放缩法技巧全总结(非常精辟-是尖子生解决高考数学最后一题之瓶颈之精华!!)

合集下载

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结

高中数学放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k . 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k nk (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)1111(1)1132132(1)n n n n +<+++++<⨯⨯-(5)nn n n 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8)nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n (11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n nn n n n n n n n n n n n (12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+ (14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:n n412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn (4) 求证:)112(2131211)11(2-+<++++<-+n n n解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k n k 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n. 解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m nk m nk m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kkm kkm 而正是成立的,所以原命题成立.例6.已知nn n a 24-=,nnn a a a T +++=212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n nnn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n nn T T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ .解析:先构造函数有x x x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n+++--<++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n nn ααααααα解析:构造函数x x x f ln )(=,得到22ln ln n n n n ≤αα,再进行裂项)1(1111ln 222+-<-≤n n nn n,求和后可以得到答案例10.1-n 所以有n n 1211)1ln(+++<+ ,所以综上有n n n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x xx x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x , 所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 例14. 已知112111,(1).2n n n a a a n n +==+++证明2na e < 解析: n n nn n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到n nn a n n a ln )21)1(11ln(ln 1++++<+然后运用x x <+)1ln(和裂项可以得到答案)放缩思路:⇒+++≤+n n n a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结在高中数学学习中,放缩法是一种常用的解题技巧,尤其在不等式证明和极限计算中应用广泛。

