测量误差理论的基本知识习题答案.doc
测量误差理论的基本知识习题答案
5测量误差的基本知识一、填空题:1、真误差为观测值减去真值。
2、观测误差按性质可分为粗差、和系统误差、和偶然误差三类。
3、测量误差是由于仪器误差、观测者(人的因素)、外界条件(或环境)三方面的原因产生的。
4、距离测量的精度高低是用_相对中误差___来衡量的。
5、衡量观测值精度的指标是中误差、相对误差和极限误差和容许误差。
6、独立观测值的中误差和函数的中误差之间的关系,称为误差传播定律。
7、权等于1的观测量称单位权观测。
8、权与中误差的平方成反比。
9、用钢尺丈量某段距离,往测为112.314m,返测为112.329m,则相对误差为1/7488。
10、用经纬仪对某角观测4次,由观测结果算得观测值中误差为±20″,则该角的算术平均值中误差为___10″__.11、某线段长度为300m,相对误差为1/3200,则该线段中误差为__9.4 mm ___。
12、设观测一个角度的中误差为±8″,则三角形内角和的中误差应为±13.856″。
13、水准测量时,设每站高差观测中误差为±3mm,若1km观测了15个测站,则1km的高差观测中误差为11.6mm,1公里的高差中误差为11.6 mm二、名词解释:1、观测条件----测量是观测者使用某种仪器、工具,在一定的外界条件下进行的。
观测者视觉鉴别能力和技术水平;仪器、工具的精密程度;观测时外界条件的好坏,通常我们把这三个方面综合起来,称为观测条件。
2、相对误差K----是误差m的绝对值与相应观测值D的比值。
它是一个不名数,常用分子为1的分式表示。
3、等精度观测----是指观测条件(仪器、人、外界条件)相同的各次观测。
4、非等精度观测---- 是指观测条件不同的各次观测。
5、权----是非等精度观测时衡量观测结果可靠程度的相对数值,权越大,观测结果越可靠。
三、选择题:1、产生测量误差的原因有(ABC)。
A、人的原因B、仪器原因C、外界条件原因D、以上都不是2、系统误差具有的性质是( ABCD )。
第6章 误差理论的基本知识题目
第六章误差理论的基本知识一、填空题1、观测条件与精度的关系是 B 。
A.观测条件好,观测误差小,观测精度小。
反之观测条件差,观测误差大,观测精度大B.观测条件好,观测误差小,观测精度高。
反之观测条件差,观测误差大,观测精度低C.观测条件差,观测误差大,观测精度差。
反之观测条件好,观测误差小,观测精度小2、防止系统误差影响应该 C 。
A.严格检验仪器工具;对观测值进行改正;观测中削弱或抵偿系统误差影响B.选用合格仪器工具;检验得到系统误差大小和函数关系;应用可行的预防措施等C.严格检验并选用合格仪器工具;对观测值进行改正;以正确观测方法削弱系统误差影响3、系统误差具有的特点为( C )。
A.偶然性 B.统计性 C.累积性 D.抵偿性4、水平角测量时视准轴不垂直于水平轴引起的误差属于( B )。
A.中误差 B.系统误差 C.偶然误差 D.相对误差5、下列误差中( A )为偶然误差A.照准误差和估读误差B.横轴误差和指标差C.水准管轴不平行与视准轴的误差6、经纬仪对中误差属( A )A.偶然误差B.系统误差C.中误差7、尺长误差和温度误差属( B )A.偶然误差B.系统误差C.中误差8、测量的算术平均值是 B 。
A. n次测量结果之和的平均值B. n次等精度测量结果之和的平均值C.是观测量的真值9、算术平均值中误差按 C 计算得到。
A. 白塞尔公式B. 真误差△。
C. 观测值中误差除以测量次数n的开方根10、角度测量读数时的估读误差属于( C )。
A.中误差 B.系统误差 C.偶然误差 D.相对误差11、边长测量往返测差值的绝对值与边长平均值的比值称为( D )。
A.系统误差 B.平均中误差 C.偶然误差 D.相对误差12、距离测量中的相对误差通过用( B )来计算。
A .往返测距离的平均值B .往返测距离之差的绝对值与平均值之比值C .往返测距离的比值D .往返测距离之差13、 衡量一组观测值的精度的指标是( A )A.中误差 B.允许误差 C.算术平均值中误差14、对某一量进行观测后得到一组观测值,则该量的最或是值为这组观测值的( C )。
测量误差理论的基本知识总结学习试题答案
.测量偏差的基本知识一、填空题:1、真偏差为观察值减去真值。
2、观察偏差按性质可分为粗差、和系统偏差、和有时偏差三类。
3、测量偏差是因为仪器偏差、观察者(人的要素)、外界条件(或环境)三方面的原因产生的。
4、距离测量的精度高低是用_相对中偏差___来权衡的。
5、权衡观察值精度的指标是中偏差、相对偏差和极限偏差和允许偏差。
6、独立观察值的中偏差和函数的中偏差之间的关系,称为偏差流传定律。
7、权等于1的观察量称单位权观察。
8、权与中偏差的平方成反比。
9、用钢尺测量某段距离,往测为,返测为,则相对偏差为1/7488。
10、用经纬仪对某角观察4次,由观察结果算得观察值中偏差为±20″,则该角的算术均匀值中偏差为___10″__.11、某线段长度为300m,相对偏差为1/3200,则该线段中偏差为mm___。
12、设观察一个角度的中偏差为±8″,则三角形内角和的中偏差应为±″。
13、水平测量时,设每站高差观察中偏差为±3mm,若1km观察了15个测站,则1km的高差观察中偏差为,1公里的高差中偏差为mm二、名词解说:1、观察条件---- 测量是观察者使用某种仪器、工具,在必定的外界条件下进行的。
观察者视觉鉴识能力和技术水平;仪器、工具的精细程度;观察时外界条件的利害,往常我们把这三个方面综合起来,称为观察条件。
2、相对偏差K----是偏差m的绝对值与相应观察值D的比值。
它是一个不名数,常用分子为1的分式表示。
3、等精度观察---- 是指观察条件(仪器、人、外界条件)同样的各次观察。
4、非等精度观察---- 是指观察条件不一样的各次观察。
5、权---- 是非等精度观察时权衡观察结果靠谱程度的相对数值,权越大,观察结果越靠谱。
三、选择题:1、产生测量偏差的原由有(ABC )。
A、人的原由B、仪器原由C、外界条件原由D、以上都不是2、系统偏差拥有的性质是(ABCD)。
A、累积性B、抵消性C、可除去或减弱性D、规律性..3、权衡精度高低的标准有(ABC )。
误差试题及答案
误差试题及答案一、选择题1. 测量误差的来源不包括以下哪一项?A. 仪器误差B. 环境误差C. 人为误差D. 计算误差答案:D2. 绝对误差和相对误差的关系是?A. 绝对误差是相对误差的倍数B. 相对误差是绝对误差的倍数C. 两者之间没有直接关系D. 相对误差是绝对误差与测量值的比值答案:D3. 在测量中,误差的减小可以通过以下哪种方式实现?A. 增加测量次数B. 使用更精确的仪器C. 改进测量方法D. 所有以上选项答案:D二、填空题1. 误差是测量值与_________之间的差异。
