CC bQ b b bQV V R R k V -≈=Ω为使静态工作点调整方便,2b R 由20k Ω固定电阻和100k Ω电位器串联而成。
晶体管放大电路实训报告
#### 一、实验目的1. 理解晶体管放大电路的基本原理和组成。
2. 掌握晶体管放大电路的设计方法、性能指标及其测试方法。
3. 培养动手能力和分析解决实际问题的能力。
#### 二、实验原理晶体管放大电路是一种常用的电子电路,主要由晶体管、电阻、电容等元件组成。
其主要功能是放大输入信号的幅度和功率,并将其转换成高端电压和电流。
晶体管放大电路按照晶体管的类型可以分为双极型晶体管放大电路和场效应晶体管放大电路。
#### 三、实验内容1. 晶体管共射极单管放大电路(1)电路组成:本实验采用共射极单管放大电路,主要由晶体管、电阻、电容等元件组成。
(2)电路原理:当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号uo,从而实现了电压放大。
(3)实验步骤:- 搭建共射极单管放大电路。
- 调整静态工作点,使晶体管工作在放大区。
- 测量输入信号、输出信号和静态工作点的参数。
- 分析电压放大倍数、输入电阻、输出电阻及最大不失真输出电压。
2. 晶体管共基极单管放大电路(1)电路组成:本实验采用共基极单管放大电路,主要由晶体管、电阻、电容等元件组成。
(2)电路原理:与共射极单管放大电路类似,但共基极放大电路具有电压增益高、输入电阻低、输出电阻高、频率响应范围较窄等特点。
(3)实验步骤:- 搭建共基极单管放大电路。
- 调整静态工作点,使晶体管工作在放大区。
- 测量输入信号、输出信号和静态工作点的参数。
- 分析电压放大倍数、输入电阻、输出电阻及最大不失真输出电压。
3. 晶体管差分放大电路(1)电路组成:本实验采用差分放大电路,主要由两个共射极单管放大电路组成。
(2)电路原理:差分放大电路具有很好的共模抑制性能,能有效抑制共模信号,提高电路的抗干扰能力。
(3)实验步骤:- 搭建差分放大电路。
- 调整静态工作点,使晶体管工作在放大区。
- 测量输入信号、输出信号和静态工作点的参数。
晶体管放大电路
2、晶体管放大电路原理2.1 晶体管和FET 的工作原理2.1.1晶体管和FET 的放大工作的理解晶体管和FET 的放大作用:晶体管或FET 的输入信号通过器件而出来,晶体管或FET 吸收此时输入信号的振幅信息,由电源重新产生输出信号,由于该输出信号比输入信号大,可以看成将输入信号放大而成为输出信号。
这就是放大的原理。
2.1.2晶体管和FET 的工作原理1、双极型晶体管的工作原理晶体管内部工作原理:对流过基极与发射极之间的电流进行不断地监视,并控制集电极-发射极间电流源使基极-发射极间电流的β倍的电流流在集电极与发射极之间。
就是说,晶体管是用基极电流来控制集电极-发射极电流的器件。
电源电源输入输出输出(a )双极型晶体管(以NPN 型为例) (b )FET (以N 型JFET 为例)A被基极电流控制的电流源检测基极电流的电流计集电极(输出端)基极(输入端)发射极(公共端)双极型晶体管的内部原理2、FET 的工作原理FET 内部工作原理:对加在栅极与源极之间的电压进行不断地监视,并控制漏极-源极间电流源使栅极-源极间电压的g m 倍的电流流在漏极与源极之间。
就是说,FET 是用栅极电压来控制漏极-源极电流的器件。
2.1.3分立元件放大电路的组成原理放大电路的组成原理(应具备的条件)1放大器件工作在放大区(三极管的发射结正向偏置,集电结反向偏置;结型FET 与耗尽型MOSFET 可采用自偏压方式或分压式偏置或混合偏置方式,增强型MOSFET 则一定要采用分压式偏置或混合偏置 方式)即要保证合适的直流偏置; (2):输入信号能输送至放大器件的输入端; (3):有信号电压输出。
判断放大电路是否具有放大作用,就是根据这几点,它们必须同时具备。
2.1.4晶体管放大电路的直流工作状态分析(以晶体管电路为例)直流通路:在没有信号输入时,估算晶体管的各极直流电流和极间直流电压,将放大电路中的电容视为开路,电感视为短路即得。
晶体管两级放大电路实验报告
竭诚为您提供优质文档/双击可除晶体管两级放大电路实验报告篇一:实验三晶体管两级放大电路实验报告《模拟电子技术》实验报告篇二:实验四两级放大电路实验报告实验四两级放大电路一、实验目的l、掌握如何合理设置静态工作点。
2、学会放大器频率特性测试方法。