掌握好放缩法的技巧,可以帮助我们更好地解决数学问题,提高解题效率。

下面,我将对高中数学放缩法的技巧进行全面总结,希望能够帮助大家更好地掌握这一技巧。

首先,放缩法的基本思想是通过构造一个比原来更容易处理的不等式或者关系式,从而简化原问题的解决过程。

在实际运用中,我们可以通过加减变形、乘除变形、配方等方式进行放缩,下面我们来看一些常用的放缩法技巧。

一、加减变形。

在不等式证明中,我们常常会遇到需要证明一个不等式成立的情况。

这时,我们可以通过在两边同时加上或者减去一个特定的数,来改变原不等式的形式,使得原不等式更容易证明。

例如,在证明数学归纳法中的不等式时,我们常常会通过加减变形来简化证明过程,这是一种常见的放缩法技巧。

二、乘除变形。

在极限计算中,我们常常需要通过放缩法来证明一个极限存在或者不存在。

这时,我们可以通过乘除变形,将原极限问题转化为一个更容易处理的形式。

例如,当我们需要证明一个函数的极限不存在时,可以通过乘除变形将原函数转化为一个更容易处理的形式,从而简化证明过程。

三、配方。

在解决数学问题中,有时我们需要通过配方来进行放缩。

例如,在证明三角函数不等式时,我们可以通过对不等式进行配方,将原不等式转化为一个更容易处理的形式。

这种放缩法技巧在解决三角函数不等式问题中应用广泛,可以帮助我们更好地解决这类问题。

总结起来,放缩法是高中数学学习中常用的解题技巧,通过加减变形、乘除变形、配方等方式进行放缩,可以帮助我们更好地解决数学问题,提高解题效率。

希望以上总结的放缩法技巧对大家有所帮助,能够在高中数学学习中更好地运用这一技巧,提高数学成绩。

放缩法技巧全总结.doc

放缩法技巧全总结.doc

..2011 高考数学备考之 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩 例 1.(1) n2的值 ;(2) 求证 : n1 5 .求k 14k 2 1k 1 k23解析 :(1) 因为2211 , 所以n21 12n4n 2 1(2n 1)(2n 1)2n 1 2n 1k14k 2 1 2n 12 n 1(2)因为 11411, 所以 1 1 21 11152n1 2214 n 22n1 2n 1k 1k23 5 2n 1 2n 13 321nn4奇巧积累 :(1)1 4 42 11(2)1 21 1n24n24n22n 1C n11C n2( n 1)n( n 1)n( n 1)n(n 1)12n 1(3)Tr 1r1 n! 1 1 1 1 1 (r 2)C nr!( nr )! n rr! r ( r 1)r 1rn r(4)(1 1 ) n 1 1 1 1 115n 2 3 2 n(n 1)2(5)11 1(6)1 n 2n2 n(2n1) 2n1 2nn 2(7)2( n 1 n )1 2( nn 1) (8)2 1 11 1n2 n 1 2n3 2n(2 n 1) 2 n 1 (2n 3) 2n (9)1 1 1 1 , 1 1 1 1k (n 1 k) n 1 kk n 1 1 k ) k 1 n n 1 kn(n(10)n 1 1(11)12 22(n 1) ! n ! (n 1) !2( 2n 12n 1)n 2n1 2n 11 1nn22(11)2 n2n2 n2n 111(n 2 )(2n 1)2(2n1)( 2n 1) (2 n1)( 2 n2) (2 n 1)(2n 1 1) 2n 11 2 n1 (12)1 11111 n 3 n n2 n (n 1)(n 1)n( n 1) n (n 1) n 1 n 1 1 1 n 1 n 1 1 1n1 n 12 nn 1n1(13)(14)2 n 12 2n(3 1) 2n 3 3(2 n 1) 2n2n 1 2n1 2 n3 2n1 3k 2 11 (15)1 nn 1(n 2)k! (k1)!(k 2)! (k 1) ! (k2) !n( n1)(15)i 21 j 21i 2j 2ij 1ij(i j)( i 21j 2 1)i 2 1j 21. .下载可编辑 . ...例 2.(1) 求证: 11 1 1 71 (n2)325 2( 2n 1) 262( 2n 1)(2)求证:11 11 1 1 (3)求证 : 1 1 31 3 5 1 3 5 6 (2n 1)2n 1 14 16 364n 224n2 2 42 4 62 42n (4) 求证: 2( n1 1)1 1 12 ( 2n 1 1)13n2解析 :(1) 因为11111, 所以n11 1 1 1 1 11 ( ) 1 ( )(2 n 1) 2 (2n 1)(2ni 1 (2i1) 2 2 32n1) 2 2n 1 2n 12n 1 2 31(2) 11 1 1 1 (111) 1 (1 11 )416 3624 22 4 n4n2n(3) 先运用分式放缩法证明出1 3 5 (2 n 1) 1, 再结合2 4 62n2n 11 进行裂项 , 最后就可以得到答n 2 nn 2案(4) 首先再证1 2 , 所以容易经过裂项得到1 1 1 2( n 1 n )n2( n 1 1) 13nnn 12而由均值不等式知道这是显然成立的,1 2( 2n 12n1)2 22 n 12n 11 12 nnn22所以 11 1 12( 2n 1 1)2 3 n例3.求证:6n11 115( n 1)( 2n 1)4 9n 23解析 :一方面 : 因为 11411, 所以n11 2 111112 521 22k 1k23 52n 1 2n 13 3nn 24n12n 12n 14另一方面 : 11 1 1 11 1 1 11 n49n22 3 34n(n 1)n 1n1当 n3 时 , n(n 6n1) , 当 n 1时 , ( n 6n 1 1 1 1 ,n 1 1)(2n1)( 2n 1)4 9 n 2当 n2 时 ,6n11 1 1 ,(n1)(2n 1)4 9 n2所以综上有6n111 1 5(n 1)(2n1)4 9 n 23例 4.(2008 年全国一卷 ) 设函数 f ( x)x x ln x . 数列 a 满足 0a 1. a n 1 f (a n ).n1设 b ( a 1,1) ,整数 k ≥ a 1 b. 证明 : a k 1b .a 1 ln b解析 : 由数学归纳法可以证明a n 是递增数列 ,故 若存在正整数 m k , 使 a mb , 则 a k 1 a k b ,. .下载可编辑. ...