利用MATLAB窗函数法设计一个可实现的FIR低通滤波器。
用MATLAB设计FIR数字滤波器
实验八 用MATLAB 设计FIR 数字滤波器(二)一、实验目旳:1、加深对窗函数法设计FIR 数字滤波器旳基本原理旳理解。
2、学习用MATLAB 语言旳窗函数法编写设计FIR 数字滤波器旳程序。
3、理解MATLAB 语言有关窗函数法设计FIR 数字滤波器旳常用函数用法。
二、实验原理:1、用窗函数法设计FIR 数字滤波器 FIR 数字滤波器旳系统函数为N-1-n n=0H(z)=h(n)z ∑这个公式也可以当作是离散LSI 系统旳系统函数M-m -1-2-mmm=0012m N -1-2-k-k12k k k=1bz b +b z +b z ++b z Y(z)b(z)H(z)====X(z)a(z)1+a z +a z ++a z1+a z ∑∑ 分母a 0为1,其他a k 全都为0时旳一种特例。
由于极点所有集中在零点,稳定和线性相位特性是FIR 滤波器旳突出长处,因此在实际中广泛使用。
FIR 滤波器旳设计任务是选择有限长度旳h(n),使传播函数H(e j ω)满足技术规定。
重要设计措施有窗函数法、频率采样法和切比雪夫等波纹逼近法等。
本实验重要简介窗函数法。
用窗函数法设计FIR 数字滤波器旳基本环节如下:(1)根据过渡带和阻带衰减指标选择窗函数旳类型,估算滤波器旳阶数N 。
(2)由数字滤波器旳抱负频率响应H(e j ω)求出其单位脉冲响应h d (n)。
可用自定义函数ideal_lp实现抱负数字低通滤波器单位脉冲响应旳求解。
程序清单如下:function hd=ideal_lp(wc,N) %点0到N-1之间旳抱负脉冲响应%wc=截止频率(弧度)%N=抱负滤波器旳长度tao=(N-1)/2;n=[0:(N-1)];m=n-tao+eps; %加一种小数以避免0作除数hd=sin(wc*m)./(pi*m);其他选频滤波器可以由低通频响特性合成。
如一种通带在ωc1~ωc2之间旳带通滤波器在给定N值旳条件下,可以用下列程序实现:Hd=ideal_lp(wc2,N)-ideal_lp(wc1,N)(3)计算数字滤波器旳单位冲激响应h(n)=w(n)h d(n)。
matlabfir滤波器设计
matlabfir滤波器设计MATLAB是一个高级编程语言和交互式环境,被广泛应用于各种科学和工程问题的数值分析、数据可视化和编程开发等领域。
FIR滤波器是数字信号处理中经常使用的一种滤波器,它是基于有限长冲激响应的滤波器。
在MATLAB平台上,我们可以使用fir1函数来设计FIR滤波器。
一、FIR滤波器设计基础1.1 什么是FIR滤波器FIR滤波器是有限长冲激响应滤波器,由于其具有线性相位特性和可控阶数等优点,在数字信号处理中得到了广泛的应用。
一般来说,FIR滤波器的频率响应特性由滤波器的系数函数确定。
FIR滤波器的设计一般采用窗函数法、最小二乘法、频率抽取法等方法。
窗函数法是最常见的一种方法,大部分情况下选择的是矩形窗、汉宁窗、布莱克曼窗等。
1.3 fir1函数介绍fir1函数是MATLAB中用于FIR滤波器设计的函数,用法为:h = fir1(N, Wn, type)N为滤波器的阶数,Wn是用于指定滤波器截止频率的参数,type指定滤波器类型,可以是低通、高通、带通、带阻等。
二、使用fir1函数设计FIR滤波器2.1 设计要求采样率为300Hz;滤波器阶数为50;截止频率为50Hz。
2.2 实现步骤(1)计算规范化截止频率规范化截止频率是指在数字滤波器设计中使用的无单位量,通常范围为0到1。
在本例中,我们需要将50Hz的截止频率转化为规范化截止频率。
Wn = 2*50/300 = 1/3根据计算出的规范化截止频率和滤波器阶数,我们可以使用fir1函数来进行滤波器设计。
此处滤波器的阶数为50,规范化截止频率为1/3,类型为低通。
(3)绘制滤波器的幅频响应图为了验证设计的低通FIR滤波器是否符合要求,我们需要绘制其幅频响应图。
freqz(h,1,1024,300)经过上述步骤后,我们就得到了一张低通FIR滤波器的幅频响应图,如下图所示:图1.低通FIR滤波器的幅频响应图三、总结通过上述例子,我们可以看出在MATLAB中与fir1函数可以非常方便的进行FIR滤波器的设计。
(整理)FIR数字滤波器的(海明)窗函数法设计.
