《排列》导学案2.doc

合集下载

6.2.1 排列教案学案

6.2.1 排列教案学案

6.2排列与组合6.2.1排列课标要求素养要求1.通过实例理解排列的概念.2.能应用排列知识解决简单的实际问题. 通过学习排列的概念,进一步提升数学抽象及逻辑推理素养.新知探究“排列三”是中国福利彩票的一种,它是使用摇奖机、摇奖球进行摇奖的,“排列三”,“排列五”共同摇奖,一次摇出5个号码,“排列三”的中奖号码为当期摇出的全部中奖号码的前3位,“排列五”的中奖号码为当期摇出的全部中奖号码,每日进行开奖.问题福彩3D即“排列三”摇出的号码的总的结果数是多少?提示以第1位数为例,第1位的奖号是从0到9这10个数字中摇出一个,每个数字都有相同概率摇出,所以第1位上就有10种可能,同理第2位、第3位都各有10种可能,前3位总共就有1 000种组合方法.排列的定义排列定义中两层含义:一是“取出元素”,二是“按照一定的顺序”一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.拓展深化[微判断]1.在一个排列中,若交换两个元素的位置,则该排列不发生变化.(×)提示在一个排列中,若交换两个元素的位置,则该排列与原来的排列不同.2.在一个排列中,同一个元素不能重复出现.(√)3.从1,2,3,4中任选两个元素,就组成一个排列.(×)提示从1,2,3,4中任选两个元素并按照一定的顺序排成一列,才能组成一个排列.4.从5个同学中任选2个同学分别参加数学和物理竞赛的所有不同的选法是一个排列问题.(√)[微训练]1.有5本不同的书,从中选3本送给3名同学,每人各1本,则送法共有() A.5种B.3种C.60种D.15种解析从5本不同的书中选出3本分别送给3名同学的一种送法,对应于从5个不同元素中取出3个元素的一个排列,因此,共有送法5×4×3=60(种).答案 C2.从5名同学中选出正、副组长各1名,有__________种不同的选法(用数字作答).解析从5名同学中选出正、副组长各1名,即从5个不同元素中选出2个元素进行排列,不同的选法种数为5×4=20.答案20[微思考]用1,2,3这三个数字共可以排成多少个无重复数字的三位数?123与321是不是相同的排列?提示共可以得到6个三位数,123与321是不同的排列,只有两个排列元素相同,顺序也相同时,才是同一个排列.题型一排列的概念【例1】判断下列问题是否为排列问题.(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.解(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3),(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如甲当班长与当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2),(5),(6)属于排列问题.规律方法判断一个具体问题是否为排列问题的方法【训练1】下列问题是排列问题吗?(1)从1,2,3,4四个数字中,任选两个做加法,其结果有多少种不同的可能?(2)从1,2,3,4四个数字中,任选两个做除法,其结果有多少种不同的可能?(3)会场有50个座位,要求选出3个座位有多少种方法?若选出3个座位安排3位客人入座,又有多少种方法?解(1)不是;(2)是;(3)第一问不是,第二问是.理由:由于加法运算满足交换律,所以选出的两个元素做加法求结果时,与两个元素的位置无关,但列除法算式时,两个元素谁作除数,谁作被除数不一样,此时与位置有关.选出3个座位与顺序无关,“入座”问题同“排队”,与顺序有关,故选3个座位安排3位客人入座是排列问题.题型二排列的列举问题【例2】(1)从1,2,3,4四个数字中任取两个数字组成无重复数字的两位数,一共可以组成多少个?(2)写出从4个元素a,b,c,d中任取3个元素的所有排列.解(1)由题意作“树状图”,如下.故组成的所有两位数为12,13,14,21,23,24,31,32,34,41,42,43,共有12个.(2)由题意作“树状图”,如下.故所有的排列为abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cdb,dab,dac,dba,dbc,dca,dcb.规律方法利用“树状图”法解决简单排列问题的适用范围及策略(1)适用范围:“树状图”在解决排列元素个数不多的问题时,是一种比较有效的表示方式.(2)策略:在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,再安排第二个元素,并按此元素分类,依次进行,直到完成一个排列,这样能做到不重不漏,然后再按树状图写出排列.【训练2】写出A,B,C,D四名同学站成一排照相,A不站在两端的所有可能站法.解由题意作“树状图”,如下,故所有可能的站法是BACD,BADC,BCAD,BDAC,CABD,CADB,CBAD,CDAB,DABC,DACB,DBAC,DCAB.题型三排列的简单应用【例3】用具体数字表示下列问题.(1)从100个两两互质的数中取出2个数,其商的个数;(2)由0,1,2,3组成的能被5整除且没有重复数字的四位数的个数;(3)有4名大学生可以到5家单位实习,若每家单位至多招1名实习生,每名大学生至多到1家单位实习,且这4名大学生全部被分配完毕,其分配方案的个数.解(1)从100个两两互质的数中取出2个数,分别作为商的分子和分母,其商共有100×99=9 900(个).(2)因为组成的没有重复数字的四位数能被5整除,所以这个四位数的个位数字一定是“0”,故确定此四位数,只需确定千位数字、百位数字、十位数字即可,共有3×2×1=6(个).(3)可以理解为从5家单位中选出4家单位,分别把4名大学生安排到4家单位,共有5×4×3×2=120(个)分配方案.规律方法要想正确地表示排列问题的排列个数,应弄清这件事中谁是分步的主体,分清m个元素和n(m≤n)个不同的位置各是什么.【训练3】(1)有7本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有7种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?解(1)从7本不同的书中选3本送给3名同学,相当于从7个不同元素中任取3个元素的一个排列,所以共有7×6×5=210(种)不同的送法.(2)从7种不同的书中买3本书,这3本书并不要求都不相同,根据分步乘法计数原理知,共有7×7×7=343(种)不同的送法.一、素养落地1.通过本节课的学习,进一步提升数学抽象素养及数学运算素养.2.排列有两层含义:一是“取出元素”,二是“按照一定顺序排成一列”.这里“一定的顺序”是指每次取出的元素与它所排的“位置”有关,所以,取出的元素与“顺序”有无关系就成为判断问题是否为排列问题的标准.二、素养训练1.从1,2,3,4四个数字中,任选两个数做加、减、乘、除运算,分别计算它们的结果,在这些问题中,有几种运算可以看作排列问题()A.1 B.3C.2 D.4解析因为加法和乘法满足交换律,所以选出两个数做加法和乘法时,结果与两数字位置无关,故不是排列问题,而减法、除法与两数字的位置有关,故是排列问题.答案 C2.从甲、乙、丙三人中选两人站成一排的所有站法为()A.