若 a mb(m k) , 则由 0a 1 a mb 1知 a m ln a ma 1 ln a m a 1 lnb 0 ,k,a k 1 a k a k ln a k a 1a m ln a mm 1因为 k a m ln a m k( a 1 ln b ),于是a k 1 a 1k | a 1 ln b | a 1 (b a 1 ) bm 1例 5. 已知 n, m N , x1, S1m 2 m3 mn m , 求证 : n m 1 (m 1) S( n 1) m 1 1.mn解析 : 首先可以证明 :(1 x)n 1 nxn m 1 n m 1(n 1)m(n1) m 1 ( n 2 )m 11m 1 0n(k 1)m 1]所以要证1[k m 1k 1n m 1(m 1)S n ( n 1) m 1 1只要证 :nnn[ k m 1(k 1)m 1](m 1)k m (n 1)m 1 1 ( n 1) m 1n m 1 n m 1 (n 1)m 12m 1 1 m 1[( k 1) m 1 k m 1 ]k 1k 1k1故只要证 n[ k m 1 ( k 1)m 1 ](m 1)nk mn [( k 1) m 1 k m1 ],k 1k 1k1即等价于 k m 1 ( k1) m 1 (m 1)k m ( k 1) m 1k m ,即等价于 1 m 1 (1 1) m 1 ,1 m 1(1 1) m 1 而正是成立的 , 所以原命题成立 .kk kk例 6. 已知 a 4n2 n ,2n,求证: T 1 T 2 T 3T n3 .nT na 1 a 2a n2解析: T4142434n( 21222 n) 4(1 4 n) 2(1 2n)4(4 n1) 2(1 2n )n1 4 1 23所以2n2n2n3 2n32nT n4 (4n 1) 2 (1 2n )4 n 144n 124 n 13 2n 1 2 2 2 ( 2n ) 2 3 2n 12 2n 1 2 n 13 3 3 3332 n3 1 12 (2 2 n 1)( 2n 1) 2 2n 12n 1 1从而TTTTn3 1 1 1 11 131232 3 3 72n1 2n 1 12例 7. 已知 x1 , n( n 2k 1,kZ),求证:1111x n2k ,k Z)2 ( n 1 1)(n N*)n 1(n4x 2 x 34x 4 x 5 4x 2 n x 2 n 1证明 :1111 12 ,4x 2 n x 2 n 1 4 ( 2n 1)(2 n 1)44n 2144n 22 n 2 n因为2 n nn 1 , 所以 122n1 n )2 (4x 2 n x 2 n 12 nnn 1所以1112( n 1 1)( n N *)4x 2 x 34x 4 x 5 4x 2n x 2n 1二、函数放缩例 8. 求证:ln 2ln 3 ln 4 ln 3n 3n5n 6( n N * ) .2 3 43n6解析 : 先构造函数有 ln x x 1 ln x 1, 从而 ln 2ln 3 ln 4ln 3n3n111 )1n1 (nxx 2 34 2 333. .下载可编辑 . ...cause1 1 11 1 1 1 1 1 1 1 1 1 123 3n 2 345678 92n 2 n 13n5 3 3 9 9 3n 13n 15n 66 918 272 3 n 1 3n 6所以 ln 2 ln 3ln 4 ln 3 n 3 n5n 3n5n 62343n16 6例 9. 求证 :(1)ln 2ln 3ln n 2n 2 n 12,3n2(n(n 2)21)解析 : 构造函数ln x ,得到 ln nln n 2, 再进行裂项 ln n 21 1, 求和后可以得到答案f ( x)nn 2n 21211)xn n(n 函数构造形式 : ln x x 1, ln nn1(2)例 10. 求证:11 1 1 ln( n 1) 11 12 3n2 n解析 : 提示 : ln( n 1) lnn1 n n 12 lnn1 ln n1 ln 2n 1n n函数构造形式 :ln x x, ln x1 1yx当然本题的证明还可以运用积分放缩如图 , 取函数 f (x)1,xDE首先 : SABCFn1 , 从而 , 1i n1nln n ln( n i )F Cn i xnx ln x |n iA Bn iOn-inx取 i 1有,1ln n ln( n 1) ,n所以有1ln 2,1ln 3 ln 2, ,1ln n ln( n 1) ,1 ln( n 1) ln n ,相加后可以得到:23nn11 11ln( n 1)23n1另一方面 SABDEn1, 从而有1 i n1nln n ln( n i )xn ix ln x |n in in i取 i 1有 , 1ln n ln( n 1) ,n 1所以有ln( n 1) 111 , 所以综上有 11 1 ln( n 1) 111 2n 23 n 12n例 11. 求证: (1)(1) (1) e 和(1 1)(1 1 ) (1 1 )e .解析 : 构造函数后即可证明11 12!3!n!98132 n例 12.求证: (1 1 2) (1 2 3)2 n 3解析 :, 叠加之后就可以得到答[1 n(n 1)] eln[ n(n 1) 1]321n(n 1)案. .下载可编辑 . .函数构造形式 :3 ( x 0 ) 1 ln( 1 x)3 ( x 0) ln( x 1) 2x 1xx 1..( 加强命题 )例 13. 证明 : ln 2 ln 3ln 4 ln n n(n 1)(n N *, n1)345 n 14解析 : 构造函数 f ( x) ln( x 1) (x1) 1(x 1) , 求导 , 可以得到 :'( x)1 1 2x , 令 f '(x ) 0 有 1x 2 , 令 f ' (x )0 有 x 2,fxx 11所以f ( x)f (2)0 ,所以ln( x1) x2 , 令 x n 2 1 有 , ln n2n 2 1所以 ln nn1 , 所以 ln2 ln3 ln 4ln n n(n 1) (n N*, n 1)n 12345n 14例 14. 已知1,a n 1 (1 1 ) a n 1证明a ne 2 .a.n 2 n 2n解析 : an 1(1 1)a n 1 (111) a n ,1)1)n (n2 nn (n 2 n然后两边取自然对数, 可以得到11ln a n 1ln(1 n(n 1)2n)ln an然后运用 ln(1 x ) x 和裂项可以得到答案 )放缩思路: 21 1n )a n 1 1a n 1(1nln a n 1 ln(1n 2n 2 n)ln a nn2ln a n1 1 。