FIR数字滤波器的(海明)窗函数法设计1.课程设计目的(1)熟悉并掌握MATLAB中有关声音(wave)录制、播放、存储和读取的函数。
(2)加深对FIR数字滤波器设计的理解,并用窗函数法进行FIR数字滤波器的设计。
(3)将设计出来的FIR数字滤波器利用MATLAB进行仿真。
(4)对一段音频文件进行加入噪声处理,对带有噪声的文件进行滤波处理。
2.设计方案论证2.1 Matlab语言概述MATLAB是一种以矩阵运算为基础的交互式程序语言,专门针对科学、工程计算及绘图的需求。
随着版本的不断升级,内容不断扩充,功能更加强大,从而被广泛应用于仿真技术、自动控制和数字信号处理领域。
此高级语言可用于技术计算此开发环境可对代码、文件和数据进行管理交互式工具可以按迭代的方式探查、设计及求解问题数学函数可用于线性代数、统计、傅立叶分析、筛选、优化以及数积分等二维和三维图形函数可用于可视化数据各种工具可用于构建自定义的图形用户界面各种函数可将基于MATLAB的算法与外部应用程序和语言(如C、C++、Fortran、Java、COM 以及Microsoft Excel)集成不支持大写输入,内核仅仅支持小写2.2声音处理语音是人类获取信息的重要来源和利用信息的重要手段。
语音信号处理是一门发展十分迅速,应用非常广泛的前沿交叉学科,同时又是一门跨学科的综合性应用研究领域和新兴技术。
声音是一种模拟信号,而计算机只能处理数字信息0和1。
因此,首先要把模拟的声音信号变成计算机能够识别和处理的数字信号,这个过程称为数字化,也叫“模数转换”。
在计算机对数字化后的声音信号处理完后,得到的依然是数字信号。
必须把数字声音信号转变成模拟声音信号,然后再图1 选择windows下的录音机”或是点击快捷按钮图5 加噪后语音信号和频谱图7 滤波器幅频特性与相频特性设计的滤波器是用单位采样响应h(n)表示的,可以利用带噪声语音图8滤波器系统函数。
实验3 用MATLAB窗函数法设计FIR滤波器
实验10 用MATLAB 窗函数法设计FIR 滤波器一、实验目的㈠、学习用MA TLAB 语言窗函数法编写简单的FIR 数字滤波器设计程序。
㈡、实现设计的FIR 数字滤波器,对信号进行实时处理。
二、实验原理㈠、运用窗函数法设计FIR 数字滤波器与IIR 滤波器相比,FIR 滤波器在保证幅度特性满足技术要求的同时,很容易做到有严格的线性相位特性。
设FIR 滤波器单位脉冲响应)(n h 长度为N ,其系统函数)(z H 为∑-=-=10)()(N n n zn h z H)(z H 是1-z 的)1(-N 次多项式,它在z 平面上有)1(-N 个零点,原点0=z 是)1(-N 阶重极点。
因此,)(z H 永远是稳定的。
稳定和线性相位特性是FIR 滤波器突出的优点。
FIR 滤波器的设计任务是选择有限长度的)(n h ,使传输函数)(ωj e H 满足技术要求。
主要设计方法有窗函数法、频率采样法和切比雪夫等波纹逼近法。
本实验主要介绍用窗函数法设计FIR 数字滤波器。
图7-10-1 例1 带通FIR 滤波器特性㈡、 用MATLAB 语言设计FIR 数字滤波器例1:设计一个24阶FIR 带通滤波器,通带为0.35<ω<0.65。
其程序如下b=fir1(48,[0.35 0.65]);freqz(b,1,512)可得到如图7-10-1 所示的带通FIR滤波器特性。
由程序可知,该滤波器采用了缺省的Hamming窗。
例2:设计一个34阶的高通FIR滤波器,截止频率为0.48,并使用具有30dB波纹的Chebyshev窗。
其程序如下Window=chebwin(35,30);b=fir1(34,0.48,'high',Window);freqz(b,1,512)可得到如图7-10-2 所示的高通FIR滤波器特性。
图7-10-2 例2 高通FIR滤波器特性例3:设计一个30阶的低通FIR滤波器,使之与期望频率特性相近,其程序如下 f=[0 0.6 0.6 1];m=[1 1 0 0];b=fir2(30,f,m);[h,w]=freqz(b,1,128);plot(f,m,w/pi,abs(h))结果如图7-10-3所示。
基于matlab的fir数字滤波器的设计
一、引言数字滤波器是数字信号处理中至关重要的组成部分,它能够对数字信号进行滤波处理,去除噪音和干扰,提取信号中的有效信息。
其中,fir数字滤波器作为一种常见的数字滤波器类型,具有稳定性强、相位响应线性等特点,在数字信号处理领域得到了广泛的应用。
本文将基于matlab软件,探讨fir数字滤波器的设计原理、方法和实现过程,以期能够全面、系统地了解fir数字滤波器的设计流程。
二、fir数字滤波器的基本原理fir数字滤波器是一种有限长冲激响应(finite impulse response, FIR)的数字滤波器,其基本原理是利用线性相位特性的滤波器来实现对数字信号的筛选和处理。
fir数字滤波器的表达式为:$$y(n) = \sum_{k=0}^{M}h(k)x(n-k)$$其中,y(n)为输出信号,x(n)为输入信号,h(k)为滤波器的系数,M为滤波器的长度。
fir数字滤波器的频率响应特性由其系数h(k)决定,通过设计合适的系数,可以实现对不同频率成分的滤波效果。
三、fir数字滤波器的设计方法fir数字滤波器的设计方法主要包括窗函数法、频率抽样法、最小最大法等。
在matlab中,可以通过信号处理工具箱提供的fir1函数和firls函数等来实现fir数字滤波器的设计。
下面将分别介绍这两种设计方法的基本原理及实现步骤。
1. 窗函数法窗函数法是fir数字滤波器设计中最为常见的方法之一,其基本原理是通过对理想滤波器的频率响应进行窗函数加权来满足设计要求。