3、了解放大器的失真及消除方法。
二、实验原理1、对于二极放大电路,习惯上规定第一级是从信号源到第二个晶体管bg2的基极,第二级是从第二个晶体管的基极到负载,这样两极放大器的电压总增益Av为:Vo2Vo2Vo2Vo2Vo1VsViVi1Vi2Vi1式中电压均为有效值,且Vo1?Vi2,由此可见,两级放大器电压总增益是单级电压增益的乘积,由结论可推广到多级放大器。
当忽略信号源内阻Rs和偏流电阻Rb的影响,放大器的中频电压增益为:Vo1Vo1?1R?L1Rc1//rbe2AV11VsVi1rbe1rbe1Vo2Vo2?2R?L2Rc2//RLAV22Vi1Vo1rbe2rbe2Rc1//rbe2Rc2//RLAV?AV1?AV2??1??2rbe1rbe2必须要注意的是AV1、AV2都是考虑了下一级输入电阻(或负载)的影响,所以第一级的输出电压即为第二级的输入电压,而不是第一级的开路输出电压,当第一级增益已计入下级输入电阻的影响后,在计算第二级增益时,就不必再考虑前级的输出阻抗,否则计算就重复了。
2、在两极放大器中β和Ie的提高,必须全面考虑,是前后级相互影响的关系。
3、对两级电路参数相同的放大器其单级通频带相同,而总的通频带将变窄。
guo?gu1o?gu2o式中gu?20logAV(db)三、实验仪器l、双踪示波器。
2、数字万用表。
3、信号发生器。
4、毫伏表5、分立元件放大电路模块四、实验内容1、实验电路见图4-1RL3K2、设置静态工作点(l)按图接线,注意接线尽可能短。
(2)静态工作点设置:要求第二级在输出波形不失真的前提下幅值尽量大,第一级为增加信噪比,静态工作点尽可能低。
运放二级放大电路
运放二级放大电路
运放二级放大电路是一种使用运算放大器作为主要元件的放大电路,它具有电压放大功能。
在电子技术领域,这种电路被广泛应用,如音频放大器、信号处理、模拟计算机等。
运放二级放大电路主要由两级运放电路组成。
第一级运放电路负责对输入信号进行初步放大,第二级运放电路则对第一级运放电路的输出信号进行再次放大。
这种两级放大的结构有效地提高了放大器的放大性能。
运放二级放大电路的优点主要包括:
高放大增益:通过两级运放电路的级联,可以实现较高的放大增益,将微弱的输入信号放大到较大的幅度,以满足特定应用的需求。
低失真:运放二级放大电路具有低失真的特点,可以保持输入信号的准确性和精度。
稳定性好:由于采用正反馈,运放二级放大电路具有较好的稳定性,不易产生自激振荡。
运放二级放大电路的缺点主要包括:
误差可能更大:由于运放二级放大电路由两级运放电路组成,每级运放都可能引入一定的误差,因此整体的误差可能会更大。
运算复杂度更高:运放二级放大电路的运算复杂度通常比一级放大电路更高,因为需要进行两级的放大操作。
功耗可能增加:由于增加了更多的运放元件,运放二级放大电路的功耗可能会相应增加。
双极型晶体管及其放大电路
第2章 双极型晶体管及其放大电路
二、电子在基区中边扩散边复合
,成为基区中的非平衡少子,它在e结 处浓度最大,而在c结处浓度最小(因c结反偏,电子浓 度近似为零)。因此,在基区中形成了非平衡电子的浓 度差。在该浓度差作用下,注入基区的电子将继续向c 结扩散。在扩散过程中,非平衡电子会与基区中的空 穴相遇,使部分电子因复合而失去。但由于基区很薄 且空穴浓度又低,所以被复合的电子数极少,而绝大 部分电子都能扩散到c结边沿。基区中与电子复合的空 穴由基极电源提供,形成基区复合电流IBN,它是基极 电流IB的主要部分。
(2―4)
称为穿透电流。因ICBO很小,在忽略其影响时,则有
IC IB IE (1 )IB
(2―5a) (2―5b)
式(2―5)是今后电路分析中常用的关系式。
第2章 双极型晶体管及其放大电路
为了反映扩散到集电区的电流ICN与射极注入电流
IEN的比例关系,定义共基极直流电流放大系数 为
第2章 双极型晶体管及其放大电路
为了反映扩散到集电区的电流ICN与基区复合电流 IBN之间的比例关系,定义共发射极直流电流放大系数
为
ICN IC ICBO
I BN I B ICBO
(2―2)
其含义是:基区每复合一个电子,则有
个电子扩散到集电区去。 之间。
值一般在20~200
确定了 值之后,由式(2―1)、(2―2)可得
IC IB (1 )ICBO IB ICEO (2―3) IE (1 )IB (1 )ICBO (1 )IB ICEO
二级运算放大电路版图设计