甲乙,乙甲,甲丙,丙甲B.甲乙丙,乙丙甲C.甲乙,甲丙,乙甲,乙丙,丙甲,丙乙D.甲乙,甲丙,乙丙解析选出两人,两人的不同顺序都要考虑.答案 C3.某电视台一节目收视率很高,现要连续插播4个广告,其中2个不同的商业广告和2个不同的公益宣传广告,要求最后播放的必须是商业广告,且2个商业广告不能连续播放,则不同的播放方式有()A.8种B.16种C.18种D.24种解析可分三步:第一步,排最后一个商业广告,有2种;第二步,在前两个位置选一个排第二个商业广告,有2种;第三步,余下的两个排公益宣传广告,有2种.根据分步计数原理,不同的播放方式共有2×2×2=8(种).故选A.答案 A4.8种不同的菜种,任选4种种在不同土质的4块地上,有__________种不同的种法(用数字作答).解析本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有8×7×6×5=1 680(种).答案 1 6805.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,则一共可以表示______种不同的信号.解析第1类,挂1面旗表示信号,有3种不同方法;第2类,挂2面旗表示信号,有3×2=6(种)不同方法;第3类,挂3面旗表示信号,有3×2×1=6(种)不同方法.根据分类加法计数原理,可以表示的信号共有3+6+6=15(种).答案15基础达标一、选择题1.(多选题)下面问题中,不是排列问题的是()A.由1,2,3三个数字组成无重复数字的三位数B.从40人中选5人组成篮球队C.从100人中选2人抽样调查D.从1,2,3,4,5中选2个数组成集合解析选项A中组成的三位数与数字的排列顺序有关,选项B,C,D只需取出元素即可,与元素的排列顺序无关.答案BCD2.甲、乙、丙三人排成一排去照相,甲不站在排头的所有排列种数为() A.6 B.4C.8 D.10解析列“树状图”如下:故共有丙甲乙,丙乙甲,乙甲丙,乙丙甲4种排列方法.答案 B3.从2,3,5,7四个数中任选两个分别相除,则得到的不同结果有() A.6个B.10个C.12个D.16个解析不同结果有4×3=12(个).答案 C4.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是()A.9 B.10C.18 D.20解析lg a-lg b=lg ab,从1,3,5,7,9中任取两个数分别记为a,b,共有5×4=20(种),其中lg 13=lg 39,lg31=lg 93,故其可得到18种结果.答案 C5.四张卡片上分别标有数字“2”“0”“1”“1”,则由这四张卡片可组成不同的四位数的个数为()A.6 B.9C.12 D.24解析组成的四位数列举如下:1 012,1 021,1 102,1 120,1 201,1 210,2 011,2 101,2 110,共9个.答案 B二、填空题6.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了__________条毕业留言(用数字作答).解析根据题意,得40×39=1 560,故全班共写了1 560条毕业留言.答案 1 5607.2020北京车展期间,某调研机构准备从5人中选3人去调查E1馆、E3馆、E4馆的参观人数,不同的安排方法种数为__________.解析由题意可知,问题为从5个元素中选3个元素的排列问题,所以安排方法有5×4×3=60(种).答案608.有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有__________种不同的招聘方案(用数字作答).解析 将5家招聘员工的公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题.所以不同的招聘方案共有5×4×3=60(种).答案 60三、解答题9.判断下列问题是否为排列问题:(1)从1到10十个自然数中任取两个数组成直角坐标平面内的点的坐标,可得多少个不同的点的坐标?(2)从10名同学中任抽两名同学去学校开座谈会,有多少种不同的抽取方法?(3)某商场有四个大门,若从一个门进去,购买物品后再从另一个门出来,不同的出入方式共有多少种?(4)从集合M ={1,2,…,9}中,任取两个元素作为a ,b ,可以得到多少个焦点在x 轴上的椭圆方程x 2a 2+y 2b 2=1?可以得到多少个焦点在x 轴上的双曲线方程x 2a 2-y 2b 2=1?解 (1)由于取出的两数组成点的坐标与哪一数作横坐标,哪一数作纵坐标的顺序有关,所以这是一个排列问题.(2)因为任何一种从10名同学抽取两人去学校开座谈会的方式不用考虑两人的顺序,所以这不是排列问题.(3)因为从一门进,从另一门出是有顺序的,所以是排列问题.(4)第一问不是排列问题,第二问是排列问题.若方程x 2a 2+y 2b 2=1表示焦点在x 轴上的椭圆,则必有a >b ,a ,b 的大小关系一定;在双曲线x 2a 2-y 2b 2=1中,不管a>b 还是a <b ,方程x 2a 2-y 2b 2=1均表示焦点在x 轴上的双曲线,且是不同的双曲线,故是排列问题.10.京沪高速铁路自北京南站至上海虹桥站,双线铁路全长1 318公里,途经北京、天津、河北、山东、安徽、江苏、上海7个省市,设立包括北京南、天津西、济南西、南京南、苏州北、上海虹桥等在内的21个车站,计算铁路部门要为这21个车站准备多少种不同的火车票?解对于两个火车站A和B,从A到B的火车票与从B到A的火车票不同,因为每张票对应一个起点站和一个终点站,因此,结果应为从21个不同元素中,每次取出2个不同元素的排列的个数为21×20=420.所以一共需要为这21个车站准备420种不同的火车票.能力提升11.将4张相同的博物馆的参观票分给5名同学,每名同学至多1张,并且票必须分完,那么不同的分法的种数为()A.54B.45C.5×4×3×2 D.5解析由于参观票只有4张,而人数为5人,且每名同学至多1张,故一定有1名同学没有票.因此从5名同学中选出1名没有票的同学,有5种选法.又因为4张参观票是相同的,不加以区分,所以不同的分法有5种.答案 D12.将A,B,C,D四名同学按一定顺序排成一行,要求自左向右,且A不排在第一,B不排在第二,C不排在第三,D不排在第四,试用树状图列出所有可能的排法.解由题意作“树状图”,如下:故所有排法为BADC,BCDA,BDAC,CADB,CDAB,CDBA,DABC,DCAB,DCBA,共有9种.创新猜想13.(多选题)下列问题中是排列问题的是()A.从甲、乙、丙三名同学中选出两名分别参加数学、物理兴趣小组B.从甲、乙、丙三名同学中选出两人参加一项活动C.从a,b,c,d中选出3个字母D.从1,2,3,4,5这五个数字中取出2个数字组成一个两位数解析由排列的定义知AD是排列问题.答案AD14.(多空题)从a,b,c,d,e五个元素中每次取出三个元素,可组成____________个以b为首的不同的排列,它们分别是___________________________________.解析画出树状图如下:可知共12个,它们分别是bac,bad,bae,bca,bcd,bce,bda,bdc,bde,bea,bec,bed.答案12bac,bad,bae,bca,bcd,bce,bda,bdc,bde,bea,bec,bed。