在matlab中,可以使用fir1函数实现fir数字滤波器的设计,其调用格式为:h = fir1(N, Wn, type)其中,N为滤波器的阶数,Wn为滤波器的截止频率,type为窗函数的类型。
通过调用fir1函数,可以灵活地设计出满足特定要求的fir数字滤波器。
2. 频率抽样法频率抽样法是fir数字滤波器设计中的另一种重要方法,其基本原理是在频域上对理想滤波器的频率响应进行抽样,并拟合出一个最优的滤波器。
基于MATLAB设计FIR滤波器
基于MATLAB设计FIR滤波器FIR(Finite Impulse Response)滤波器是一种数字滤波器,它具有有限的冲激响应长度。
基于MATLAB设计FIR滤波器可以使用signal工具箱中的fir1函数。
fir1函数的语法如下:b = fir1(N, Wn, window)其中,N是滤波器的阶数,Wn是截止频率,window是窗函数。
要设计一个FIR低通滤波器,可以按照以下步骤进行:步骤1:确定滤波器的阶数。
阶数决定了滤波器的截止频率的陡峭程度。
一般情况下,阶数越高,滤波器的陡峭度越高,但计算复杂度也会增加。
步骤2:确定滤波器的截止频率。
截止频率是指在滤波器中将信号的频率限制在一定范围内的频率。
根据应用的需求,可以选择适当的截止频率。
步骤3:选择窗函数。
窗函数是为了在时域上窗口函数中心增加频率衰减因子而使用的函数。
常用的窗函数有Hamming、Hanning等。
窗函数可以用来控制滤波器的幅度响应特性,使得它更平滑。
步骤4:使用fir1函数设计滤波器。
根据以上步骤确定滤波器的阶数、截止频率和窗函数,可以使用fir1函数设计FIR滤波器。
具体代码如下:N=50;%设定阶数Wn=0.5;%设定截止频率window = hanning(N + 1); % 使用Hanning窗函数步骤5:使用filter函数对信号进行滤波。
设计好FIR滤波器后,可以使用filter函数对信号进行滤波。
具体代码如下:filtered_signal = filter(b, 1, input_signal);其中,input_signal是输入信号,filtered_signal是滤波后的信号。
以上,便是基于MATLAB设计FIR滤波器的简要步骤和代码示例。
根据具体需求和信号特性,可以进行相应的调整和优化。
用MATLAB结合窗函数法设计数字带通FIR滤波器
武汉理工大学《Matlab课程设计》报告目录摘要 (I)Abstract (II)1 原理说明 (1)1.1 数字滤波技术 (1)1.2 FIR滤波器 (1)1.3 窗函数 (2)1.4 MATLAB简介 (4)1.5 MATLAB结合窗函数设计法原理 (4)2 滤波器设计 (2)2.1 滤波器设计要求 (2)2.2 设计函数的选取 (2)2.3 窗函数构造 (3)2.4 设计步骤 (4)2.5 利用MATLAB自带函数设计 (4)3 滤波器测试 (9)3.1 滤波器滤波性能测试 (9)3.2 滤波器时延测量................................................................................错误!未定义书签。
3.3 滤波器稳定性测量............................................................................错误!未定义书签。
5 参考文献 (12)附件一: ........................................................................................................ 错误!未定义书签。
摘要现代图像、语声、数据通信对线性相位的要求是普遍的。
数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。
根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。
与IIR滤波器相比,FIR的实现是非递归的,总是稳定的;更重要的是,FIR滤波器在满足幅频响应要求的同时,可以获得严格的线性相位特性。
因此,具有线性相位的FIR数字滤波器在高保真的信号处理,如数字音频、图像处理、数据传输、生物医学等领域得到广泛应用。
用Matlab设计FIR滤波器的三种方法
用MATLAB信号处理工具箱进行FIR滤波器设计的三种方法摘要介绍了利用MATLAB信号处理工具箱进行FIR滤波器设计的三种方法:程序设计法、FDATool设计法和SPTool设计法,给出了详细的设计步骤,并将设计的滤波器应用到一个混和正弦波信号,以验证滤波器的性能。
关键词 MATLAB,数字滤波器,有限冲激响应,窗函数,仿真1 前言数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。
根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。
与IIR滤波器相比,FIR的实现是非递归的,总是稳定的;更重要的是,FIR滤波器在满足幅频响应要求的同时,可以获得严格的线性相位特性。
因此,它在高保真的信号处理,如数字音频、图像处理、数据传输、生物医学等领域得到广泛应用。
2 FIR滤波器的窗函数设计法 FIR滤波器的设计方法有许多种,如窗函数设计法、频率采样设计法和最优化设计法等。
窗函数设计法的基本原理是用一定宽度窗函数截取无限脉冲响应序列获得有限长的脉冲响应序列,主要设计步骤为:(1) 通过傅里叶逆变换获得理想滤波器的单位脉冲响应hd(n)。
(2) 由性能指标确定窗函数W(n)和窗口长度N。