答案:真值2. 误差可以分为系统误差和_________误差。
答案:随机3. 误差的表示方法有绝对误差和_________误差。
答案:相对三、简答题1. 请简述如何减小测量误差。
答案:减小测量误差可以通过以下方法实现:使用更精确的测量仪器、改进测量方法、增加测量次数以进行平均、控制环境条件以减少环境误差、对测量人员进行培训以减少人为误差。
2. 什么是系统误差?请举例说明。
答案:系统误差是指在重复测量过程中,误差值保持恒定或按照一定规律变化的误差。
例如,使用一个校准不准确的温度计测量室温,每次测量结果都会比实际温度高0.5摄氏度,这就是系统误差。
四、计算题1. 假设一个测量值的真值为100,测量值为102,计算绝对误差和相对误差。
答案:绝对误差 = 102 - 100 = 2相对误差 = (2 / 100) * 100% = 2%2. 如果一个测量值的相对误差为3%,真值为500,求测量值。
答案:测量值 = 500 * (1 + 3%) = 500 * 1.03 = 515。
测量误差理论的基本知识习题答案
5测量误差的基本知识一、填空题:1、真误差为观测值减去真值。
2、观测误差按性质可分为粗差、和系统误差、和偶然误差三类。
3、测量误差是由于仪器误差、观测者(人的因素)、外界条件(或环境)三方面的原因产生的。
4、距离测量的精度高低是用_相对中误差___来衡量的。
5、衡量观测值精度的指标是中误差、相对误差和极限误差和容许误差。
6、独立观测值的中误差和函数的中误差之间的关系,称为误差传播定律。
7、权等于1的观测量称单位权观测。
8、权与中误差的平方成反比。
9、用钢尺丈量某段距离,往测为112.314m,返测为112.329m,则相对误差为1/7488。
10、用经纬仪对某角观测4次,由观测结果算得观测值中误差为±20″,则该角的算术平均值中误差为___10″__.11、某线段长度为300m,相对误差为1/3200,则该线段中误差为__9.4 mm ___。
12、设观测一个角度的中误差为±8″,则三角形内角和的中误差应为±13.856″。
13、水准测量时,设每站高差观测中误差为±3mm,若1km观测了15个测站,则1km 的高差观测中误差为11.6mm,1公里的高差中误差为11.6 mm二、名词解释:1、观测条件----测量是观测者使用某种仪器、工具,在一定的外界条件下进行的。
观测者视觉鉴别能力和技术水平;仪器、工具的精密程度;观测时外界条件的好坏,通常我们把这三个方面综合起来,称为观测条件。
2、相对误差K----是误差m的绝对值与相应观测值D的比值。
它是一个不名数,常用分子为1的分式表示。
3、等精度观测----是指观测条件(仪器、人、外界条件)相同的各次观测。
4、非等精度观测---- 是指观测条件不同的各次观测。
5、权----是非等精度观测时衡量观测结果可靠程度的相对数值,权越大,观测结果越可靠。
三、选择题:1、产生测量误差的原因有( ABC )。
A、人的原因B、仪器原因C、外界条件原因D、以上都不是2、系统误差具有的性质是( ABCD )。
测量学习题05 误差理论基础
习题五一、填空题1、真误差是指,其表达式为。
2、误差的来源有、、三个方面,按误差的性质不同,可分为和两种。
3、评定观测值精度主要采用、和。
4、用6″级经纬仪按测回法测量某一角度,欲使测角精度达到±5″,则测回数不得少于。
5、在等精度观测中,设观测值中误差为m,观测次数为n,则最可靠值的中误差为。
6、水准测量中,设一测站的高差观测中误差为±5mm,若1km有15个测站,则1km的高差中误差为。
7、误差传播定律是描绘和中误差关系的定律,它的表达式为。
8、在等精度观测平差中,最可靠值采用,其表达式为,在不等精度观测平差中,最可靠值采用,其表达式为。
9、在一组观测值中,单位权中误差为±3mm,某观测值的权为4,则该观测值中误差为。
二、简答题1、何为系统误差?它有什么特性?在测量工作中如何消除或削弱?2、何为偶然误差?偶然误差能否在测量工作中消除?它的统计特性有哪些?3、什么叫中误差?为什么中误差能够作为衡量精度的标准?在一组等精度观测中,中误差和真误差有何区别?4、试用偶然误差的特性来证明:在等精度观测中,算术平均值作为最可靠值。
5、设有Z1=X1+X2,Z2=2X3,若X1、X2、X3均独立,且中误差相等,问Z1、Z2的中误差是否相等,说明原因。
6、什么叫做权?它有什么含义?权与中误差之间的关系怎样?7、已知某正方形,若用钢尺丈量一条边,其中误差为m=±3mm,则正方形的周长中误差为多少?若用钢尺丈量4条边,则周长的中误差又是多少?试计算说明。
8、什么叫做权倒数传播定律?它描绘的是一种什么关系?它与误差传播定律有什么联系?三、选择题1、用水准仪观测时,若前、后视距不相等,此因素对高差的影响表现为(),在一条水准线路上的影响表现为()A 、偶然误差,偶然误差B 、偶然误差,系统误差C 、系统误差,偶然误差D 、系统误差,系统误差2、当误差的大小与观测量的大小无关时,此时不能用()来衡量精度A 、相对误差B 、中误差C 、绝对误差D 、容许误差()3、用30 米长的钢尺丈量距离(该尺经过检验后其实长度为29.995m ),用此尺每量一整尺就有0.005m 的尺长误差,则这种误差属于A 、偶然误差,且符号为(-)B 、系统误差,且符号为(-)C 、偶然误差,且符号为(+ )D 、系统误差,且符号为(+ )4、由于测量人员的粗心大意,在观测、记录或计算时读错、记错、算错所造成的误差,称为()A 、偶然误差B 、系统误差C 、相对误差D 、过失误差5、在相同条件下,对任何一个量进行重复观测,当观测次数增加到无限多时,偶然误差的算术平均值为零,这说明偶然误差具有A、对称性B、有界性 C 、大小性D、抵偿性6、中误差反映的是()。
误差理论与测量平差基础期末复习试题含答案
误差理论与测量平差基础期末复习试题含答案误差理论与测量平差基础(B) 一、填空题(每空1分,共30分)1. 测量平差就是在基础上,依据原则,对观测值进行合理的调整,即分别给以适当的,使矛盾消除,从而得到一组最可靠的结果,并进行。
2. 测量误差的定义为,按其性质可分为、和。
3. 衡量估计量优劣的标准有、、。
9km,5mm4. 在A、B两点间进行水准测量,路线长度为,每千米单程观测高差的中误差等于,则A、B两点间单程观测高差的中误差等于,往返高差中数的中误差等于,往返高差不符值的限差为。
5. 设为独立等精度偶然误差,为每个误差的均方差,则误差和的限差为,(i,1,2,?,n),,,,i。