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结高中数学中的放缩法是一种常用的解题技巧,它通过适当调整式子的形式,进行等价转化,从而简化计算或者明晰问题的关键点。

下面总结了一些常见的高中数学放缩法技巧。

1. 分子分母同乘:当分式的分子和分母中含有相同的因式时,可以将分子和分母同时乘以这个因式的倒数,从而得到一个等价的分式。

这样做的好处是可以简化分式,消去分子分母中的公因式。

2. 导数法:在解决函数极值问题时,可以利用导数的概念进行放缩。

通过求函数的导数,并研究导数的正负性,可以找到函数的极值点。

这种方法可以有效地缩小问题的范围,简化计算。

3. 均值不等式:均值不等式是一种常用的放缩方法,它通过寻找合适的均值来放缩不等式。

常见的均值不等式有算术-几何均值不等式、柯西-施瓦茨不等式等。

通过将不等式的两边同时取均值,可以得到一个更简单的等价不等式。

4. 三角函数变换:在解决三角函数相关的问题时,可以利用三角函数的性质进行放缩。

常见的三角函数变换有和差化积、倍角公式等。

通过适当的变换,可以将原问题转化为更容易处理的形式。

5. 幂函数变换:在解决幂函数相关的问题时,可以利用幂函数的性质进行放缩。

常见的幂函数变换有换元法、幂函数的反函数等。

通过适当的变换,可以使问题的形式更简单,更易于分析。

6. 递推关系式:在解决数列相关的问题时,可以利用递推关系式进行放缩。

通过找到数列的递推关系式,可以将原问题转化为递推问题。

递推关系式可以帮助我们找到数列的通项公式,从而简化问题的求解过程。

以上是一些高中数学中常用的放缩法技巧。

通过灵活运用这些技巧,可以在解题过程中简化计算、明晰问题的关键点,从而更高效地解决数学问题。

放缩法技巧全总结

放缩法技巧全总结

放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析n35 (12) 11)1()1()1)(1(23--+⋅⎪⎪⎭ ⎝+--=+-<⋅=n n n n n n n n n n n n (13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ (2)求证:n n412141361161412-<++++Λ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ (4) 求证:)112(2131211)11(2-+<++++<-+n n n Λ解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(21112131(211)12(112--+>+-+>-∑=n n i nin1+例解所以当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n.n++-m k 11]例例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明: nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++Λ.解析:先构造函数有x x x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n+++--<++++ΛΛ所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nnΛ解析例-in i n -取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+Λ,所以综上有n n n 1211)1ln(113121+++<+<++++ΛΛ例11.求证:e n <+⋅⋅++!11()!311)(!211(Λ和e n <+⋅⋅++)311()8111)(911(2Λ.解析:构造函数后即可证明 例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案题) 例13.证明:)1*,()1(ln 4ln 3ln 2ln >∈-<++++n N n n n n Λ 例解析即.2ln ln 21e a a a n n <⇒<-注:题目所给条件ln(1)x x +<(0x >)为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论)2)(1(2≥->n n n n来放缩:.)1(1))1(11ln()1ln()1ln(1-<-+≤+-++n n n n a a n n111)1ln()1ln()1(1)]1ln()1ln([212112<-<+-+⇒-<+-+⇒∑∑-=+-=na a i i a a n n i i i n i , 即.133ln 1)1ln(2e e a a n n <-<⇒+<+例16.(2008年福州市质检)已知函数.ln )(x x x f =若).()(2ln )()(:,0,0b f b a f b a a f b a -+≥++>>证明解析:设函数()()(),(0)g x f x f k x k =+->∴函数k k x g ,2[)(在)上单调递增,在]2,0(k 上单调递减.∴)(x g 的最小值为)2(k g ,即总有).2()(kg x g ≥而,2ln )()2ln (ln 2ln )2()2()2(k k f k k kk k k f k f k g -=-==-+=即.2ln )()()(k k f x k f x f -≥-+令,,b x k a x=-=则.b a k +=例15.(2008年厦门市质检) 已知函数)(x f 是在),0(+∞上处处可导的函数,若)()('x f x f x >⋅在0>x)n x +令2)1(n x n +=,有 所以).()2)(1(2)1ln()1(14ln 413ln 312ln 21*22222222N n n n nn n ∈++>++++++Λ(方法二)⎪⎭⎫ ⎝⎛+-+=++≥+++>++21114ln )2)(1(4ln )2)(1()1ln()1()1ln(222n n n n n n n n n 所以)2(24ln 21214ln )1ln()1(14ln 413ln 312ln 2122222222+=⎪⎭⎫ ⎝⎛+->++++++n n n n n Λ 又1114ln +>>n ,所以).()2)(1(2)1ln()1(14ln 413ln 312ln 21*22222222N n n n n n n ∈++>++++++Λ 三、分式放缩姐妹不等式:)0,0(>>>++>m a b ma mb a b 和)0,0(>>>++<m b a m a mb a b记忆口诀”小者小,大者大”,解释:看b ,若b 小,则不等号是小于号,反之. 例19. 姐妹不等式:121211()511)(311)(11(+>-++++n n Λ和121211()611)(411)(211(+<+---n n Λ也可以表示成为12)12(5312642+>-⋅⋅⋅⋅⋅⋅⋅n n n ΛΛ和1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ解析: 利用假分数的一个性质)0,0(>>>++>m a b ma mb a b 可得 ⇒例2)21n n > 例{}n B 满足OA . 解析:(1) 依题设有:(()10,,,0n n n n A B b b n ⎛⎫> ⎪⎝⎭,由1n OB n =得: 2*212,1,n n n b b b n N n +=∴=∈,又直线nnA B 在x 轴上的截距为n a 满足 显然,对于1101nn >>+,有*14,nn a a n N +>>∈(2)证明:设*11,n n nb c n N b +=-∈,则设*12,n n S c c c n N =+++∈L ,则当()*221k n k N =->∈时,212311112222222k k k -->⋅+⋅++⋅=L 。

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结

高中数学放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k . 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k nk (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)1111(1)1132132(1)n n n n +<+++++<⨯⨯-(5)nn n n 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8)nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n (11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n nn n n n n n n n n n n n (12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+ (14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:n n412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn (4) 求证:)112(2131211)11(2-+<++++<-+n n n解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k n k 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n. 解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m nk m nk m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kkm kkm 而正是成立的,所以原命题成立.例6.已知nn n a 24-=,nnn a a a T +++=212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n nnn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n nn T T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ .解析:先构造函数有x x x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n+++--<++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n nn ααααααα解析:构造函数x x x f ln )(=,得到22ln ln n n n n ≤αα,再进行裂项)1(1111ln 222+-<-≤n n nn n,求和后可以得到答案例10.1-n 所以有n n 1211)1ln(+++<+ ,所以综上有n n n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x xx x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x , 所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 例14. 已知112111,(1).2n n n a a a n n +==+++证明2na e < 解析: n n nn n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到n nn a n n a ln )21)1(11ln(ln 1++++<+然后运用x x <+)1ln(和裂项可以得到答案)放缩思路:⇒+++≤+n n n a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结