1前言12二级运算放大器电路 12.1电路结构 12.2设计指标 23 Cadence仿真软件 33.1 schematic原理图绘制 33.2 生成测试电路 33.3 电路的仿真与分析 43.1.1直流仿真 43.1.2交流仿真 43.4 版图绘制 53.4.1差分对版图设计 63.4.2电流源版图设计 73.4.3负载MOS管版图设计 73.5 DRC & LVS版图验证 83.5.1 DRC验证 83.5.2 LVS验证 8 4结论 95参考文献 9本文利用cadence软件简述了二级运算放大器的电路仿真和版图设计。
以传统的二级运算放大器为例,在ADE电路仿真中实现0.16umCMOS工艺,输入直流电源为5v,直流电流源范围27~50uA,根据电路知识,设置各个MOS管合适的宽长比,调节弥勒电容的大小,进入stectre仿真使运放增益达到40db,截止带宽达到80MHz和相位裕度至少为60。
版图设计要求DRC验证0错误,LVS验证使电路图与提取的版图相匹配,观看输出报告,要求验证比对结果一一对应。
关键词:cadence仿真,设计指标,版图验证。
AbstractIn this paper, the circuit simulation and layout design of two stage operational amplifier are briefly described by using cadence software. In the traditional two stage operational amplifier as an example, the realization of 0.16umCMOS technology in ADE circuit simulation, the input DC power supply 5V DC current source 27~50uA, according to the circuit knowledge, set up each MOS tube suitable ratio of width and length, the size of the capacitor into the regulation of Maitreya, the simulation of stectre amplifier gain reaches 40dB, the cut-off bandwidth reaches 80MHz and the phase margin of at least 60.. The layout design requires DRC to verify 0 errors, and LVS validation makes the circuit map matching the extracted layout, viewing the output report, and requiring verification to verify the comparison results one by one.Key words: cadence simulation, design index, layout verification.1前言近几年来,人们已投入很大力量研究版图设计自动化,计算机辅助设计方法学在给定所需功能行为描述的数字系统设计自动化方面已经非常成功。
二级运算放大电路版图设计
目录1前言12二级运算放大器电路 1电路结构 1设计指标 23 Cadence仿真软件 3schematic原理图绘制 3#生成测试电路3电路的仿真与分析4直流仿真 4交流仿真 4版图绘制5差分对版图设计6电流源版图设计 7负载MOS管版图设计 7.DRC & LVS版图验证 8DRC验证 8LVS验证 8 4结论 95参考文献 9摘要本文利用cadence软件简述了二级运算放大器的电路仿真和版图设计。
以传统的二级运算放大器为例,在ADE电路仿真中实现工艺,输入直流电源为5v,直流电流源范围27~50uA,根据电路知识,设置各个MOS管合适的宽长比,调节弥勒电容的大小,进入stectre仿真使运放增益达到40db,截止带宽达到80MHz和相位裕度至少为60。
版图设计要求DRC验证0错误,LVS验证使电路图与提取的版图相匹配,观看输出报告,要求验证比对结果一一对应。
关键词:cadence仿真,设计指标,版图验证。