排列 导学案

排列          导学案

排列(导学案)学习目标:知识与技能:理解排列的意义,并能用树形图正确写出一些简单排列问题的所有排列.过程与方法:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。

情感态度与价值观:能运用所学的排列知识,正确地解决实际问题.教学重点:理解排列的意义,并能用树形图正确写出一些简单排列问题的所有排列.教学难点:掌握排列数公式及推导方法,从中体会“化归”的数学思想.学习过程一.合作探究学习探究一:1、排列的定义:几点说明:(1)元素不能重复。

n个中不能重复,m个中也不能重复。

(2)“按一定顺序”就是与位置有关,这是判断一个问题是否是排列问题的关键。

(3)两个排列相同,当且仅当这两个排列中的元素完全相同,而且元素的排列顺序也完全相同。

(4)m<n时的排列叫选排列,m=n时的排列叫全排列。

(5)为了使写出的所有排列情况既不重复也不遗漏,最好采用“树形图”。

2、小练习下列问题中哪些是排列问题?(1)10名学生中抽2名学生开会(2)10名学生中选2名做正、副组长(3)从2,3,5,7,11中任取两个数相乘(4)从2,3,5,7,11中任取两个数相除(5)20位同学互通一次电话(6)20位同学互通一封信(7)以圆上的10个点为端点作弦(8)以圆上的10个点中的某一点为起点,作过另一个点的射线(9)有10个车站,共需要多少种车票?(10)有10个车站,共需要多少种不同的票价?学习探究二:1、排列数:2、“排列”和“排列数”有什么区别?3、排列数公式(1):排列数公式(2):几点说明:二.典例示范例1、计算:(1)36A(2)66A(2)48A例2、计算从a、b、c这三个元素中,取出3个元素的排列数,写出所有的排列。

例3、某年全国足球甲级A组联赛共有12个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?变式拓展:1、(1)有3名大学毕业生,到5个招聘雇员的公司应聘,若每个公司最多招聘一个新雇员,且3名大学生全部被聘用,若不允许兼职,共有多少种招聘方案?(2)有5名大学毕业生,到3个招聘雇员的公司应聘,每个公司只招聘一个新雇员,,且不允许兼职,现假定这个公司都完成了招聘工作,问共有多少种招聘方案?2.某信号兵用红,黄,蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?三.归纳总结(学生自主小结)1.排列的定义:2.排列数及其公式:3.简单的排列应用题当堂检测1.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行试验,有种不同的种植方法。

11在一个三角形中各边和它所对角...

11在一个三角形中各边和它所对角...