(取2倍中误差为限差) [,],6. 若有一组观测值的函数、,设,则二L,?,Lx,aL,?,aLx,bL,?,bLQ,I1n111nn211nnL者的相关系数= ,若再设,则行列式= 。
Q,b,2a(i,1,?,n)xxXii12x3,1,,,,17. 设,,,,,则,X,,,,2Σ,z,x,x,,z,x0Xz21212,,,,1x,122,,,,,, ,。
,,zzz122T8. = 。
tr[E(ΔPΔ)]1,nn,nn,111SS9. 设观测值为,观测值的函数为,欲使的权倒数为,则的权倒数, 。
f,lgSfppfS,,ˆˆv,sinx,2cosx,L10. 设非线性误差方程,参数近似值,观测值,x,60, x,45L,2512510205线性化之后的误差方程为。
11. 平差的数学模型可分为模型和模型,前者描述观测值之间、观测值与参数之间以及参数之间数学期望的关系,后者描述的则是观测值的精度特性。
ˆ,V,AδX,l,n,tn,1n,1t,1T12. 由二次型的数学期望= 可以证明,具有条件的参数平差模型中,E(XAX),ˆBδXW0,,X,t,1r,1r,t,T= 。
E(VPV),,15cm9cm4513. 已知某点的点位中误差等于,点位误差椭圆的短半轴为,短轴的方向角为,则误差椭圆的长半轴等于,长轴的方向角等于。
第6章 误差理论的基本知识答案
第六章 误差理论的基本知识一、选择题1、B2、C3、C4、B5、A6、A7、B8、B9、C 10、C11、D 12、B 13、A 14、C 15、B 16、C 17、A 18、B 19、B 20、B 21、C 22、A 23、C 24、B 25、A 26、A 27、C二、填空题1、 系统误差 偶然误差2、 仪器本身误差 观测误差 外界自然条件影响3、 相对误差4、 读m 25、 中误差 容许误差 相对误差6、n17、 相同 8、[]nlnm9、 提高仪器的等级 10、相对误差 11、极限误差 12、±10″ 13、±0.2m 14、101-''±n 15、观测值的算术平均值 16、Nmm x =三、问答计算题1、可分为系统误差和偶然误差系统误差特点:误差在符号和数值上都相同,或按一定的规律变化。
如果规律性能够被到,则系统误差对观测值的影响可以改正,或者用一定的测量方法加以抵消或者削弱。
偶然误差特点:误差出现的符号和数值大小都不相同,表面上看没有任何规律性,多次观测和平均可以抵消一些偶然误差。
2、产生测量误差的原因:仪器原因 人的原因 外界环境的影响偶然误差具有四个基本特性,即:(1) 在一定观测条件下,偶然误差的绝对值不会超过一定的限值(有界性) (2) 绝对值小的误差比绝对值大的误差出现的机会多(密集性)(3) 绝对值相等的正负误差出现的机会相等(对称性);(4) 在相同条件下同一量的等精度观测,其偶然偶然误差的算术平均值随着观测次数的无限增大而趋于零(抵偿性)。
3、测量中的误差是不可避免的,只要满足规定误差要求,工作中可以采取措施加以减弱或处理。
粗差的产生主要是由于工作中的粗心大意或观测方法不当造成的,错误是可以也是必须避免的,含有粗差的观测成果是不合格的,必须采取适当的方法和措施剔除粗差或重新进行观测。
4、这两种误差主要在含义上不同,另外系统误差具有累积性,对测量结果的影响很大,但这种影响具有一定的规律性,可以通过适当的途径确定其大小和符号,利用计算公式改正系统误差对观测值的影响,或采用适当的观测方法、提高测量仪器的精度加以消除或削弱。
测量学 习题和答案 第六章 测量误差的基本理论
第六章测量误差的基本理论1、在角度测量中采用正倒镜观测、水准测量中前后视距相等,这些规定都是为了消除什么误差?答:在角度测量中采用正倒镜观测、水准测量中前后视距相等,这些规定都是为了消除仪器误差以及外界环境的影响。
2、在水准测量中,有下列各种情况使水准尺读数带有误差,试判别误差的性质:①视准轴与水准管轴不平行;②仪器下沉;③读数不正确;④水准尺下沉。
答:①视准轴与水准管轴不平行;仪器误差。
②仪器下沉;外界条件的影响。
③读数不正确;人为误差。
④水准尺下沉。
外界条件的影响。
3、偶然误差和系统误差有什么不同?偶然误差具有哪些特性?答:系统误差是指:在相同的观测条件下,对某量进行的一系列观测中,数值大小和正负符号固定不变或按一定规律变化的误差。
偶然误差是指:在相同的观测条件下,对某量进行的一系列观测中,单个误差的出现没有一定的规律性,其数值的大小和符号都不固定,表现出偶然性的误差。
偶然误差具有以下统计特性(1)有界性(2)单峰性(3)对称性(4)补偿性4、什么是中误差?为什么中误差能作为衡量精度的指标?答:中误差是指同一组中的每一个观测值都具有这个值的精度5、函数z=z1+z2,其中z1=x+2y,z2=2x-y,x和y相互独立,其m x=m y=m,求m z。
m m m m yx y x y x z z z y x z 1093222221=+±=+=-++=+=6、进行三角高程测量,按h=Dtan α计算高差,已知α=20°,m α=±1′,D=250m ,m D =±0.13m ,求高差中误差m h 。
m m D m m D h 094.0)20626560()20sec 250(13.0)20(tan )sec ()(tan 2222222222±=⨯⨯+⨯±=+±=ααα 7、用经纬仪观测某角共8个测回,结果如下:56°32′13″,56°32′21″,56°32′17″,56°32′14″,56°32′19″,56°32′23″,56°32′21″,56°32′18″,试求该角最或是值及其中误差。
测量误差的基本知识
1、对某一量进行观测后得到一组观测值,则该量的最或是值为这组观测值的()。
A、最大值B、最小值C、算术平均值D、中间值2、观测三角形三个内角后,将它们求和并减去180°,所得到的三角形闭合差为()。
A、中误差B、真误差C、相对误差D、系统误差3、系统误差具有的特点是()。
A、偶然性B、统计性C、累积性D、抵偿性4、一组测量值的中误差越小,表明测量精度越()。
A、高B、低C、精度与中误差没有关系D、无法确定5、边长测量往返差值的绝对值与边长平均值的比值称为()。
A、系统误差B、平均中误差C、偶然误差D、相对误差6、角度测量读数时的估读误差属于()。
A、中误差B、系统误差C、偶然误差D、相对误差7、对某角观测了9个测回,每测回的测角中误差为±6″,则该角平均值的中误差是()。
A、±0.67″B、±2″C、±18″D、±6″8、在水准测量中,每站观测高差的中误差为±5mm,若从已知点推算待定点高程要求高程中误差不大于20mm,所设站数最大不能超过()。