2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk Λ 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n Λ (5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n nn n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i ji j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ (2)求证:nn 412141361161412-<++++Λ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ(4) 求证:)112(2131211)11(2-+<++++<-+n nn Λ解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++ΛΛ(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+Λ再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n nΛ例3.求证:35191411)12)(1(62<++++≤++n n n n Λ解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk Λ 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n ΛΛ 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++Λ,当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1(Λ所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([Λ 故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=Λ212,求证:23321<++++nT T T T Λ.解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=ΛΛ所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T ΛΛ 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++Λ.解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++ΛΛ因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121ΛΛΛ6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---Λ所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nnΛ例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n αααααααΛ解析:构造函数xx x f ln )(=,得到22ln ln n n n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:nn n 1211)1ln(113121+++<+<++++ΛΛ 解析:提示:2ln 1ln 1ln 1211ln )1ln(++-++=⋅⋅-⋅+=+ΛΛn n nn n n n n n当然本题的证明还可以运用积分放缩 如图,取函数xx f 1)(=,首先:⎰-<n in ABCFx S 1,从而,)ln(ln |ln 11i n n x x i n n i n ni n --==<⋅--⎰ 取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n ,n n n ln )1ln(11-+<+,相加后可以得到: )1ln(113121+<++++n n Λ另一方面⎰->n i n ABDExS 1,从而有)ln(ln |ln 11i n n x x i i n n i n ni n --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+Λ,所以综上有nn n 1211)1ln(113121+++<+<++++ΛΛ例11.求证:e n <+⋅⋅++)!11()!311)(!211(Λ和e n <+⋅⋅++)311()8111)(911(2Λ. 解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。