高中新课程数学导学案设计一排列(第二课时)【学习目标】1.掌握无限制条件和有限制条件的排列应用问题2.能应用排列知识解决简单的实际应用问题【学习重难点】1.常见的解决排列问题的策略(重点)2.与数字有关的排列问题(难点)3.分类讨论在解题中的应用(易错点)【学法指导】特殊元素或特殊位置优先考虑,掌握“在”与“不在”、“邻”与“不邻”的处理方法。

【学习过程】一、合作探究(一)无限制条件的排列问题方法:把问题转化为排列问题,弄清n,m各指的是什么,直接利用排列数公式计算。

例1(课本第18页例2、例3)例2有5个不同的科研小课题,从中选3个由高二(18)班的3个学习兴趣小组进行研究,每组一个课题,共有多少种不同的安排方法?(二)有限制条件的排列问题排列问题的本质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上,或某个位子上不排某个元素。

方法:所谓有限制条件的排列问题是指某些元素或位置有特殊要求。

解决此类问题常从特殊元素或特殊位置入手进行解决,常用的方法有直接法和间接法,直接法又有分步法和分类法两种。

(1)直接法(i)分步法:按特殊元素或特殊位置优先安排,再安排一般元素(位置),依次分步解决相邻问题----“捆绑法”;不相邻问题----“插空法”(ii)分类法:直接按特殊元素当选情况或特殊位置安排进行分类解决。

(2)间接法:符合条件数等于无限制条件数与不符合条件数的差。

例3 7名师生站成一排照相留念,其中老师1人,男学生4人,女学生2人,在下列情况下,各有多少种不同站法?(1)两名女学生必须相邻而站;(2)4名男学生互不相邻;(3)若4名男学生身高都不等,按从高到低的顺序站;(4)老师不站中间,女学生不站两端。

例4(课本第19页例4)二、巩固训练:一个火车站有8股岔道,每股岔道只能停放1列火车,现需停放4列不同的火车,有多少种不同的停放方法?三、课堂小结:四、课后作业:1. 一部纪录影片在4个单位轮映,每一个单位放映1场,有多少种轮映次序?2.一个学生有20本不同的书,所有这些书能够以多少种不同的方式排在一个单层的书架上?3.学校要安排一场文艺晚会的11个节目的演出顺序,除第1个节目和最后1个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,共有多少种不同的排法?4.用0,1,2,3,4,5六个数字:(1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的五位数?(3)能组成多少个比1325大的无重复数字的四位数?二组合(第一课时)【学习目标】1. 理解组合、组合数的概念;2.会推导组合数公式,并会应用公式求值3.了解组合数的两个性质,并会求值、化简和证明【学习重难点】 1.组合的定义;组合数公式的应用(重点) 2. 组合数公式的推导(难点)3. 组合的概念及组合与组合数的区别(易错点)【学法指导】区分排列与组合的方法是首先弄清事件是什么,区分的标志是有无顺序。

排列第二课时导学案

排列第二课时导学案

§1.2.1 排列(第二课时)学习目标1.利用排列和排列数公式解决简单的计数问题.2.经历把简单的计数问题化为排列问题解决的过程,从中体会“化归”的数学思想.学习重点:利用排列和排列数公式解决简单的计数问题.学习难点:利用排列和排列数公式解决简单的计数问题.【学习过程】课堂探究:类型一:直接抽象为排列问题的计数问题例1:某年全国足球甲级(A组)联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?点评:要学会把具体问题抽象为从n个不同的元素中任取m(m≤n)个不同元素,按一定顺序排成一列的问题.【巩固练习】某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?.类型二:有约束条件的排列问题(特殊位置分析法、特殊元素分析法)例2:用0到9这10个数字,可以组成多少个没有重复数字的三位数?思路分析:在本问题的0到9这10个数字中,因为0不能排在百位上,而其他数可以排在任意位置上,因此0是一个特殊的元素.一般的,我们可以从特殊元素的排列位置入手来考虑问题.【巩固练习】由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有多少个?类型三:捆绑法(对于相邻问题,常用“捆绑法”(先捆后松))例1:元旦文娱会演要安排5个舞蹈节目,6个歌唱节目,5个舞蹈节目必须在一起,有多少种排法?练习:在7名运动员中选4名运动员组成接力队,参加4x100接力赛,那么甲、乙两人都不跑中间两棒的安排方法共有多少种?类型四:插空法(不相邻问题)例2:七个家庭一起外出旅游,若其中四家是男孩,三家是女孩,现将这七个小孩站成一排照相留念。

若三个女孩互不相邻,有多少种不同的排法?变式:七个家庭一起外出旅游,若其中四家是男孩,三家是女孩,现将这七个小孩站成一排照相留念。

若三个女孩互不相邻,四个男孩也互不相邻,有多少种不同的排法?课堂练习:1.四位男生、三位女生排队照相,根据下列要求,各有多少不同的排法①七个人排一列,三个女生任何两个都不能相邻排在一起②七个人排一列,四个男生必须连排在一起③男女生相间排列2. 7人排成一排,(1)甲、乙和丙三个同学都相邻的排法共有多少种?(2)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?3:三名女生和五名男生排成一排,⑴如果女生全排在一起,有多少种不同排法?⑵如果女生全分开,有多少种不同排法?⑶如果两端都不能排女生,有多少种不同排法?⑷如果两端不能都排女生,有多少种不同排法?课后强化练习:1.6个人站成前后两排照相,要求前排2人,后排4人,那么不同的排法共有…() A.30种B.360种C.720种D.1 440种2.将4位司机、4位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有————种不同的分配方案?3、3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是()A、2160 B、120 C、240 D、7204、要排一张有5个独唱和3个合唱的节目表,如果合唱节目不能排在第一个,并且合唱节目不能相邻,则不同排法的种数是()A、 B、 C、 D、5、5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有()A、 B、 C、 D、6、某班委会五人分工,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,乙不能担任学习委员,则不同的分工方案的种数是()A、 B、C、 D、7、3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是()A、2160B、120C、240D、7208、7个人排成一排,在下列情况下,各有多少种不同排法?(1)甲排头(2)甲不排头,也不排尾(3)甲、乙、丙三人必须在一起(4)甲、乙之间有且只有两人(5)甲、乙、丙三人两两不相邻(6)甲在乙的左边(不一定相邻)(7)甲、乙、丙三人按从高到矮,自左向右的顺序(8)甲不排头,乙不排中间9、用0,1,2,3,4,5这六个数字,组成没有重复数字的五位数,在下列情况,各有多少个?①奇数②能被5整除③能被15整除④比35142小⑤比50000小且不是5的倍数。