(3) 求得实际滤波器的单位脉冲响应h(n), h(n)即为所设计FIR滤波器系数向量b(n)。
(4) 检验滤波器性能。
本文将针对一个含有5Hz、15Hz和30Hz的混和正弦波信号,设计一个FIR带通滤波器,给出利用MATLAB实现的三种方法:程序设计法、 FDATool设计法和SPTool设计法。
参数要求:采样频率fs=100Hz,通带下限截止频率fc1=10 Hz,通带上限截止频率fc2=20 Hz,过渡带宽6 Hz,通阻带波动0.01,采用凯塞窗设计。
2 程序设计法MATLAB信号处理工具箱提供了各种窗函数、滤波器设计函数和滤波器实现函数。
实验六用窗函数法设计FIR滤波器分析解析
实验六用窗函数法设计FIR滤波器分析解析一、引言数字滤波器是数字信号处理中的重要组成部分。
滤波器可以用于去除噪声、调整频率响应以及提取感兴趣的信号。
有许多方法可以设计数字滤波器,包括窗函数法、频域法和优化法等。
本实验将重点介绍窗函数法设计FIR滤波器的原理和过程。
二、窗函数法设计FIR滤波器窗函数法是设计FIR滤波器的一种常用方法。
其基本原理是将滤波器的频率响应与理想滤波器的频率响应进行乘积。
理想滤波器的频率响应通常为矩形函数,而窗函数则用于提取有限长度的理想滤波器的频率响应。
窗函数的选择在FIR滤波器的设计中起着重要的作用。
常用的窗函数包括矩形窗、汉宁窗、汉明窗、布莱克曼窗等。
对于每种窗函数,都有不同的特性和性能指标,如主瓣宽度、副瓣抑制比等。
根据不同的应用需求,可以选择合适的窗函数。
窗函数法设计FIR滤波器的具体步骤如下:1.确定滤波器的阶数N。
阶数N决定了滤波器的复杂度,一般情况下,阶数越低,滤波器的简单度越高,但频率响应的近似程度也会降低。
2.确定滤波器的截止频率。
根据应用需求,确定滤波器的截止频率,并选择合适的窗函数。
3.根据窗函数长度和截止频率计算理想滤波器的频率响应。
根据所选窗函数的特性,计算理想滤波器的频率响应。
4.根据理想滤波器的频率响应和窗函数的频率响应,得到所需的FIR滤波器的频率响应。
将理想滤波器的频率响应与窗函数的频率响应进行乘积,即可得到所需滤波器的频率响应。
5.对所得到的频率响应进行逆傅里叶变换,得到时域的滤波器系数。
6.实现滤波器。
利用所得到的滤波器系数,可以通过卷积运算实现滤波器。
三、实验结果与分析本实验以Matlab软件为平台,利用窗函数法设计了一个低通滤波器。
滤波器的阶数为16,截止频率为500Hz,采样频率为1000Hz,选择了汉宁窗。
根据上述步骤,计算得到了所需的滤波器的频率响应和时域的滤波器系数。
利用这些系数,通过卷积运算,实现了滤波器。
为了验证滤波器的性能,将滤波器应用于输入信号,观察输出信号的变化。
基于Matlab的FIR滤波器设计与实现
基于Matlab的FIR滤波器设计与实现⼀、摘要 前⾯⼀篇⽂章介绍了通过FDATool⼯具箱实现滤波器的设计,见“”,这⾥通过⼏个例⼦说明采⽤Matlab语⾔设计FIR滤波器的过程。
⼆、实验平台 Matlab7.1三、实验原理 以低通滤波器为例,其常⽤的设计指标有:1. 通带边缘频率f p(数字频率为Ωp)2. 阻带边缘频率f st (数字频率为Ωst)3. 通带内最⼤纹波衰减δp=-20log10(1-αp),单位为 dB4. 阻带最⼩衰减αs=-20log10(αs),单位为 dB5. 阻带起伏αs6. 通带峰值起伏αp 其中,以1、2、3、4条最为常⽤。
5、6条在程序中估算滤波器阶数等参数时会⽤到。
数字频率 = 模拟频率/采样频率四、实例分析例1 ⽤凯塞窗设计⼀FIR低通滤波器,通带边界频率Ωp=0.3pi,阻带边界频率Ωs=0.5pi,阻带衰减δs不⼩于50dB。
⽅法⼀:⼿动计算滤波器阶数N和β值,之后在通过程序设计出滤波器。
第⼀步:通过过渡带宽度和阻带衰减,计算滤波器的阶数B和β值。
第⼆步:通过程序设计滤波器。
程序如下:b = fir1(29,0.4,kaiser(30,4.55));[h1,w1]=freqz(b,1);plot(w1/pi,20*log10(abs(h1)));axis([0,1,-80,10]);grid;xlabel('归⼀化频率/p') ;ylabel('幅度/dB') ;波形如下:⽅法⼆:采⽤[n,Wn,beta,ftype] = kaiserord(f,a,dev)函数来估计滤波器阶数等,得到凯塞窗滤波器。
这⾥的函数kaiserord(f,a,dev)或者kaiserord(f,a,dev,f s): f为对应的频率,f s为采样频率;当f⽤数字频率表⽰时,f s则不需要写。
a=[1 0]为由f指定的各个频带上的幅值向量,⼀般只有0和1表⽰;a和f长度关系为(2*a的长度)- 2=(f的长度) devs=[0.05 10^(-2.5)]⽤于指定各个频带输出滤波器的频率响应与其期望幅值之间的最⼤输出误差或偏差,长度与a相等,计算公式:阻带衰减误差=αs,通带衰减误差=αp,可有滤波器指标中的3、4条得到。
实验六用窗函数设计FIR滤波器
实验六用窗函数设计FIR滤波器一、引言数字滤波器是用于处理数字信号的重要工具,而FIR(Finite Impulse Response)滤波器是其中一类常见的滤波器。
在FIR滤波器中,输出信号的每个样本值仅依赖于输入信号在过去固定时间窗口内的样本值。
窗函数则是用于设计FIR滤波器的一种常见方法。
本实验将介绍如何用窗函数设计FIR滤波器,并通过一系列实验验证其性能。
二、实验目的1.了解FIR滤波器的原理和窗函数设计方法。
2.利用MATLAB工具进行FIR滤波器设计与性能评估。
3.分析不同窗函数对FIR滤波器的影响。
三、窗函数设计方法在设计FIR滤波器时,可以通过选择不同的窗函数来实现不同的频率响应。