A、4站B、8站C、16站D、24站9、下列水准测量误差中,属于偶然误差的是()。
A、水准管居中误差B、水准尺倾斜误差C、水准管轴不平行于视准轴的误差D、地球曲率的影响10、下列水平角测量误差中,属于系统误差的是()。
A、度盘刻划误差B、瞄准误差C、对中误差D、横轴误差11、甲、乙两组对同一观测量观测,其误差分别为:甲组:0、-3、+2、+3、-2、+1、-1乙组:+5、0、-1、0、-6、0、+1对它们观测质量评价对的是()。
A、甲组观测质量好B、乙组观测质量好C、甲、乙组观测质量一样D、无法评价12、观测值的中误差,其概念是()。
A、每个观测值平均水平的误差B、代表一组观测值的平均误差C、代表一组观测值中各观测值的误差D、代表一组观测值取平均后的误差14、误差传播定律是用数学的方法建立()。
误差理论与测量平差基础习题1
为边长观测值,若按条件图27BC α654321D CBA 武汉大学 测绘学院误差理论与测量平差基础 课程试卷(A 卷)出题者:黄加纳 审核人:邱卫宁一.已知观测值向量的协方差阵为,又知协因数,试求观测值的权阵及观测值的权和。
(10分)二.在相同观测条件下观测A 、B 两个角度,设对观测4测回的权为1,则对观测9个测回的权为多少?(10分)三.在图一所示测角网中,A 、B 为已知点,为已知方位角,C 、D 为待定点,为同精度独立观测值。
若按条件平差法对该网进行平差:(1).共有多少个条件方程?各类条件方程各有多少个?(2).试列出全部条件方程(非线性条件方程要求线性化)。
(15分)图一四.某平差问题有以下函数模型21L ⎥⎦⎤⎢⎣⎡--=3112LL D 5112-=Q LL P 1L P 2L P A ∠B ∠BC α721,,,L L L )(I Q =⎪⎪⎩⎪⎪⎨⎧=-=--=+-+=--0ˆ03060515443121x v v v v v v v v57624312P 2(1.732,3.000P 1(1.732,1.000A(0,0)B(0,2)Ah 5h 4h 1h 3h 2C DB 试问:(1).以上函数模型为何种平差方法的模型?(2).本题中, , , , , , 。
(10分)五.在图二所示测角网中,已知A 、B 两点的坐标和P 1、P 2两待定点的近似坐标值(见图二,以“km ”为单位),以及,,,,为同精度观测值,其中。
若按坐标平差法对该网进行平差,试列出观测角的误差方程(设,、图二 以dm 为单位)。
(10分)六.有水准网如图三所示,网中A 、B 为已知点,C 、D 为待定点,为高差观测值,设各线路等长。
已知平差后算得,试求平差后C 、D两点间高差的权及中误差。
(10分)=n =t =r =c =u =s 0000330001'''=BP α000030002'''=BP αkm S BP 0.201=km S BP 0.202=721,,,L L L 65955906'''=L 6L 5102⨯=ρxˆyˆ51~h h )(482mm V V T =5ˆhABP 2h 5h 4h 1h 3h 2P 17654321PCBA图三七.在间接平差中,参数与平差值是否相关?试证明之。
第五章测量误差的基本知识题库
第五章测量误差的基本知识1、衡量测量精度的指标有中误差、相对误差、极限误差。
5.测量,测角中误差均为10″,所以A角的精度高于B角。
(×)8.在测量工作中无论如何认真仔细,误差总是难以避免的。
(×)10.测量中,增加观测次数的目的是为了消除系统误差。
(×)1、什么是偶然误差?它有哪些特性?定义:相同的观测条件,若误差在数值和符号上均不相同或从表面看无规律性。
如估读、气泡居中判断等。
偶然误差的特性:(1)有界性 (2)渐降性 (3)对称性 (4)抵偿性7.已知DJ6经纬仪一测回的测角中误差为mβ=±20″,用这类仪器需要测几个测回取平均值,才能达到测角中误差为±10″?()A.1 B.2C.3D.43.偶然误差服从于一定的________规律。
4.对于偶然误差,绝对值较小的误差比绝对值较大的误差出现的机会________。
14.测量误差的来源有___________、___________、外界条件。
3.设对某距离丈量了6次,其结果为246.535m、246.548m、246.520m、246.529m、246.550m、246.537m,试求其算术平均值、算术平均值中误差及其相对中误差。
6.偶然误差的算术平均值随观测次数的无限增加而趋向于______________。
14.设对某角度观测4个测回,每一测回的测角中误差为±5″,则算术平均值的中误差为±″。
24.衡量测量精度的指标有、、极限误差。
3.观测值与______之差为闭合差。
( )A.理论值B.平均值C.中误差D.改正数5.由于钢尺的不水平对距离测量所造成的误差是( )A.偶然误差 B.系统误差C.可能是偶然误差也可能是系统误差 D.既不是偶然误差也不是系统误差8.阐述函数中误差与观测值中误差之间关系的定律称为_______________。
3.什么是系统误差?什么是偶然误差?误差产生的原因有哪些?4.测量误差按性质可分为和两大类。
完整版)误差理论与数据处理复习题及答案
完整版)误差理论与数据处理复习题及答案本文介绍了误差理论和数据处理中的一些基本概念和方法。
其中,测量误差按性质分为系统误差、粗大误差和随机误差,相应的处理手段为消除或减小、剔除和统计的手段。
随机误差的统计特性为对称性、单峰性、有界性和抵偿性。
在测量结果的重复性条件中,包括测量人员、测量仪器、测量方法、测量材料和测量环境等因素。
置信度是表征测量数据或结果可信赖程度的一个参数,可用标准差和极限误差来表示。
指针式仪表的准确度等级是根据指针误差划分的。
在等精度重复测量中,测量列的最佳可信赖值是平均值。
替代法的作用是消除恒定系统误差,不改变测量条件。
最后,通过一些例题的解答,进一步加深了对误差理论和数据处理的理解。
2.根据电路中的电阻值计算电路总电阻时,可以使用公式R=R1*R2/(R1+R2),其中R1和R2分别为电路中的两个电阻值。
如果R1=150Ω,R2=100Ω,那么电路总电阻R为(R1*R2)/(R1+R2)=60Ω。
此外,如果需要计算电路总电阻的不确定度,可以使用以下公式:ΔR = ((dR/dR1)ΔR1)^2 +((dR/dR2)ΔR2)^2,其中dR/dR1和dR/dR2分别为R对R1和R2的偏导数,ΔR1和ΔR2分别为R1和R2的不确定度。
根据公式计算可得,ΔR = 0.264Ω。
14.两种方法测量长度为50mm的被测件,分别测得50.005mm和50.003mm。