排列组合复习课导学案

排列组合复习课导学案

-可编辑修改-一、 学习目标:1•进一步理解和应用分步计数原理和分类计数原理。

2•掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3. 学会应用数学思想和方法解决排列组合问题 二、 知识梳理:1、加法原理1. 分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有 mi 种不同的方法, 在第2类办法中有 m 2种不同的 方法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有: N g m 2 L m .种 不同的方法.2、 乘法原理 分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有mi 种不同的方法,做第2步有m 2种不同的方法,…, 做第n 步有m n 种不同的方法,那么完成这件事共有:N 口勺m 2 L m .种不同的方法.3. 分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 4、排列数的计算9、解决排列组合综合性问题的一般过程如下 (1) •认真审题弄清要做什么事排列组合复习课导学案编制:迟德龙7、常见的方法:5、组合数的计算 (3 )数字问题 (4 )涂色问题6、组合数的性质(5 )几何问题(1 )特殊元素、特殊位置优先考虑 (2) 捆绑法(3) 插孔法 (4) 间接法(5) 挡板法(6 )先选后排 (7 )平均分租(8 )定序问题用除法(9)整体分类局部分步 (10 )列举法 (11 )先分组再排列8、常见题型 (1 )站排问题 (2 )分配问题(2)•怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

(3).确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素(4).解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略三、基础训练1、7名学生站成一排,4男3女(1 )甲不站在排头(2)甲乙两人必须相邻(3)甲乙两人不能相邻(4)甲不站在排头乙不站在排尾(5)甲必须站在乙的左边(6 )甲乙丙三人的顺序一定(7 )女生相邻(8 )男生相邻(9)女生不相邻(10 )男生不相邻(11 )男生和女生相间而站(12 )恰有两名女生相邻四、例题精选:一.特殊元素和特殊位置优先策略例1.由0,123,4,5可以组成多少个没有重复数字五位奇数.练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为30四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重排问题求幕策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法练习题:1 .某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为422. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法78-可编辑修改-六.多排问题直排策略例6.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法-可编辑修改-练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的 3个座位不能坐,并且这 2人不左右相邻,那么不同排法的种数是七•排列组合混合问题先选后排策略例7.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法十一 •平均分组问题除法策略 例116本不同的书平均分成 3堆,每堆2本共有多少分法?练习题:一个班有 6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种 任务,且正副班长有且只有 1人参加,则不同的选法有 种八•小集团问题先整体后局部策略例8.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹数有多少个?练习题:1 .计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画,排成一行陈列要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为 练习题:1将13个球队分成3组,一组5个队,其它两组4个队,有多少分法?()2.10名学生分成3组,其中一组4人,另两组3人但正副班长不能分在同一组,有多少种不同的分组方法 () 3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为 _________ ()十二.合理分类与分步策略例12.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞 的节目,有多少选派方法2. 5男生和5女生站成一排照像 ,男生相邻,女生也相邻的排法有 种九.元素相同问题隔板策略例9.有10个运动员名额,分给 7个班,每班至少一个,有多少种分配方案?练习题:41 . 10个相同的球装5个盒中,每盒至少一有多少装法? C 92 . x y z w 100求这个方程组的自然数解的组数C ;03练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?十.正难则反总体淘汰策略 例10.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?练习题:某城市的街区由 12个全等的矩形区组成其中实线表示马 路,从A走到B 的最短路径有多少种?()练习题:我们班里有 43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的十四.实际操作穷举策略-可编辑修改-抽法有多少种?1, 5在两个奇数之间,这样的五位练习题:1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生, 则不同的选法共有34十三.构造模型策略例13.马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?例14.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求色方法有每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法练习题:1•同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同 的分配方式有多少种?(9)五、高考链接十五•数字排序问题查字典策略例15 .由0, 1 , 2, 3, 4 , 5六个数字可以组成多少个没有重复的比324105大的数?54321解:N 2 A s 2A 4 A 3 A A 297数字排序问题可用查字典法,查字典的法应从高位向低位查,依次求出其符合要求 的个数,根据分类计数原理求出其总数。