常见的窗函数有矩形窗、汉宁窗、汉明窗、布莱克曼窗等。
在本实验中,我们将以汉宁窗为例进行讲解。
1.首先确定滤波器的截止频率和通带误差。
2.根据通带误差和滤波器的截止频率计算阶数。
3.根据阶数选择合适大小的窗口长度。
4.选择合适的窗函数,如汉宁窗。
5.计算窗函数的系数,并与理想滤波器的冲击响应相乘得到最终的滤波器系数。
四、实验步骤1.确定滤波器参数:截止频率、通带误差等。
2.根据通带误差和截止频率计算滤波器的阶数。
3.选择合适大小的窗口长度,通常选择大于滤波器阶数的2倍。
4.选择窗函数,如汉宁窗,计算窗函数的系数。
5.根据窗函数系数和截止频率计算滤波器的系数。
6.绘制滤波器的频率响应曲线。
7.利用设计好的FIR滤波器对输入信号进行滤波,并观察滤波效果。
五、实验结果与分析在本实验中,我们选择了截止频率为1kHz的低通滤波器。
首先计算滤波器的阶数,假设通带误差为0.01,根据公式可得N=3.32/((截止频率*通带误差)/采样频率)≈60。
我们选择窗口长度为120,即滤波器的阶数的两倍。
接下来选择汉宁窗作为窗函数,并计算其系数。
最后通过窗函数系数和截止频率计算得到滤波器的系数。
实验采用不同窗函数设计的FIR滤波器进行滤波,观察不同窗函数对滤波器性能的影响。
FIR滤波器的MATLAB设计与实现
时钟 输入模拟信号 输出模拟信号
DSP (TMS32 0C5410)
同步 FIFO
同步 FIFO
D/A 转换
A/D 转换
JTAG 接口
FLASE
RS232 接口 图3 系统总体框图
6
SRAM
JTAG(Joint Test Action Group) 联合测试行动小组)是一种国际标准测试协议 (IEEE 1149.1 兼容) ,主要用于芯片内部测试。基本原理是在器件内部定义一个 TAP(Test Access Port�测试访问口)通过专用的 JTAG 测试工具对内部节点进 行测试。JTAG 测试允许多个器件通过 JTAG 接口串联在一起,形成一个 JTAG 链, 能实现对各个器件分别测试。 FLASE 存储器具有性价比高,体积小,功耗低,可电擦写,使用方便等优点。 在 DSP 应用系统中采用 Flash 存储器和固定数据是一种比较好的选择。 SRAM 静态存储器,读写速度快,但价格较高。适合于外部存放需要经常访问 或更新的临时数据。 RS232 电平转换模块,将外部电平转换为适合 DSP 芯片内部要求的电平。 图3是系统的总体框图。主要包括输入信号缓冲及调理电路、A/D 变换器、输 入缓冲 FIFO、DSP及外围电路、输出缓冲FIFO、D/A变换器等几部分。其中DSP及 外围电路包括程序存储器、串行口、显示及键盘接口等。串行口用于实现和PC机 的通信,可以通过PC机对滤波器的控制。 假定输入模拟信号为带限信号。该信号经缓冲和调理后经A/D变换进入输入缓 冲FIFO,当 FIFO中的数据达到一定数量时产生中断,DSP将数据读入内存中并进 行计算和处理,这里DSP主要实现FIR滤波运算。处理后的数据写入输出FIFO中, 之后通过D/A变换后输出模拟信号。输出的信号是低通滤波后的结果。 4.3 用DSP实现FIR滤波器的关键问题 4.3.1 定点数的定标 在滤波器的实现过程中,DSP所要处理的数可能是整数,也可能是小数或混合 小数;然而,DSP在执行算术运算指令时,并不知道当前所处理的数据是整数还是 小数,更不能指出小数点的位置在哪里。因此,在编程时必须指定一个数的小数 点处于哪一位,这就是定标。通过定标,可以在16位数的不同位置上确定小数点, 从而表示出一个范围大小不同且精度也不同的小数。 4.3.2 误差问题 因为在用定点DSP实现时,所有的数据都是定长的,运算也都是定点运算,因 而会产生有限字长效应。所产生的误差主要包括:数模转换引起的量化误差、系 数量化引起的误差以及运算过程中的舍入误差。在用定点DSP时,产生误差是不能 避免的。
matlab窗函数法设计带通滤波器
matlab窗函数法设计带通滤波器在MATLAB中,可以使用窗函数法设计数字滤波器。
窗函数方法是一种基于时域设计技术,通过在滤波器的脉冲响应上乘以一个窗函数,从而改变其频率特性。
这种方法不需要进行频域变换,因此在计算上具有一定的简便性。
下面将详细介绍如何使用MATLAB实现带通滤波器的设计。
带通滤波器的目标是在给定的频率范围内传递信号,并在其他频率上进行衰减。
通常,设计带通滤波器的步骤如下:1. 确定滤波器的通带频率范围和截止频率。
通带是需要通过的频率范围,而截止频率是指在此频率以上或以下信号进行衰减。
2. 根据通带和截止频率选择合适的滤波器类型。
常见的滤波器类型包括Butterworth滤波器、Chebyshev滤波器和椭圆滤波器等。
3. 根据滤波器类型和要求的频率响应,确定滤波器的阶数。
滤波器的阶数决定了滤波器的频率选择性能。
4. 选择一个合适的窗函数。
窗函数定义了滤波器的脉冲响应。
5. 使用MATLAB中的filter函数将得到的窗口脉冲响应应用于要进行滤波的信号。
下面假设我们要设计一个带通滤波器,通带频率范围为f1和f2,截止频率为f3和f4,并且设定了滤波器的阶数为N。
首先,我们需要选择合适的滤波器类型。
在MATLAB中,可以使用butter函数来设计Butterworth滤波器。
此函数的语法如下:[b, a] = butter(N, [f1, f2]/(Fs/2), 'bandpass')其中,N是滤波器的阶数,[f1, f2]是通带频率范围,Fs是采样频率。
然后,选择一个合适的窗函数,常用的窗函数包括矩形窗、汉宁窗、布莱克曼窗等。
可以使用MATLAB中的窗函数函数hamming生成汉宁窗。