可以计算它们的平均值,即(50.005+50.003)/2=50.004mm,然后计算它们的偏差,即(50.005-50.004)=0.001mm和(50.003-50.004)=-0.001mm。
由于偏差的绝对值相等,但方向相反,因此不能单纯地判断哪种方法的测量精度更高。
15.用某电压表测量电压,电压表的示值为226V。
查该表的检定证书,得知该电压表在220V附近的误差为5V。
因此,被测电压的修正值为-5V,修正后的测量结果为226+(-5V)=221V。
工程测量误差测量理论例题和习题
测量误差理论一、中误差估值(也称中误差):Δi (i=1,2,…,n ) (6-8)【例】 设有两组同精度观测值,其真误差分别为:第一组 -3″、+3″、-1″、-3″、+4″、+2″、-1″、-4″; 第二组 +1″、-5″、-1″、+6″、-4″、0″、+3″、-1″。
试比较这两组观测值的精度,即求中误差。
解:"22222219.2841243133±=+++++++±=m"222223.3813046151±=+++++++±=m由于m 1<m 2,可见第一组观测值的精度比第二组高。
同时,通过第二组观测误差的分布情况可看出其误差值的波动幅度较大,因而也可判断出第二组观测值的稳定性较差,则精度较低。
另外,由以上分析可知,中误差仅代表了一组观测值的精度,并不表示某个观测值的真误差。
二、相对误差:观测值中误差m 的绝对值与相应观测值S 相比,并化为分子为1、分母为整数的形式,即mS Sm K 1==(6-10) 三、误差传播定律【例】 丈量某段斜距S = m ,斜距的竖角,斜距和竖角的中误差分别为、,求斜距对应的平距D 及其中误差。
解:平距 105.113m 30'cos8106.28cos =︒⨯=⋅=δS D由于是一个非线性函数,所以,对等式两边取全微分,化成线性函数,并用“”代替“d ”得δδδ∆⋅⋅-∆⋅=∆sin cos S S D再根据(6-29)式,可以直接写出平距方差计算公式,并求出平距方差值n m][2""2222"2222)(477.24)20626520()'308sin 28.106(5)'308(cos )()sin ()(cos cm m S m m SD=⋅︒⋅+⋅︒=⋅⋅+⋅=ρδδδ因此,平距的中误差为:m D =±5 cm 。
则最终平距可表示为:D=± m 。
误差理论试题及答案
误差理论试题及答案一、选择题1. 误差的来源主要包括()。
A. 测量仪器的精度B. 测量方法C. 环境条件D. 所有以上答案:D2. 系统误差和随机误差的主要区别在于()。
A. 系统误差是可预测的,随机误差是不可预测的B. 系统误差是不可预测的,随机误差是可预测的C. 系统误差和随机误差都是可预测的D. 系统误差和随机误差都是不可预测的答案:A3. 测量误差的估计方法不包括()。
A. 标准差B. 均方根误差C. 绝对误差D. 误差传递答案:D二、填空题1. 测量误差可以分为________和________两种类型。
答案:系统误差;随机误差2. 误差的绝对值越小,表示测量结果的________越高。
答案:准确性三、简答题1. 简述如何减少测量误差。
答案:减少测量误差的方法包括:使用高精度的测量仪器,改进测量方法,控制环境条件,以及采用适当的数据处理方法,如取平均值等。
2. 描述误差传播的基本原理。
答案:误差传播的基本原理是,当一个量是由多个变量通过某种函数关系计算得到时,这些变量的测量误差会通过该函数关系传播到最终结果上。
误差传播的计算可以通过误差传播公式来进行,该公式考虑了各变量误差与函数关系之间的影响。
四、计算题1. 已知测量长度的仪器误差为±0.05cm,测量时间的仪器误差为±0.02s,计算速度的测量误差。
答案:假设长度为L,时间为T,速度为V=L/T,速度的相对误差可以通过误差传播公式计算得到。
速度的误差ΔV可以通过以下公式计算:ΔV = V * sqrt((ΔL/L)^2 + (ΔT/T)^2)其中ΔL = 0.05cm,ΔT = 0.02s。
将数值代入公式计算,得到速度的测量误差。
2. 已知一组数据的平均值为50,标准差为5,求这组数据的相对误差。
答案:相对误差可以通过以下公式计算:相对误差 = (标准差 / 平均值) * 100%将数值代入公式计算,得到相对误差的百分比。
误差理论 作业及参考答案
第一章1、熟悉误差、精度、有效数字的基本概念和相关计算方法。
答案:略2、用两种方法分别测量L1=50mm,L2=80mm。
测得值各为50.004mm,80.006mm。
试评定两种方法测量精度的高低。
解:两种测量方法进行的测量绝对误差分别为:δ1=50.004-50=0.004(mm);δ2=80.006-80=0.006(mm);两种测量方法的相对误差分别为:δ1/L1=0.004/50=0.008%;和δ2/L2=0.006/80=0.0075 %;显然,测量L2尺寸的方法测量精度高些。
3、若某一量值Q用乘积ab表示,而a与b是各自具有相对误差f a和f b的被测量,试求量值Q的相对误差。
解:∵相对误差=绝对误差/真值=(测得值-真值)/真值∴ a = a0(1+f a);b = b0(1+f b);式中a0、b0分别为a、b的真值。
则Q =ab = a0(1+f a) b0(1+f b)≈a0 b0(1+f a+ f b)因此,Q的相对误差约为(f a+ f b)第二章1、在立式测长仪上测量某校对量具,重复测量5次,测得数据(单位为mm)为20.0015,20.0016,20.0018,20.0015,20.0011。
若测量值服从正态分布,试以99%的置信概率确定测量结果。
解:①求算术平均值②求残余误差:各次测量的残余误差依次为 0,0.0001,0.0003,0,-0.0004。
③求测量列单次测量的标准差用贝塞尔公式计算:用别捷尔斯公式计算:④求算术平均值的标准差⑤求单次测量的极限误差和算术平均值的极限误差因假设测量值服从正态分布,并且置信概率P=2Φ(t)=99%,则Φ(t)=0.495,查附录表1 正态分布积分表,得置信系数t=2.6。
故:单次测量的极限误差:算术平均值的极限误差:⑥求得测量结果为:2、甲、乙两测试者用正弦尺对一锥体的锥角α个各重复测量 5 次,测得值如下:α甲:7°2’20”,7°3’0”,7°2’35”,7°2’20”,7°2’15”,α乙:7°2’25”,7°2’25”,7°2’20”,7°2’50”,7°2’45”;试求其测量结果。
05《工程测量》第五章测量误差的基本知识作业与习题答案
测量误差的基本知识作业与习题答案
1.设 n 个观测值的中误差均为 m,则 n 个观测值代数和的中误差为( A.