4、排列(二)学案

4、排列(二)学案

§1.2.1 排列(二)【学习目标】1.进一步加深对排列概念的理解.2.掌握几种有限制条件的排列,能应用排列数公式解决简单的实际问题.【问题导学】新知探究·点点落实1.排列数公式A m n=n(n-1)(n-2)…(n-m+1)(n,m∈N*,m≤n)=n!(n-m)!.A n n=n(n-1)(n-2)…2·1=n!(叫做n的阶乘).另外,我们规定0!=1.2.应用排列与排列数公式求解实际问题中的计数问题的基本步骤【题型探究】重点难点·个个击破类型一无限制条件的排列问题例1(1)有7本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有7种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?反思与感悟例1中两题的区别在于:(1)是典型的排列问题,用排列数计算其排列方法数;(2)不是排列问题,需用分步乘法计数原理求其方法种数.排列的概念很清楚,要从“n个不同的元素中取出m个元素”.即在排列问题中元素不能重复选取,而在用分步乘法计数原理解决的问题中.元素可以重复选取.跟踪训练1(1)某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?(2)将4名体育生,4名美术生分配到4个不同的班,每个班要分配一名体育生和一名美术生,共有多少种分配方案?类型二排队问题角度1“相邻”与“不相邻”问题例23名男生,4名女生,这7个人站成一排在下列情况下,各有多少种不同的站法.(1)男、女各站在一起;(2)男生必须排在一起;(3)男生不能排在一起;(4)男生互不相邻,且女生也互不相邻.反思与感悟处理元素“相邻”“不相邻”问题应遵循“先整体,后局部”的原则.元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再松绑,将这若干个元素内部全排列.元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.跟踪训练2排一张有5个歌唱节目和4个舞蹈节目的演出节目单.(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?角度2定序问题例37人站成一排.(1)甲必须在乙的前面(不一定相邻),则有多少种不同的排列方法;(2)甲、乙、丙三人自左向右的顺序不变(不一定相邻),则有多少不同的排列方法.反思与感悟这类问题的解法是采用分类法.n个不同元素的全排列有A n n种排法,m个元素的全排列有A m m种排法.因此A n n种排法中,关于m个元素的不同分法有A m m类,而且每一分类的排法数是一样的.当这m个元素顺序确定时,共有A n nA m m种排法.跟踪训练37名师生排成一排照相,其中老师1人,女生2人,男生4人,若4名男生的身高都不等,按从高到低的顺序站,有多少种不同的站法?角度3元素的“在”与“不在”问题例4从包括甲、乙两名同学在内的7名同学中选出5名同学排成一列,求解下列问题:(1)甲不在首位的排法有多少种?(2)甲既不在首位,又不在末位的排法有多少种?(3)甲与乙既不在首位又不在末位的排法有多少种?(4)甲不在首位,同时乙不在末位的排法有多少种?反思与感悟“在”与“不在”排列问题解题原则及方法(1)原则:解“在”与“不在”的有限制条件的排列问题时,可以从元素入手也可以从位置入手,原则是谁特殊谁优先.(2)方法:从元素入手时,先给特殊元素安排位置,再把其他元素安排在其他位置上,从位置入手时,先安排特殊位置,再安排其他位置.提醒:解题时,或从元素考虑,或从位置考虑,都要贯彻到底.不能一会考虑元素,一会考虑位置,造成分类、分步混乱,导致解题错误.跟踪训练47人站成一排,甲必须站在中间或两端,则有多少种不同站法?类型三数字排列问题例5用0,1,2,3,4,5这六个数字可以组成多少个符合下列条件的无重复的数字?(1)六位奇数;(2)个位数字不是5的六位数;(3)不大于4 310的四位偶数.反思与感悟数字排列问题是排列问题的重要题型,解题时要着重注意从附加受限制条件入手分析,找出解题的思路.常见附加条件有:(1)首位不能为0;(2)有无重复数字;(3)奇偶数;(4)某数的倍数;(5)大于(或小于)某数.跟踪训练5用0,1,2,3,4,5这六个数字可以组成多少个无重复数字的(1)能被5整除的五位数;(2)能被3整除的五位数;(3)若所有的六位数按从小到大的顺序组成一个数列{a n},则240 135是第几项.【达标检测】当堂检测·巩固反馈1.用1,2,3,…,9这九个数字,可以组成没有重复数字的三位偶数的个数为()A.324B.224C.360D.6482.6名学生排成两排,每排3人,则不同的排法种数为()A.36B.120C.720D.2403.从6名短跑运动员中选出4人参加4×100 m接力赛,甲不能跑第一棒和第四棒,问共有________种参赛方案.4.高二(一)班学生安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同的排法的种数是________(填数字).5.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.【规律方法】求解排列问题的主要方法:【课后作业】强化训练·拓展提升一、选择题1.数列{a n}共有6项,其中4项为2,其余两项各不相同,则满足上述条件的数列{a n}共有()A.30个B.31个C.60个D.61个2.从a,b,c,d,e五人中选2人分别参加数学和物理竞赛,但a不能参加物理竞赛,则不同的选法有()A.12种B.16种C.20种D.10种3.由1,2,3,4,5组成没有重复数字的四位数,按从小到大的顺序排成一个数列{a n},则a72等于()A.1 543B.2 543C.3 542D.4 5324.在制作飞机的某一零件时,要先后实施6个工序,其中工序A只能出现在第一步或最后一步,工序B和C在实施时必须相邻,则实施顺序的编排方法共有()A.34种B.48种C.96种D.144种5.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A.3×3!B.3×(3!)3C.(3!)4D.9!6.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A.210个B.300个C.464个D.600个7.某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168二、填空题8.5个人排成一排,要求甲、乙两人之间至少有一人,则不同的排法有________种.9.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有________个.10.两家夫妇各带一个小孩一起去公园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为________.11.将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种(用数字作答).三、解答题12.某单位安排7位员工在10月1日至7日值班,每天安排1个,每人值班1天.若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有多少种?13.用1,2,3,4,5,6,7排出无重复数字的七位数,按下述要求各有多少个?(1)偶数不相邻;(2)偶数一定在奇数位上;(3)1和2之间恰夹有一个奇数,没有偶数;(4)三个偶数从左到右按从小到大的顺序排列.。