放缩法技巧全总结

放缩法技巧全总结

放缩法技巧全总结放缩法是一种在求解数学问题时经常使用的技巧之一、它主要是通过对问题进行放大或缩小,从而转换为更简单或更熟悉的形式来解决。

放缩法可以用于各种数学领域,如代数、几何和计算等。

在本文中,我将总结一些常用的放缩法技巧。

一、代数放缩法1.替换变量:通过替换变量,将原始问题转化为更容易求解的问题。

例如,可以通过令一些变量等于另一个变量的一些表达式来简化问题。

2.提取公因式:将多项式中的公因式提取出来,可以简化计算过程。

3.移项:将方程中的项移动到一边,可以使问题更加清晰。

4.分式放缩:对于有分式形式的问题,可以通过放缩分母或分子来简化问题。

二、几何放缩法1.类比三角形:如果一个问题中涉及到一个复杂的三角形,可以通过找到类似形状但更简单的三角形来放缩问题。

2.重心放缩:对于一个几何体,可以通过移动几何体的重心来简化问题。

例如,在求解三角形面积时,可以通过将三角形平移到一个更简单的位置来计算。

3.缩放比例:通过按比例缩放一个几何体,可以简化问题。

例如,求解复杂图形的面积时,可以将图形按比例缩小到一个更易计算的大小。

三、计算放缩法1.近似计算:当遇到一个复杂的数学计算时,可以通过近似计算来简化问题。

例如,可以使用泰勒级数近似一个函数的值。

2.递归放缩:将一个复杂的计算问题分解为多个简单的计算问题,并将得到的结果组合起来。

例如,在求解一个复杂的积分时,可以将其拆分为多个简单的积分来计算。

3.迭代放缩:通过迭代计算的方式,逐步接近问题的解。

例如,在求解方程的根时,可以逐步逼近根的值。

四、实例分析以以下问题为例,展示放缩法在实际问题的应用。

假设有一个需要排队购买电影票的场景,共有n个人等待购票,每个人需要等待的时间为ti,求解n个人等待时间的平均值。

使用放缩法求解该问题的步骤如下:1. 将n个人的等待时间求和得到总的等待时间sum。

2. 将总的等待时间sum除以n,得到平均等待时间average。

通过放缩法求解,可以将原始问题转化为简单的求和和除法操作,从而简化了计算过程。

高考数学数列放缩法技巧全总结

高考数学数列放缩法技巧全总结

高考数学数列放缩法技巧全总结高考数学备考之 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩 例1. (1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ(2)求证:n n 412141361161412-<++++Λ(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n ΛΛΛ(4) 求证:)112(2131211)11(2-+<++++<-+n nn Λ解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n n n -+<+++=++++ΛΛ (3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+Λ再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n nΛ例2. (1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k.解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n,所以122121114212+=+-=-∑=n n n k n k(2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk Λ奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n n C T r rrn r(4)25)1(123112111)11(<-++⨯+⨯++<+n n nn Λ(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8)n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例3.求证:35191411)12)(1(62<++++≤++n n n n Λ 解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk Λ另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n ΛΛ当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6n n n n ++++=++Λ,当2=n 时,2191411)12)(1(6n n n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}na 满足101a <<.1()n n af a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k ab+>.解析: 由数学归纳法可以证明{}na 是递增数列,故 若存在正整数k m ≤, 使ba m≥, 则ba ak k ≥>+1,若)(k m b am≤<,则由101<<≤<b a am 知0ln ln ln 11<<≤b a a a a am m m,∑=+-=-=km mm k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是ba b a b a k a ak =-+≥+>+)(|ln |11111例5.已知mm m m m n S x Nm n ++++=->∈+Λ321,1,,,求证:1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nxx n+≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1(Λ所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m nk m nk m m k k n nnn n k m k k111111111111111])1[(2)1()1(1)1()1(])1([Λ故只要证∑∑∑=++==++-+<+<--nk m m nk mnk m m k k k m k k1111111])1[()1(])1([,即等价于mm m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m 而正是成立的,所以原命题成立.例6.已知nn na 24-=,nnn a a a T +++=Λ212,求证:23321<++++n T T T T Λ.解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++=ΛΛ所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n nnn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T ΛΛ例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明: nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩 例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++Λ.解析:先构造函数有xx x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n n n +++--<++++ΛΛcause⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121ΛΛΛ6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---Λ所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n n n Λ 例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n αααααααΛ解析:构造函数xxx f ln )(=,得到22ln ln nnn n ≤αα,再进行裂项)1(1111ln 222+-<-≤n n nn n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:n n n 1211)1ln(113121+++<+<++++ΛΛ 解析:提示:2ln 1ln 1ln 1211ln)1ln(++-++=⋅⋅-⋅+=+ΛΛn nn n n n n n n函数构造形式:xx x x 11ln ,ln -><当然本题的证明还可以运用积分放缩如图,取函数xx f 1)(=,首先:⎰-<nin ABCFx S 1,从而,)ln(ln |ln 11i n n x x i n n i n nin --==<⋅--⎰取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n,n n n ln )1ln(11-+<+,相加后可以得到:)1ln(113121+<++++n n Λ 另一方面⎰->ni n ABDExS 1,从而有)ln(ln |ln 11i n n x xi i n n i n ni n --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n ,FE D C BAn-inyxO所以有nn 1211)1ln(+++<+Λ,所以综上有nn n 1211)1ln(113121+++<+<++++ΛΛ例11.求证:e n <+⋅⋅++)!11()!311)(!211(Λ和en <+⋅⋅++)311()8111)(911(2Λ.解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 函数构造形式:)0(13)1ln(1)0(132)1ln(>+>++⇔>+->+x x x x x x x (加强命题)例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ例14. 已知112111,(1).2n n n a a a n n +==+++证明2nae <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。

放缩法技巧全总结

放缩法技巧全总结

高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn n n 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8)nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10)!)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n nn n n n n n n n n n n n(12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13)3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n nn111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m nk m nk m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n n x x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 311212191817161514131213131216533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xx x f ln )(=,得到22ln ln n n n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:nn n 1211)1ln(113121+++<+<++++ 解析:提示:2ln 1ln 1ln 1211ln )1ln(++-++=⋅⋅-⋅+=+ n n nn n n n n n当然本题的证明还可以运用积分放缩 如图,取函数xx f 1)(=,首先:⎰-<n in ABCFx S 1,从而,)ln(ln |ln 11i n n x x i n n i n ni n --==<⋅--⎰ 取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n ,n n n ln )1ln(11-+<+,相加后可以得到: )1ln(113121+<++++n n另一方面⎰->n i n ABDExS 1,从而有)ln(ln |ln 11i n n x x i i n n i n ni n --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 . 解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。

放缩法技巧全总结[借鉴]

放缩法技巧全总结[借鉴]