[vv] ; n −1
B
)。
B. m n ;
C.
m n
;
D.
[∆∆] 。 n
2.对某一量作 N 次等精度观测,则该量算术平均值的中误差为观测值中误差的( 1 A.N 倍; B. N 倍; C. 倍 。 N
中不准,望远镜的视差,水准仪视准轴与水准管轴不平行,水准尺立得不直,水准仪下沉,尺垫下 沉;经纬仪上主要轴线不满足理想关系,经纬仪对中不准,目标偏心,J6 级仪器照准部偏心,度盘 分划误差,照准误差。 水准测量时水准仪望远镜的视差、气泡没有精确符合、水准仪的视准轴与水准管轴不平行、水 准尺没立直、水准仪下沉、尺垫下沉;钢尺量距时钢尺尺长不准、温度的变化、拉力的变化、定线 不准、对点及投点误差;角度测量时经纬仪上主要轴线互相不垂直、经纬仪对中不准、目标偏心、 照准误差:这些误差都是系统误差,需要认真按照要求精心操作,并作相应的改正。 估读水准尺不准、读数误差:是偶然误差,需要多余观测、平差处理。 8.什么是误差传播定律?试述任意函数应用误差传播定律的步骤。 设 Z 是独立观测量 x1,x2,…,xn 的函数,即
∂f ∂f 2 ∂f 2 2 mz = m2 + L + ∂x m1 + ∂x ∂x mn 2 1 n
2
2
2
2
9.什么是观测量的最或然值?它是不是唯一的?为什么? 等精度直接观测值的最或然值即是各观测值的算术平均值。 观测值的最或然值不是唯一的,是最接近真值的值。随着观测次数的增多,逐步趋近于真值。 10.什么是等精度观测和不等精度观测?举例说明。 若观测条件相同,则可认为精度相同。在相同观测条件下进行的一系列观测称为等精度观测; 在不同观测条件下进行的一系列观测称为不等精度观测。 例如对某角等精度观测 6 次,求观测值的最或然值、观测值的中误差以及最或然值的中误差。 这就是等精度观测。 再比如用同一台经纬仪以不同的测回数观测某水平角,各组最后结果分别为β1=23°13′36″ (4 测回) ,β2=23°13′30″(6 测回) ,β3=23°13′26″(8 测回) ,试求这个角度的最或然值及 其中误差。这就是不等精度观测。 11.什么是多余观测?多余观测有什么实际意义? 当测定一个角度、一点高程或一段距离的值时,按理说观测一次就可以获得。但仅有一个观测 值,测的对错与否,精确与否,都无从知道。如果进行多余观测,就可以有效地解决上述问题,它
误差理论与测量平差基础习题集Word版
误差理论与测量平差基础习题集Word版第⼀章绪论§1-1观测误差1.1.01为什么说观测值总是带有误差,⽽且观测误差是不可避免的?1.1.02观测条件是由哪些因素构成的?它与观测结果的质量有什么联系?1.1.03测量误差分为哪⼏类?它们各⾃是怎样定义的?对观测成果有何影响?试举例说明。
1.1.04⽤钢尺丈量距离,有下列⼏种情况使量得的结果产⽣误差,试分别判定误差的性质及符号:(1)长不准确;(2)尺尺不⽔平;(3)估读⼩数不准确;(4)尺垂曲;(5)尺端偏离直线⽅向。
1.1.05在⽔准测量中,有下列⼏种情况使⽔准尺读数带有误差,试判别误差的性质及符号:(1)视准轴与⽔准轴不平⾏;(2)仪器下沉;(3)读数不准确;(4)⽔准尺下沆。
§1-2测量平差学科的研究对象1.2.06 何谓多余观测?测量中为什么要进⾏多余观测?1.2.07 测量平差的基本任务是什么?§1-3测量平差的简史和发展1.3.08 ⾼斯于哪⼀年提出最⼩⼆乘法?其主要是为了解决什么问题?1.3.09 ⾃20世纪五六⼗年代开始,测量平差得到了很⼤发展,主要表现在那些⽅⾯?§1-4 本课程的任务和内容1.4.10 本课程主要讲述哪些内容?其教学⽬的是什么?第⼆章误差分析与精度指标§2-1 正态分布2.1.01 为什么说正态分布是⼀种重要的分布?试写出⼀维随机变量X的正态分布概率密度式。
§2-2 偶然误差的规律性2.2.02 观测值的真误差是怎样定义的?三⾓形的闭合差是什么观测值的真误差?2.2.03 在相同的观测条件下,⼤量的偶然误差呈现出什么样的规律性?2.2.04 偶然误差*服从什么分布?它的数学期望和⽅差各是多少?§2-3 衡量精度的指标测值⽐误差⼤的观测值精度⾼?2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差⼀定相同?为什么?2.3.08 为了鉴定经纬度的精度,对已知精确测定的⽔平⾓α=45O00’00”作12次观测,结果为:45o00’06” 44o59’55” 44o59’58” 45o00’04”45o00’03” 45o00’04” 45o00’00” 44o59’58”44o59’59” 44o59’59” 45o00’06” 45o00’03”设α没有误差,试求观测值的中误差。
测量误差理论的基本知识
测量误差理论的基本知识1.研究测量误差的目的是什么2.系统误差与偶然误差有什么区别在测量工作中,对这二种误差如何进行处理3.偶然误差有哪些特征4.我们用什么标准来衡量一组观测结果的精度中误差与真误差有何区别5.什么是极限误差什么是相对误差6.说明下列原因产生的误差的性质和削弱方法钢尺尺长不准,定线不准,温度变化,尺不抬平、拉力不均匀、读数误差、锤球落地不准、水准测量时气泡居中不准、望远镜的误差、水准仪视准轴与水准管轴不平行、水准尺立得不直、水准仪下沉、尺垫下沉、经纬仪上主要轴线不满足理想关系、经纬仪对中不准、目标偏心、度盘分划误差、照准误差。
7.什么是误差传播定律试述任意函数应用误差传播定律的步骤。
8.什么是观测量的最或是值9.什么是等精度观测和不等精度观测举例说明。