3.1.2排列与排列数(第2课时) 导学案-【新教材】人教B版(2019)高中数学选择性必修二

3.1.2排列与排列数(第2课时) 导学案-【新教材】人教B版(2019)高中数学选择性必修二

3.1.2 排列数的应用(第2课时)导学案班级:姓名:小组:小组评价:教师评价:【预习目标】自主研读教材,理解并掌握排列的概念;理解并掌握排列数公式,能应用排列知识解决简单的实际应用问题.【使用说明】1. 按照导学案的提示自主研读教材,用红笔进行勾画,同时独立完成导学案;2. 独立完成导学案,找出自己的疑惑和需要讨论的问题准备课上讨论质疑。

【学习目标】1.理解并掌握排列的概念;2.理解并掌握排列数公式,能应用排列知识解决简单的实际应用问题。

【尝试与发现】1.无限制条件的排列问题例3 某地区足球比赛共有12个队参加,每队都要与其他各队在主客场分别比赛一次,则共要进行多少场比赛?例4 某信号兵用红、黄、蓝三面旗从上到下挂在竖直的旗杆上表示信号,每次可以只挂1面旗,也可以挂2面旗或3面旗,旗数或顺序不同时,表示信号不同,则一共可表示多少种不同的信号?1.没有限制的排列问题,即对所排列的元素或所排列的位置没有特别的限制,这一类问题相对简单,分清元素和位置即可.2.对于不属于排列的计数问题,注意利用计数原理求解.2.有限制条件的排列问题的常用解法与技巧(1)特殊元素(位置)优先法:先排特殊元素或特殊位置,然后再排其他元素(位置).(2)间接法(逆向思维法):先不考虑限制条件,求出所有的排列数,然后减去不符合条件的排列数.(3)多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理.(4)相邻问题捆绑法:要求某些元素必须相邻时,常用“捆绑”的办法,先将它们看成一个整体,再参与后续的排列.(5)不相邻问题插空法:要求某些元素不相邻时,常用“插空”的办法,先排好不受限制的元素,再插入受限制的元素.(6)定序问题倍缩法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.探究点1数字排列问题例5用0,1,2,…,9这10个数字,可以排成多少个没有重复的数字的三位数?例6用0,1,2,…,9这10个数字,可以排成多少个没有重复的数字的四位偶数?探究点2排队问题例7 有3位男生和2位女生,在某风景点前站成一排拍合照,要求2位女生要相邻,有多少种不同的站法?探究点3定序问题例8 某晚会要安排3个歌唱节目(记为A,B,C)和2个舞蹈节目(记为甲、乙),要求舞蹈节目不能相邻,共有多少种不同的安排方法?“相邻”与“不相邻”问题的解决方法处理元素“相邻”“不相邻”问题应遵循“先整体,后局部”的原则.元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再松绑,将这若干个元素内部全排列.元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.【巩固练习】1.四人并排坐在连号的四个座位上,其中A 与B 不相邻的所有不同的坐法种数是( ) A .12 B .16 C .20D .82.从a ,b ,c ,d ,e 五个元素中每次取出三个元素,可组成以b 为首的不同的排列的个数为( ) A .8 B .9 C .10D .123.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( ) A .24 B .48 C .60D .724.要从a ,b ,c ,d ,e 5个人中选出1名组长和1名副组长,但a 不能当副组长,则不同的选法种数是( ) A .20 B .16 C .10 D .6【体系构建】1.解排列应用题的基本思想实际问题――→化归(建模)排列问题――――――――→求数学模型的解求排列数――――――――→得实际问题的解实际问题2.求解排列问题的主要方法 直接法 把符合条件的排列数直接列式计算 优先法 优先安排特殊元素或特殊位置捆绑法把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中【学习评价】3.1.2 排列数的应用(第2课时)训练案1.从5种不同的蔬菜品种中选出2种分别种植在不同土质的土地上进行试验,共有多少种不同的种植方法?2. 从5名乒乓球运动员中,选出3名并确定出场顺序,以参加某场团体比赛,共有多少种不同的方法?3. 有6个人想在某风景区门口站成前后两排(各3人)照相,共有多少种不同的排法?4.(1)将2封不同的信投入4个邮箱,每个邮箱最多投1封,共有多少种不同的投法?(2)将2封不同的信随意投入4个邮箱,共有多少种不同的投法?5. 用0,1,2,3,4,5可组成多少个:(1)没有重复数字的四位数?(2)没有重复数字且被5整除的四位数?(3)比2000大且没有重复数字的自然数?6. 四对夫妇坐成一排照相:(1)每对夫妇都不能隔开的排法有多少种?(2)每对夫妇都不能隔开,且同性别的人不能相邻的排法有多少种?7. 马路上有依次编号为1,2,3,…,10的10盏路灯,为节约用电,某个时段可以把其中的3盏灯关掉,但不能同时关掉相邻的两盏,而且两端的灯也不能关掉,则满足条件的不同关灯方法共有多少种?8.分别求出符合下列要求的不同排法的种数.(1)6名学生排3排,前排1人,中排2人,后排3人;(2)6名学生排成一排,甲不在排头也不在排尾;(3)6人排成一排,甲、乙不相邻.。