AbstractIn this paper, the circuit simulation and layout design of two stage operational amplifier are briefly described by using cadence software. In the traditional two stage operational amplifier as an example, the realization of technology in ADE circuit simulation, the input DC power supply 5V DC current source 27~50uA, according to the circuit knowledge, set up each MOS tube suitable ratio of width and length, the size of the capacitor into the regulation of Maitreya, the simulation of stectre amplifier gain reaches 40dB, the cut-off bandwidth reaches 80MHz and the phase margin of at least 60.. The layout design requires DRC to verify 0 errors, and LVS validation makes the circuit map matching the extracted layout, viewing the output report, and requiring verification to verify the comparison results one by one.Key words: cadence simulation, design index, layout verification.1前言近几年来,人们已投入很大力量研究版图设计自动化,计算机辅助设计方法学在给定所需功能行为描述的数字系统设计自动化方面已经非常成功。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子课程设计--二级晶体管放大电路
五邑大学
电子技术课程设计报告题目:二级晶体管放大电路
院系机电工程学院
专业机械工程及其自动化
学号 AP100
学生姓名
指导教师黄东
完成日期 2 0 1 2 / 1 / 7
一、设计题目:晶体管放大电路
(1)设计一级晶体管放大电路,输入信号幅度≥20mv, 频率为1KHz,电源电压+5V,要求完成下面的技术指标:
a. 电压增益A u ≥20
b. 输入电阻Ri ≥2KΩ
c. 输出电阻Ro ≤50Ω
(2)测量出输入电阻值,并说明该值于那些元件有关系。
(3)可选用的器件与元件
二、方案的论证和设计
1)工作原理:
输入信号加到前级的输入端,经过前级放大后加到后级的输入端,再经后级放大。
在两级放大器中,放大器的输入端事实上就是前级的输入端,前级的输出也就是后级的输入,后级的输出也就是两级放大的输出;前级是后级的信号源,后级是前级的负载。
因此,两极放大的线性电压放大倍数就等于前后两级放大倍数的乘积;放大器的输入电阻就是前级的输入电阻;放大器的输出电阻就是后级的输出电阻。
2)设计电路的主要功能
该电路具有实现输入信号放大的功能,能将较小的输入信号通过二级放大电路实现信号放大,从而获得必要的电压幅值或足够的功率,最终达到推动负载工作的使用要求。
3)设计原理图
4)参数的设定
1.计算后级电路电阻参数
节点B 电流方程为 1R I =2R I +B I 为了稳定静态工作点,令参数满足1R I >>B I
因此,B 点位为
CC
B B B BE U R R R U 2
12
+≈
取1E I =1.mA ,并选β=91,则
1
26)
1(200E be I r β++= =200+(1+91)*26/1=2.592k
第一级的放大倍数是
be
L
C r R R A //u1β
-=
取1U A =120,取Ω=5101E R ,代入公式求出=C R 3.6k Ω
C
C
CE
CC E R I U U R --=
1, 取CE U =2V , 求得1E R =500Ω