10.什么是多余观测多余观测有什么实际意义11.用同一把钢尺丈量二直线,一条为1500米,另一条350米,中误差均为±20毫米,问两丈量之精度是否相同如果不同,应采取何种标准来衡量其精度12.用同一架仪器测两个角度,A=10°′±′,B=81°30′±′哪个角精度高为什么13.在三角形ABC中,已测出A=30°00′±2′,B=60°00′±3′,求C及其中误差。
14.两个等精度的角度之和的中误差为±10″,问每一个角的中误差为多少15.水准测量中已知后视读数为a=,中误差为m a=±0.002米,前视读数b=0.476米,中误差为m b=±0.003米,试求二点间的高差及其中误差。
16.一段距离分为三段丈量,分别量得S1=42.74米,S2=148.36米,S3=84.75米,它们的中误差分别为,m1=±2厘米,m2=±5厘米,m3=±4厘米试求该段距离总长及其中误差m s。
17.在比例尺为1:500的地形图上,量得两点的长度为L=23.4毫米,其中误差为m1=±0.2mm,求该二点的实地距离L及其中误差m L。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5测量误差的基本知识一、填空题:1、真误差为观测值减去真值。
2、观测误差按性质可分为粗差、和系统误差、和偶然误差三类。
3、测量误差是由于仪器误差、观测者(人的因素)、外界条件(或环境)三方面的原因产生的。
4、距离测量的精度高低是用_相对中误差 ___来衡量的。
5、衡量观测值精度的指标是中误差、相对误差和极限误差和容许误差。
6、独立观测值的中误差和函数的中误差之间的关系,称为误差传播定律。
7、权等于 1 的观测量称单位权观测。
8、权与中误差的平方成反比。
9、用钢尺丈量某段距离,往测为112.314m,返测为 112.329m,则相对误差为 1/7488 。
10、用经纬仪对某角观测 4 次, 由观测结果算得观测值中误差为±20″, 则该角的算术平均值中误差为 ___10″__.11、某线段长度为300m,相对误差为 1/3200, 则该线段中误差为 __9.4 mm ___。
12、设观测一个角度的中误差为±8″,则三角形内角和的中误差应为±″ 。
13、水准测量时,设每站高差观测中误差为±3mm,若1km观测15 个测站,则1km了的高差观测中误差为11.6mm,1 公里的高差中误差为11.6 mm二、名词解释:1、观测条件 ----测量是观测者使用某种仪器、工具,在一定的外界条件下进行的。
观测者视觉鉴别能力和技术水平;仪器、工具的精密程度;观测时外界条件的好坏,通常我们把这三个方面综合起来,称为观测条件。
2、相对误差 K---- 是误差 m的绝对值与相应观测值 D 的比值。
它是一个不名数,常用分子为 1 的分式表示。
3、等精度观测 ----是指观测条件(仪器、人、外界条件)相同的各次观测。
4、非等精度观测 ----是指观测条件不同的各次观测。
5、权----是非等精度观测时衡量观测结果可靠程度的相对数值,权越大,观测结果越可靠。
三、选择题:1、产生测量误差的原因有(ABC)。
A、人的原因 B 、仪器原因 C 、外界条件原因 D 、以上都不是2、系统误差具有的性质是(ABCD )。
A、积累性 B 、抵消性 C、可消除或减弱性 D 、规律性3、衡量精度高低的标准有(ABC)。
A、中误差 B 、相对误差 C、容许误差 D 、绝对误差4、误差传播定律包括哪几种函数(ABCD)。
A、倍数函数 B 、和差函数 C 、一般线性函数 D 、一般函数5、用钢尺丈量两段距离,第一段长1500m,第二段长 1300m,中误差均为 +22mm,问哪一段的精度高 ( A)。
A、第一段精度高, B 、第二段精度高。
C、两段直线的精度相同。
6、在三角形 ABC中,测出∠ A 和∠ B,计算出∠ C。
已知∠ A 的中误差为 +4″,∠ B 的中误差为 +3″,求∠ C 的中误差为( C )A、+3 ″ B 、 +4″C、 +5″D、+7 ″7、一段直线丈量四次,其平均值的中误差为+10cm,若要使其精度提高一倍,问还需要丈量多少次 ( C )A、4次B、8次C、12次D、16次8、用经纬仪测两个角,∠A=10°′∠ B=81°′中误差均为±′,问哪个角精度高( C )A. 、第一个角精度高 B 、第二个角精度高 C 、两个角的精度相同9、观测值L 和真值X 的差称为观测值的( D )A、最或然误差B、中误差C、相对误差D、真误差C )10、一组观测值的中误差m和它的算术平均值的中误差M关系为:(MmA、 M mB、nm11、在误差理论中,公式A、最或然误差B、中误差m mC 、M MnD 、n 1n中的△表示观测值的:( C)C、真误差D、容许误差四、判断题:(正确的在括号内打√,打错误的打×)(√) 1、测量成果不可避免地存在误差,任何观测值都存在误差。
(×) 2、观测条件好,则成果精度就高;观测条件差,则成果精度就低。
(√) 3、观测误差与观测成果精度成反比。
(√)4、产生系统误差的主要原因是测量仪器和工具构造不完善或校正不完全准确。
(× )5、系统误差和偶然误差通常是同时产生的,当系统误差消除或减弱性后,决定观测精度的主要是偶然误差。
(√ )6、偶然误差不能用计算改正或一定的观测方法简单地消除,只能根据其特性来改进观测方法并合理地处理数据,加以减少影响。
(×)7、在相同观测条件下,对某一量进行一系列观测,若误差的大小和符号保持不变,或按一定的规律变化,这种误差称为偶然误差。
(√) 8、误差的绝对值与观测值之比称为相对误差。
(√) 9、中误差、容许误差、闭合差都是绝对误差。
(√)10、用经纬仪测角时,不能用相对误差来衡量测角精度,因为测角误差与角度大小无关。
(√)11、在相同的观测条件下,算术平均值的中误差与观测次数的平方根成反比。