放缩法技巧全总结[借鉴] 放缩法是一种常用的数学求解方法,可以用来求解各种问题,包括优化问题、最大最小值问题等。

在放缩法中,通过对问题进行适当的放大或缩小,可以使问题的求解变得更加简单和直观。

下面是关于放缩法的一些技巧总结:1. 利用函数的性质进行放缩。

对于一个函数,我们可以利用它的性质来进行放缩。

例如,对于一个凸函数,我们可以使用切线来对函数进行放缩,从而得到函数的上界或下界。

同样,对于一个凹函数,我们可以使用切线来对函数进行放缩,从而得到函数的下界或上界。

2. 利用不等式进行放缩。

对于一个复杂的式子,我们可以通过引入合适的不等式来进行放缩。

例如,对于一个多项式,我们可以使用齐次不等式或者柯西不等式等来对它进行放缩。

同样,对于一个分式,我们可以使用分子分母的关系来进行放缩。

3. 利用对称性进行放缩。

对于一个具有对称性的问题,我们可以利用对称性来进行放缩。

例如,对于一个几何问题,如果我们发现问题具有镜像对称性或旋转对称性,我们可以将问题放缩到一个更简单的情况进行求解。

4. 利用局部极值进行放缩。

对于一个函数,我们可以通过求解它的一阶导数或二阶导数来找到它的极值点,并利用极值点对函数进行放缩。

例如,对于一个凸函数,它的极小值点就是函数的下界;对于一个凹函数,它的极大值点就是函数的上界。

5. 利用特殊点进行放缩。

对于一个函数,我们可以通过找到它的特殊点来进行放缩。

例如,对于一个分式,我们可以找到它的极值点或者零点来进行放缩。

同样,对于一个多项式,我们可以找到它的根或者切点来进行放缩。

6. 利用数学恒等式进行放缩。

对于一个复杂的式子,我们可以通过使用数学恒等式来进行放缩。

例如,对于一个三角函数,我们可以使用三角恒等式来对它进行放缩。

同样,对于一个指数函数,我们可以使用指数恒等式来对它进行放缩。

7. 利用数学变换进行放缩。

对于一个复杂的式子,我们可以通过使用数学变换来进行放缩。

例如,对于一个指数函数,我们可以使用对数变换来对它进行放缩。

高考数学数列放缩法技巧全总结

高考数学数列放缩法技巧全总结

高考数学备考之 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k.解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n,所以122121114212+=+-=-∑=n n n k nk(2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n n C T r rrn r(4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8)n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n(2)求证:n n 412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n n n -+<+++=++++ (3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n 解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6n n n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}na 满足101a <<.1()n n af a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k ab +>.解析: 由数学归纳法可以证明{}na 是递增数列, 故 假设存在正整数k m ≤, 使bam≥, 则ba ak k ≥>+1,假设)(k m b a m≤<,则由101<<≤<b a am 知0ln ln ln 11<<≤b a a a a am m m,∑=+-=-=km mm k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是ba b a b a k a ak =-+≥+>+)(|ln |11111m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nxx n+≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--n k m m m m m m m m m nk m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于mm m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m 而正是成立的,所以原命题成立.n n n a 24-=,nnn a a a T +++=212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n nnn T⎪⎭⎫⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n n n n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n nn T T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明: nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ .解析:先构造函数有xx x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n n n +++--<++++cause⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n n n 例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xxx f ln )(=,得到22ln ln nn n n ≤αα,再进行裂项)1(1111ln 222+-<-≤n n n nn ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:n n n 1211)1ln(113121+++<+<++++ 解析:提示:2ln 1ln 1ln 1211ln)1ln(++-++=⋅⋅-⋅+=+ n nn n n n n n n函数构造形式:xx x x 11ln ,ln -><当然此题的证明还可以运用积分放缩如图,取函数xx f 1)(=,首先:⎰-<nin ABCFx S 1,从而,)ln(ln |ln 11i n n x x i n n i n nin --==<⋅--⎰取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n,n n n ln )1ln(11-+<+,相加后可以得到:)1ln(113121+<++++n n 另一方面⎰->ni n ABDEx S 1,从而有)ln(ln |ln 11i n n x x i i n n i n nin --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++FE D C BAn-inyxO例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和en <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 函数构造形式:)0(13)1ln(1)0(132)1ln(>+>++⇔>+->+x x x x x x x (加强命题)例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n n a a a n n +==+++证明2nae <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n nn a n n a ln )2111ln(ln 21nn n n a 211ln 2+++≤。

放缩法技巧全总结

放缩法技巧全总结

2011高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值;(2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n(5)nn n n 21121)12(21--=-(6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8)n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10)!)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n (12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n (13)3212132122)12(332)13(2221nnn n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:n n 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n(4)求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222n n n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列, 故若存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证:1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kkm kkm 而正是成立的,所以原命题成立.例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n nnT T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++ cause⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xx x f ln )(=,得到22ln ln n n n n ≤αα,再进行裂项)1(1111ln 222+-<-≤n n nn n ,求和后可以得到答案函数构造形式:1ln -≤x x ,)2(1ln ≥-≤αααn n例10.所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++ 例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和en <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明 例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 例14.已知112111,(1).2n n n aa a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤a n n a )2111(⇒++++≤+n n n a n n a ln )2111ln(ln 21nn n n a 211ln 2+++≤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例析放缩法在数列不等式中的应用
孙卫
(安徽省芜湖市第一中学 241000)
数列不等式是高考大纲在知识点交汇处命题精神的重要体现,在高考试题中占有重要地位,在近几年的高考试题中,多个省份都有所考查,甚至作为压轴题。

而数列不等式的求解常常用到放缩法,笔者在教学过程中发现学生在用放缩法处理此类问题时,普遍感到困难,找不到解题思路。

现就放缩法在数列不等式求解过程中常见的几种应用类型总结如下。

1. 直接放缩,消项求解
例1(2008 辽宁21)在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. *N n ∈,
(Ⅰ)求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论;
(Ⅱ)证明:1122111512
n n a b a b a b +++<+++L . 分析:(Ⅰ)数学归纳法。

(Ⅱ)本小题的分母可化为不相同的两因式的乘积,可将其放缩为等差型两项之积,通过裂项求和。

(Ⅰ)略解2(1)(1)n n a n n b n =+=+,. (Ⅱ)11115612
a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. 故112211111111622334(1)n n a b a b a b n n ⎛⎫+++<++++ ⎪+++⨯⨯+⎝⎭
…… 111111116223341n n ⎛⎫=+-+-++- ⎪+⎝⎭
… 111111562216412n ⎛⎫=
+-<+= ⎪+⎝⎭,综上,原不等式成立. 点评: 数列和式不等式中,若数列的通项为分式型,可考虑对其分母进行放缩,构造等差型因式之积。

再用裂项的方法求解。

另外,熟悉一些常用的放缩方法, 如:),,2,1(1
1121n k n k n n Λ=+≤+≤,n n n n n n n n n 111)1(11)1(11112--=-≤<+=+- 例2(2008 安徽21.节选)设数列{}n a 满足*,1,1311N c c ca a a n n ∈-+==+其中c 为实数
(Ⅰ)证明:[0,1]n a ∈对任意*
n N ∈成立的充分必要条件是[0,1]c ∈;
(Ⅱ)设103
c <<,证明:1*1(3),n n a c n N -≥-∈; 分析:(Ⅰ)数学归纳法证明(Ⅱ)结论可变形为1)3(1-≤-n n c a ,即不等式右边为一等比数列通项形式,
化归思路为对 n a -1用放缩法构造等比型递推数列,
即)1(3)1)(1(112111-----≤++-=-n n n n n a c a a a c a
解:(Ⅰ)解略。