例如,可以使用以下代码生成一个长度为N+1的汉宁窗:w = hamming(N+1)接下来,我们需要通过将窗函数应用于滤波器的点数响应来计算滤波器的系数。
可以使用MATLAB中的filter函数将窗口响应与滤波器的截止频率进行卷积。
用窗函数法设计FIR滤波器
1.用窗函数法设计一线性相位FIR低通滤波器,要求通带截止频率 ,
(1)选择一个合适的窗函数(如hamming窗),取单位冲击响应h(n)的长度N=15,观察所设计滤波器的幅频特性,分析是否满足设计要求;
(2)取N=45,重复上述设计,观察幅频和相频特性的变化,分析长度N变化的影响;
(3)保持N=45不变,改变窗函数(如hamming窗变为blackman窗),观察并记录窗函数对滤波器幅频特性的影响。
xlabel('n');ylabel('h(n)');
title('hamming窗设计的h(n)'2);
hw=fft(hn,512);
w=2*[0:511]/512;
plot(w,20*log10(abs(hw)));
xlabel('w/pi');ylabel('Magnitude(dB)');
(4)由 ,得出单位脉冲响应 ;
(5)对 作离散时间傅立叶变换,得到 。
2.在MATLAB中,可以用b=fir1(N,Wn,’ftype’,taper)等函数辅助设计FIR数字滤波器。N代表滤波器阶数;Wn代表滤波器的截止频率(归一化频率),当设计带通和带阻滤波器时,Wn为双元素相量;ftype代表滤波器类型,如’high’高通,’stop’带阻等;taper为窗函数,默认为海明窗,窗函数实现需要用窗函数blackman,hamming,hanningchebwin,kaiser产生。
用窗函数法设计FIR滤波器是在时域进行的,先用傅里叶变换求出理想滤波器单位抽样相应hd(n),然后加时间窗w(n)对其进行截断,以求得FIR 滤波器的单位抽样响应h(n)。
MATLAB窗函数法实现FIR的高通-带通和低通滤波器的程序要点
MATLAB课程设计报告学院:地球物理与石油资源学院班级: 测井(基)11001姓名:大牛啊啊啊学号:班内编号:指导教师: 陈义群完成日期: 2013年6月3日一、 题目 FIR 滤波器的窗函数设计法及性能比较1. FI R滤波器简介数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。
根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。
与I IR滤波器相比,FIR 滤波器的主要特点为: a. 线性相位;b.非递归运算。
2. FIR滤波器的设计FIR 滤波器的设计方法主要有三种:a.窗函数设计法;b.频率抽样发;c.最小平法抽样法; 这里我主要讨论在MA TLAB 环境下通过调用信号分析与处理工具箱的几类窗函数来设计滤波器并分析与比较其性能。
窗函数法设计F IR 滤波器的一般步骤如下:a. 根据实际问题确定要设计的滤波器类型;b. 根据给定的技术指标,确定期望滤波器的理想频率特性;c. 求期望滤波器的单位脉冲响应;d. 求数字滤波器的单位脉冲响应;e. 应用。
常用的窗函数有同。
时与布莱克曼窗结果相当时与海明窗结果相同;时与矩形窗一致;当当885.84414.50]!)2/([1)(120===+=∑∞=x x x m x x I m m4. 常用窗函数的参数函数,可定义为是零阶式中Bessel x I n R I N n I n w windowKaiser n R N n N n n w windowBalckm an n R N n n w windowHam m ing n R N n n w windowHanning N N N N )()5.2.9()(])(})]1/(2[1{[)()4()4.2.9()()]14cos(08.0)12cos(5.042.0[)()3()3.2.9()()]12cos(46.054.0[)()2()2.2.9()()]1cos(5.05.0[)()1(0020ββππππ--=-+--=--=--=5.FIR滤波器的MATLAB实现方式在MATLAB信号分析与处理工具箱中提供了大量FIR窗函数的设计函数,本次用到主要有以下几种:hanning(N) hanning窗函数的调用hamming(N) hamming窗函数的调用blackman(N) blackman窗函数的调用kaiser(n+1,beta) kaiser窗函数的调用kaiserord 计算kaiser窗函数的相关参数freqz求取频率响应filter 对信号进行滤波的函数6.实验具体步骤本次实验分别通过调用hanning ,hamming ,Blackman,kaiser窗函数,给以相同的技术参数,来设计低通,带通,高通滤波器,用上述窗函数的选择标准来比较各种窗函数的优劣,并给以一个简谐波进行滤波处理,比较滤波前后的效果。
基于MATLAB的FIR滤波器的设计
用F T o设计和分析模块 电路 ,经过S h k DA o l i n 仿真 ,对其进行时域 、频域 分析和滤波 。实验结果表明, 计 mu 本设
方法能够 有效 的滤除 无用信号 , 直观 简便 , 高了信号的提取效果 。 提
【] 王蔚 . 4 MAT A L B环境 下 的数字 滤波 器设 计及其 应用 【 . 州 : 州大学 ,0 23 — 8 D1 苏 苏 20 : 3 . 6
图 3滤 波 前 信 号 源 波 形
【] CO 1 E J G a b u M , n J H . 9 , r m s Y e , b O j Li 1 91 F O
2 1 年 8月 01 第 8期
电 子 测 试
EL EC T RON I C T EST
Aug. 2011 No8 .