所以1E R 、1C R 取标称值 Ω=Ω=500,6.311C E R K R 从而0.610.51 1.11B BE E E U U I R V =+=+⨯=
12
10100CC
R B U I I A
R R μ≈
==+
求得: Ω=Ω=k R R B B 15,k 5121 2、计算后级电路电阻参数
(1)CC
B B E U I R R β=
++
CE CC E U U U -=
E E E I U R =
2
B
BE
CC B I U U R -=
3
取标称值:3B R =150K Ω , ΩK R E 3.32=
依据所计算的各个零件的数值列元件清单
5)元件清单:
电容 (2个) 电容
电阻1 电阻2 电阻3 电阻4
电阻5 电阻6 三级管
(2个) 导线 22uf 100uf 51k Ω 15k Ω 3.6k Ω 510
Ω
150K Ω 3.3k Ω
S9013 若干
6)数据记录:(1K )
表1
输入信号峰峰值(Mv)20
输出信号峰峰值(V) 1.990
表2
频率(Hz)100 500 1k 5k 10k
输出信号峰
峰值(V) 1.775 1.990 1.990 2.000 2.005
7)数据计算:
由表1可知,Au=Uo/Ui=1990/20=99.5
用万用表测得β=91
Vb1=Rb2*Ucc/Rb1+Rb2=15000*5/(51000+1500)=1.14V
Ve=Vb-Ube=1.14-0.6=0.54V
Ie=Ve/Re=0.54/510=1.06mA
Rbe1=200+(1+β)26/1.06=2.50 KΩ
Ib2=(Ucc-Ube)/Rb+(1+B)Re=(5-0.60)/150000+(1+91)*3300=0.0097m A
Ic=Ie=(1+β)*Ib=0.0097*(91+1)=0.90mA
Rbe2=200+(1+β)*26/Ie=200+(1+91)*26/0.90=2.86 KΩ所以,Ri=Rb11//Rb12//rbe1
=51//15//2.5≈2.1 KΩ
Ro=Re2//(Re1+rbe2)/(1+β)
=2.86*(2.50+2.86)*(91+1)/2.86+(2.50+2.86)≈26.80Ω
8)结论与分析:
由计算结果可知该电路的输入电阻Ri=2.1KΩ,大于2 KΩ,输出电阻Ro=26.80Ω,小于50Ω,电压增益Au=99.5,大于50。
故该电路符合实验要求。
由图表2,可知当频率由100Hz变化到10KHz过程,信号在100Hz 到10kHz基本保持不变,即频率变化对电路电压增益影响很小很小。
当信号过于小时或过大时才变化较大,出项失真现象。
这与电路中的旁路电容有关。
三、调试过程遇到的问题
第一次连接,接通电源后,示波器闪烁但不显示波形,开始以为电路板连接异常,用万用表经过一番检测后,发现各个原件及连接都正常,经询问老师后,才知道我们使用的示波器是有问题的,换个实验仪器重新连接后,经过调节,示波器上很快显示出正常的波形。
问题解决后,我们按照实验的要求,测出实验数据,做好了实验记录。
四、课程设计体会
我们在这个电子设计过程中,首先进行的是电路图的设计,我们按照实验要求,参考文献及各种资料,确定电路图以后,再经过计算确定各个元件的参数。
收到元件后,我们按照电路图,通过网上查找色环表,确定各个电阻的阻值后,把各元件有导线安插连接在面包板
上。
最后,我们去实验室进行了调试,确认无误后,进行了实验,并记录好实验所需的各个数据。
完成试验后,进行了数据的处理及写出实验报告。
通过这次课程设计,我收获了很多,其中最主要的是以下三点:第一,通过对电路图的设计,分析和计算,我更加深刻地理解了二级放大电路的工作原理,增加了模拟电子技术的理论知识。
通过各种渠道查阅资料的过程中,我不但解决了问题,学习了知识,还锻炼了自主学习的能力。
第二,第一次接触面包板,才发现原来也是很简单。
虽然是一个比较简单的实践,但自己亲手做出的电子产品,而且整个过程还算比较顺利,自己还是比较开心的,享受到了制作的乐趣。
第三,和同学一起合作做一个项目,大家有商有量,每一步几乎都是一起讨论着做出来的,效率高而且不无聊,这次课程设计让我们增进了感情,享受到了合作的乐趣。
五、参考文献:
1)《电子与电工技术》主编:毕淑娥电子工业出版社2011版2)《电子技术》主编:熊幸明清华大学出版社
3)《电子电路设计与实践》主编:姚福安山东科学技术出版社
4)《电子技术基础课程设计》主编梁宗善华中理工大学出版社。