(Ⅱ)设 103
c <<,当1n =时,10a =,结论成立,当2n ≥ 时, 3211111,1(1)(1)n n n n n n a ca c a c a a a ----=+--=-++∵∴
3
10<<c Θ,由(1)知1[0,1]n a -∈,所以 21113n n a a --++≤ 且 110n a --≥ 113(1)n n a c a --≤-∴
21112113(1)(3)(1)(3)(1)(3)n n n n n a c a c a c a c -----≤-≤-≤≤-=L ∴
1*1(3)()n n a c n N -≥-∈∴
点评:直接对多项式放大后,得到的是等比型递推数列,再逐项递推得到结论。

通过放缩得到等比型递推数列是求解数列不等式的另一个重要的类型。

2. 利用基本不等式放缩
例3(2008 浙江22)已知数列{}n a ,0≥n a ,01=a ,)(12
121•++∈=-+N n a a a n n n ,记n n a a a S +++=Λ21,)
1()1)(1(1)1)(1(11121211n n a a a a a a T +++++++++=ΛΛ. 求证:当•∈N n 时,(Ⅰ)1+<n n a a ;(Ⅱ)2->n S n ;(Ⅲ)3<n T 。

分析:(Ⅰ)在0≥n a 的条件下,1+<n n a a 的等价形式为212+<n n a a ,要证2
12+<n n a a ,只需证
,011221>-=-++n n n a a a 即证1<n a ,可用数学归纳法证明 (Ⅱ)由 12
211++-=-n n n a a a 累加及1<n a 可得
(Ⅲ)和式通项的分母由 n a +1累乘得到的,条件中可有2111)1(k k k a a a +=+++得到,但 1
2
11)1(+++=+k k k a a a 的分子分母次数不同,可用基本不等式将其化为等比型递推数列 (Ⅰ)解略。

(Ⅱ)解略。

(Ⅲ)证明:由221112k k k k a a a a +++=+≥,得
111(2313)12k k k
a k n n a a ++=-+L ≤,,,,≥ 所以2342
1(3)(1)(1)(1)2n n n a a a a a a -+++L ≤≥, 于是
2222232211(3)(1)(1)(1)2()22n n n n n n a a n a a a a a ---=<++++L ≤≥, 故当3n ≥时,21111322
n n T -<++++<L ,又因为123T T T <<,所以3n T <. 点评:本题第三问,基本不等式的应用使构造等比型递推数列成为可能,在公比1≤q 时,等比数列的前n 项和趋向于定值,即前n 项和有界,这为数列和式范围的证明提供了思路。

3. 利用数列的单调性放缩
例4 数列}{n a 为非负实数列,且满足:0221≥+-++k k k a a a ,
∑==≤k i i k a 1,2,11Λ, 求证:).,2,1(2021Λ=<-≤+k k
a a k k 分析:有时数列不等式的证明可以在数列单调性的前提下进行放缩。

证明:若有某个1+<k k a a ,则2211++++<+-≤k k k k k a a a a a ,从而从k a 起,数列}{n a 单调递增,和n n a a a S +++=Λ21会随n 的增大而趋向于无穷,与∑==≤k
i i k a 1,2,11Λ,矛盾,所以}{n a 是单调递减
的数列,即01≥-+k k a a ,令Λ,2,1,1=-=+k a a b k k n
由0221≥+-++k k k a a a 得211+++-≥-k k k k a a a a ,即Λ,2,1,1=≥+k b b k k
由于k a a a +++≥Λ211
k k
k
k
k
k
b k k b k kb b b b a b a b a a b b a a a b 2
)1()321(3232322321321321321+=++++≥++++≥++++=++++=++++=ΛΛΛ
ΛΛΛΛ 故22)1(2k k k b k <+≤。

点评:本题考虑了数列}{n a ,}{n b 的单调性,然后利用放缩法进行证明。

又如,例3的第三问也可用单调性证明:
,1+<n n a a Θ及,0≥n a ,)1(1)1()1)(1(11
221-+≤+++∴n n a a a a Λ 222122*********)11(
1)1(1)1(11111a a a a a a a T n n n n +-<+-+-=++++++++≤∴-Λ,要证3<n T , 只要证311
11
2<+-a ,即,2
12>a 而,212152>-=a 所以问题得证 4. 放缩法在数学归纳法的应用
数列不等式是与自然数有关的命题,数学归纳法是证明与自然数有关的命题的重要方法。

应用数学归纳法证明时,通常要利用放缩法对条件进行适当的转化,才能实现由k n =时成立到1+=k n 时也成立的过渡。

举例略。

综合以上分析,我们发现,在数列不等式的求解过程中,通过放缩法的应用,主要使数列不等式转化为以下两种类型:
(1)可直接裂项的形式,再求和证明求解。

(等差型)
(2)等比型递推数列,1<q 时,数列前n 项和有界。

(等比型)
数列不等式是一类综合性较强的问题,我们可以利用上述思路对数列不等式进行分析、求解。

在解题过程中要充分挖掘题设条件信息,把条件合理的转化、加强、放缩,同时结合问题的结构、形式等特征,使条件与结论建立联系,从而使解题思路通畅。

其中合理、适当的放缩是能否顺利解题的关键。

参考文献:
1 何清泉. 数列不等式证明的几种策略,数学通报, 2007,11
2 王树国. 师大附中专题 (数列、极限、数学归纳法),长沙,湖南师大出版社 2004 第二版
作者简介:孙卫,1979,汉,安徽芜湖市第一中学,职称:中教二级 电话:,邮码:241000电子信箱: .。

相关文档
最新文档