基 于 MAT A L B的F R滤 波 器 的设 计 ★ I
段佳佳 ,樊龙龙 ,张波涛
( 中北大学 信息探测与处理技术研 究所 太原 0 0 5 ) 3 0 1 摘要 :基于MA L B信号处理工具 箱 ,设计一种 滤波器 ,针对 信号的分离和 滤除 ,要求有 良好的幅频特 和 TA
幅频特性为 l e I 1 且无相移的理想带通滤波器 H( ) , =
图2滤 波器 幅频特性
的 响应 HaP 表 频率 ( ) 达式为 :
, 『 、 w
从图 2中来看,对于 0 z 10 H , 1H 到 40 H H 到 00 z 40 z 2 00 z
I P , ll 一 1 , ≤W≤ ×
[】 M o a d M o h a i i h lM a i .M AT AB 与 3 h n k t r, c e M re L
matlab窗函数法设计数字滤波器
matlab窗函数法设计数字滤波器
好的,下面为你介绍使用matlab窗函数法设计数字滤波器的步骤:
1. 确定指标:确定需要设计的滤波器的指标,如滤波器的类型、过渡带宽度、阻带最小衰减等。
2. 选择窗函数:根据滤波器指标选择合适的窗函数,常见的窗函数有矩形窗、汉宁窗、海明窗等。
3. 计算滤波器系数:根据选择的窗函数和滤波器指标,计算滤波器的系数。
4. 编写matlab代码:使用matlab编写代码,实现数字滤波器的设计。
5. 验证滤波器性能:使用设计好的数字滤波器对信号进行滤波处理,验证滤波器的性能是否符合指标要求。
窗函数法是一种简单实用的设计数字滤波器的方法,你可以根据实际需求选择合适的窗函数和滤波器指标,设计出满足要求的数字滤波器。
用MATLAB设计数字FIR低通滤波器(哈明窗)
用MATLAB设计数字FIR低通滤波器(哈明窗)设计数字FIR低通滤波器,技术指标如下:Wp=0.2pi.rp=0.25db;Ws=0.3pi,as=50db.求解,如下图:程序:wp=0.2*pi;ws=0.3*pi;trwidth=ws-wp;M=ceil(6.6*pi/trwidth)+1;%朝正无穷方向取整n=[0:1:M-1];wc=(ws+wp)/2%求的截止频率(弧度)hd=ideal_lp(wc,M) %调用计算理想低通滤波器的单位取样响应wham=(hamming(M))';%哈明窗函数h=hd.*wham;[H,w]=freqz(h,1,1000,'whole'); %求Z变换频率响应函数H=(H(1:1:501))';w=(w(1:1:501))'mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);grd=grpdelay(h,1,w);deltaw=2*pi/1000;Rp=-(min(db(1:1:wp/deltaw+1)))As=-round(max(db(ws/deltaw+1:1:501)))subplot(1,1,1)subplot(2,2,1),stem(n,hd);title('理想脉冲响应')axis([0 M-1 -0.1 0.3]);xlabel('N');ylabel('hd(n)');subplot(2,2,2),stem(n,wham);title('Hamming窗')axis([0 M-1 -0 1.1]);xlabel('N');ylabel('w(n)');subplot(2,2,3),stem(n,h);title('实际脉冲响应')axis([0 M-1 -0.1 0.3]);xlabel('N');ylabel('h(n)');subplot(2,2,4),plot(w/pi,db);title('相对标尺的幅度响应');grid on;axis([0 1 -100 10]);xlabel('frequency in pi units');ylabel('decibels');set(gca,'XTickMode','manual','XTick',[0,0.2,0.3,1])%设置或修改LTI对象的属性值set(gca,'XTickMode','manual','XTick',[-50,0])set(gca,'XTickLabelMode','manual','XTickLabels',['50';'0'])子程序:function hd=ideal_lp(wc,N);a=(N-1)/2;n=[0:1:(N-1)];m=n-a+eps;hd=sin(wc*m)./(pi*m);。
【FPGA】MATLAB生成FIR滤波器的操作步骤(包括生成VerilogHDL代码以及仿真过程)
【FPGA】MATLAB⽣成FIR滤波器的操作步骤(包括⽣成VerilogHDL代码以及仿真过程)使⽤MATLAB⽣成滤波器有很多学问,这⾥只是作为初步的探索,和FPGA的更多结合,也正在探索中,相关博⽂例如:,该专题⽬录正在记录我学习FIR滤波器的过程。
MATLAB⽣成30阶低通1MHz海明窗函数设计步骤:(1)在MATLAB命令窗⼝中输⼊“fdatool”出现如下对话框:注意,在MATLAB2018以后的版本中输⼊:filterDesigner,即可打开上述界⾯。
(2)设定为低通滤波器。
(3)选择FIR滤波器的设计类型为窗函数。
设置FIR滤波器为30阶滤波器,选择窗函数的类型为海明窗函数,海明窗函数可以得到旁瓣更⼩的效果,能量更加集中在主瓣中,主瓣的能量约占99.963%,第⼀旁瓣的峰值⽐主瓣⼩40dB,但主瓣宽度与海明窗相同。
它定义为:(4)输⼊抽样频率和截⽌频率,分别是16MHz和1MHz。
(5)点击Design Filter 得到结果,如下图:(6)量化输⼊输出,点击⼯作栏左边的量化选项,即“set quantization parameters”选项,选择定点,设置输⼊字长为8,其他选择默认,如下图⽰:及测试⽂件:仿真结果如下图:如上图所⽰,当输⼊为线性,或者输⼊频率较低时,输出幅度不会被抑制,当输⼊频率较⾼,输出幅度会受到⼤幅度抑制,⽽当输⼊为⽩噪声或者混频信号时,滤波器会过滤掉⾼频信号。
这⾥分出来⼀⼩部分空间,引⽤点别⼈的内容来简单介绍下上述⼏个参数的意思:Response Type:选择FIR滤波器的类型:低通、、带通和带阻等。
在DDC/DUC模块设计中,抽取和内插需要使⽤Halfband Lowpass 类型,⽽channel filr需要使⽤Rsed-cosine类型。
Design Method:FIR滤波器设计⽅法有多种,最常⽤的是窗函数设计法(Window)、等波纹设计法(Equiripple)和最⼩⼆乘法(Least-Squares)等。
MATLAB-GUI设计FIR滤波器(窗函数)
1 数字滤波器的概述 ................................................................................................ 错误!未定义书签。
1.1 FIR数字滤波器设计原理 ........................................................................ 错误!未定义书签。