(√)12、误差传播定律是描述直接观测量的中误差与直接观测量函数中误差之间的关系。
(√)13、在观测条件不变的情况下 , 为了提高测量的精度 , 其唯一方法是增加测量次数。
五、简答题1、什么叫观测误差产生观测误差的原因有哪些答:(1)、观测值与其真实值 ( 简称为真值 ) 之间的差异,这种差异称为测量误差或观测误差。
(2)、测量是观测者使用某种仪器、工具,在一定的外界条件下进行的。
观测误差来源于以下三个方面:观测者视觉鉴别能力和技术水平;仪器、工具的精密程度;观测时外界条件的好坏。
通常我们把这三个方面综合起来,称为观测条件。
观测条件将影响观测成果的精度。
2、什么是粗差什么是系统误差什么是偶然误差答:粗差:是疏忽大意、失职造成的观测误差,通过认真操作检核是可消除的。
系统误差:在相同的观测条件下作一系列的观测,如果误差在大小、方向、符号上表现出系统性并按一定的规律变化或为常数,这种误差称为系统误差。
偶然误差:在相同的观测条件下作一系列的观测,如果误差表现出偶然性,单个误差的数值、大小和符号变化无规律性,事先不能预知,产生的原因不明显,这种误差为偶然误差。
3、偶然误差有哪些特性答:( 1)、在一定条件下,偶然误差的绝对值不会超过一定的界限( 有限性 ) ;(2)、绝对值较小的误差比绝对值较大的误差出现的机会多( 单峰性 ) ;(3)、绝对值相等的正误差与负误差出现的机会相等, ( 对称性 ) ;(4)、偶然误差的平均值,随着观测次数的无限增加而趋近于零,( 抵偿性 ) 。
4、举例说明如何消除或减小仪器的系统误差答:在测量工作中,应尽量设法消除和减小系统误差。
方法有两种:一是在观测方法和观测程序上采用必要的措施,限制或削弱系统误差的影响,如角度测量中采取盘左、盘右观测,水准测量中限制前后视视距差等,另一种是找出产生系统误差的原因和规律,对观测值进行系统误差的改正,如对距离观测值进行尺长改正、温度改正和倾斜改正,对竖直角进行指标差改正等。
5、写出衡量误差精度的指标。
答:(1)、平均误差:在一定条件下的观测系列中,各真误差的绝对值的平均数,即:θ= [| △ |] /n(2)、中误差:在一定条件下的观测系列中,各真误差平方和的平均数的平方根:m=±[VV ] / n(3)、允许误差 ( 极限误差 ) :在一定的观测条件下,偶然误差的绝对值不会超过某一定限值,通常以三倍中误差或二倍中误差为极限值,称此极限值为允许误差。
(4)、相对误差:是误差的绝对值与相应观测值之比。
6、等精度观测中为什么说算术平均值是最可靠的值?答:这是因为:设对某量进行了n 次观测,其观测值分别为Ll , L2, Ln(1)、其算术平均值为 L = (Ll +L2++ Ln) / n= [L] /n,设该量的真值为 X;(2)、真误差为:△ 1=L1- X,△ 2=L2- X,△ n= Ln-X,等式两边相加并各除以 n,即:[ △] /n=[L]/n -X;(3)、当观测次数无限增加时.有Lim [ △] /n=0;nLim L(4)、所以:n = X;所以说算术平均值是真值的最优估值。
7、从算术平均值中误差(M)的公式中,使我们在提高测量精度上能得到什么启示答:从公式可以看出,算术平均值的中误差与观测次数的平方根成反比。
因此增加观测次数可以提高箕术平均值的精度。
当观测值的中误差m=1 时,算术平均值的中误差M与观测次数n的关系如图 5-4 所示。
由图可以看出,当n增加时,M减小。
但当观测次数n达到一定数值后 ( 如n=10) ,再增加观测次数,工作量增加,但提高精度的效果就不太明显了。
故不能单纯以增加观测次数来提高测量成果的精度,应设法提高观测值本身的精度。
例如,使用精度较高的仪器、提高观测技能、在良好的外界条件下进行观测等。
8、写出误差传播定律的公式,并说明该公式的用途。
答:设一般函数, Z= (Xl ,X2, Xn),式中 X1,X2, X。
为可直接观测的量, m1, m2, mn为各观测量相应的中误差,则:函数Z 的中误差为计算式:mZ =±( F / X1 )2 m12( F / X 2 )2 m22( F / X n ) 2 m n2此式就是误差传播定律。
可以用各变量的观测值中误差来推求函数的中误差。
六、计算题:1、设对某线段测量六次,其结果为 312.581m 、312.546m 、312.551m 、312.532m 、312.537m 、312.499m 。
试求算术平均值、观测值中误差、算术平均值中误差及相对误差。
l 1 l 2l nl =312.541 m解:算术平均值 Ln n观测值中误差: m =±[VV ] /( n 1)=±;算术平均值中误差: M L = m / n ±( m );结果:±相对误差 : m 1=1/28412 KDDm2、已知 DJ6光学经纬仪一测回的方向中误差 m=±6″, 问该类型仪器一测回角值的中误 差是多少如果要求某角度的算术平均值的中误差 m 角=±5″,用该仪器需要观测几个测回。
解:一测回角值的中误差:由和差函数得 mm 12 m 2262 628.5//M=m ,=,需测3 个测回n 3n3、用某经纬仪测量水平角,一测回的中误差 m=±15″,欲使测角精度达到土5″问需要观测几个测回解:由 M=m,则 = ,需测9 个测回n 9n4、同精度观测一个三角形的两内角α、β,其中误差: m = m =± 6″,求三角形的第三角γ的中误差 m解:γ =180-α - β由误差传播定理得 m =±( /22) 2 m( / ) 2 m=±″5、设量得 A 、B 两点的水平距离 D=206.26m ,其中误差m D = ± ,同时在 A 点上测0.04m得竖直角=30°00′,其中误差 m =±10″。