1.2FIR数字滤波器的特性ﻩ错误!未定义书签。
1.3窗函数的介绍............................................................................................ 错误!未定义书签。
2 FIR数字滤波器设计及实现ﻩ错误!未定义书签。
2.1 低通滤波器的设计................................................................................... 错误!未定义书签。
2.2 高通滤波器的设计...................................................................................... 错误!未定义书签。
2.3 带通滤波器的设计ﻩ错误!未定义书签。
2.4带阻滤波器的设计.................................................................................... 错误!未定义书签。
3基于MATLAB GUI的FIR滤波器的仿真 ....................................................... 错误!未定义书签。
3.1 FIR数字滤波器设计所实现的任务......................................................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的
1.掌握在MATLAB中窗函数的使用方法,了解不同窗函数之间的差别。
2.使用窗函数法设计一个可实现的FIR低通滤波器。
3.观察在相同长度下,不同的窗函数设计出来的滤波器有什么差别。
4.观察同一个窗在不同长度下设计出来的滤波器有什么差别。
二、实验条件
PC机,MATLAB7.0
三、实验内容
1)通过help查找窗函数在MATLAB中如何实现
通过example了解MATLAB中窗函数的实现,并且利用矩形窗,汉宁窗,哈明窗,布莱克曼窗和凯塞窗来进行接下来的实验。
2)设计物理可实现的低通滤波器
设计思路:因为要设计FIR有限脉冲响应滤波器,通常的理想滤波器的单位脉冲响应h是无限长的,所以需要通过窗来截断它,从而变成可实现的低通滤波器。
程序如下:clc;clear all;
omga_d=pi/5;
omga=0:pi/30:pi;
for N=3:4:51;
w1= window(@blackman,N);
w2 = window(@hamming,N);
w3= window(@kaiser,N,2.5);
w4= window(@hann,N);
w5 = window(@rectwin,N);
M=floor(N/2);
subplot(311);plot(-M:M,[w1,w2,w3,w4,w5]); axis([-M M 0 1]);
legend('Blackman','Hamming','kaiser','hann','rectwin');
n=1:M;
hd=sin(n*omga_d)./(n*omga_d)*omga_d/pi;
hd=[fliplr(hd),1/omga_d,hd];
h_d1=hd.*w1';h_d2=hd.*w2';h_d3=hd.*w3';h_d4=hd.*w4';h_d5=hd.*w5';
m=1:M;
H_d1=2*cos(omga'*m)*h_d1(M+2:N)'+h_d1(M+1);
H_d2=2*cos(omga'*m)*h_d2(M+2:N)'+h_d2(M+1);
H_d3=2*cos(omga'*m)*h_d3(M+2:N)'+h_d3(M+1);
H_d4=2*cos(omga'*m)*h_d4(M+2:N)'+h_d4(M+1);
H_d5=2*cos(omga'*m)*h_d5(M+2:N)'+h_d5(M+1);
subplot(312);plot(omga,[H_d1,H_d2,H_d3,H_d4,H_d5]);
legend('Blackman','Hamming','kaiser','hann','rectwin');
subplot(313);plot(abs([fft(h_d1);fft(h_d2);fft(h_d3);fft(h_d4);fft(h_d5)] )');
pause();
end
程序分析:
整个对称窗的长度为N,然而为了在MATLAB中看到窗函数在负值时的形状需将N 变为它的一半,即为2M+1个长度。
窗长设置为从3开始以4为间隔一直跳动51。
则长度相同的不同窗函数在时域[-M,M]的形状如第一个图所示。
对窗函数进行傅里叶变换时,将零点跳过去先构造一个一半的理想滤波器的脉冲响应hd,再将零点位置求导得出的数赋值进去。
将生成的hd左右颠倒形成了一个理想的滤波器的脉冲响应。
将构造的理想滤波器的脉冲响应依次与之前定义的窗函数相乘,相乘出来的为列向量,用转置将其变成行向量,形成的h_d就是非理想的低通滤波器的脉冲响应序列。
因为h_d为对称奇数长度序列,它的DTFT可以是二倍的离散余弦变化,而零点的位置则直接带入求出,两者相加则是H_d。
则第二个图表示的是五个矩阵向量在频域的变化,而第三个图表示的是五个非理想低
通滤波器的傅里叶变换,图三FFT给出的结果永远是对称的,因为它显示了DFT的周期性。
四、实验结论和讨论
1.不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。
信号的截断产生了能量泄漏,而用FFT算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的,但是我们可以通过选择不同的窗函数对它们的影响进行抑制。
通过实验所得的图形可以发现,当窗口长度N值相等时,矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低,形成的低通滤波器的截断效应影响较大,从而影响滤波器的通带的平稳性和阻带的衰减;汉宁窗的旁瓣互相抵消,能量集中在主瓣,能较好的实现低通滤波器的设计;海明窗能量集中于主瓣,截断效应小,更接近于理想低通滤波器;布莱克曼窗主瓣宽,旁瓣小,频率识别精度最低,但幅值识别精度最高。
2.随着N值得变化,通过图像的变化可以看出,窗函数在N值较低时,阻带特性不满足设计要求,只有滤波器阶数较高时,使用海明窗和凯塞窗可以达到阻带衰耗要求。
通过图像观察得出随着N的增大,滤波器会越来越逼近理想滤波器。
其中,布莱克曼窗最接近理想滤波器。
3.通过这次实验和老师的讲解,掌握了利用MATLAB设计物理可实现的FIR低通滤波器的方法;知道了在不同情况下,如何选用最合适的窗函数来设计滤波器;了解了不同窗函数之间的差别;N的长度不同对滤波器的影响。
4.虽然知道实验的原理和思想,但是如果不是老师后来给出程序,自己并不能独立的将程序写出来。
可以发现自己的编程的能力还有思想还不够成熟,还需要通过许多实践来提高和完善自己。