高中数学高二理科选修2-3排列组合导学案

高中数学高二理科选修2-3排列组合导学案

《排列(1)》导学案【学习目标】1. 理解排列、排列数的概念;2. 了解排列数公式的推导.【重点难点】1. 理解排列、排列数的概念;2. 了解排列数公式的推导.【学法指导】(预习教材P14~ P18,找出疑惑之处)复习1:交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有2个不重复的英文字母和4个不重复的阿拉伯数字,并且2个字母必须合成一组出现,4个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?复习2:从甲,乙,丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另一名参加下午的活动,有多少种不同的选法?【教学过程】(一)导入探究任务一:排列问题1:上面复习1,复习2中的问题,用分步计数原理解决显得繁琐,能否对这一类计数问题给出一种简捷的方法呢?新知1:排列的定义一般地,从n个元素中取出m()个元素,按照一定的排成一排,叫做从个不同元素中取出个元素的一个排列.试试:写出从4个不同元素中任取2个元素的所有排列. 反思:排列问题有何特点?什么条件下是排列问题?探究任务二:排列数及其排列数公式新知2 排列数的定义从个元素中取出(nm≤)个元素的的个数,叫做从n个不同元素取出m元素的排列数,用符合表示.试试:从4个不同元素a,b, c,d中任取2个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?问题:⑴从n个不同元素中取出2个元素的排列数是多少?⑵从n个不同元素中取出3个元素的排列数是少?⑶从n个不同元素中取出m(nm≤)个元素的排列数是多少?新知3 排列数公式从n个不同元素中取出m(nm≤)个元素的排列数=mnA新知4 全排列从n个不同元素中取出的一个排列,叫做n个元素的一个全排列,用公式表示为=nnA(二)深入学习例1计算:⑴410A;⑵218A; ⑶441010AA÷.变式:计算下列各式:⑴215A; ⑵66A⑶28382AA-; ⑷6688AA.例2若17161554mn A =⨯⨯⨯⨯⨯,则n = ,m = .变式:乘积(55)(56)(68)(69)n n n n ----用排列数符号表示 .(,n N ∈)例3 求证: 11--=m n m n nA A变式 求证: 7766778878A A A A =+-小结:排列数m n A 可以用阶乘表示为mn A =※ 动手试试 n 2 3 4 5 6 7n !练2. 从2,3,5,7,11这五个数字中,任取2个数字组成分数,不同值的分数共有多少个? .【当堂检测 】1. 计算:=+243545A A ;2.. 计算:=+++44342414A A A A ;3. 某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行 场比赛;4. 5人站成一排照相,共有 种不同的站法;5. 从1,2,3,4这4个数字中,每次取出3个排成一个3位数,共可得到 个不同的三位数.1. 求证:11211--++=-n n n n n n A n A A2. 一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假设每股道只能停放1列火车)?3.一部记录片在4个单位轮映,每一单位放映1场,有多少种轮映次序?【反思 】1. 排列数的定义2. 排列数公式及其全排列公式《排列(2)》导学案【学习目标 】1熟练掌握排列数公式; 2. 能运用排列数公式解决一些简单的应用问题. 【重点难点 】 1熟练掌握排列数公式; 2. 能运用排列数公式解决一些简单的应用问题. 【学法指导 】 (预习教材P 5~ P 10,找出疑惑之处) 复习1:.什么叫排列?排列的定义包括两个方面分别是 和 ;两个排列相同的条件是 相同, 也复习2:排列数公式:mn A = (,,m n N m n *∈≤)全排列数:nn A = = . 复习3 从5个不同元素中任取2个元素的排列数是 ,全部取出的排列数是【教学过程 】 (一)导入 探究任务一:排列数公式应用的条件 问题1:⑴ 从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同的送法?⑵ 从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法? 新知:排列数公式只能用在从n 个不同元素中取出m 个元素的的排列数,对元素可能相同的情况不能使用.探究任务二:解决排列问题的基本方法问题2:用0到9这10个数字,可以组成多少个没有重复数字的三位数?新知:解排列问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等. (二)深入学习 例1 (1)6男2女排成一排,2女相邻,有多少种不同的站法? (2)6男2女排成一排,2女不能相邻,有多少种不同的站法? (3)4男4女排成一排,同性者相邻,有多少种不同的站法? (4)4男4女排成一排,同性者不能相邻,有多少种不同的站法?变式::某小组6个人排队照相留念.(1) 若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法? (2) 若排成一排照相,其中甲必在乙的右边,有多少种不同的排法? (3) 若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法? (4) 若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法? (5) 若分成两排照相,前排2人,后排4人,有多少种不同的排法?小结:对比较复杂的排列问题,应该仔细分析,选择正确的方法.例2 用0,1,2,3,4,5六个数字,能排成多少个满足条件的四位数.(1)没有重复数字的四位偶数?(2)比1325大的没有重复数字四位数?变式:用0,1,2,3,4,5,6七个数字,⑴能组成多少个没有重复数字的四位奇数?⑵能被5整除的没有重复数字四位数共有多少个?※动手试试练1.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行实验,有多少种不同的种植方法?练2.在3000至8000之间有多少个无重复数字的奇数?【当堂检测】1. 某农场为了考察3个水稻品种和5个小麦品种的质量,要在土质相同的土地上进行试验,应该安排的试验区共有块.2. 某人要将4封不同的信投入3个信箱中,不同的投寄方法有种.3. 用1,2,3,4,5,6可组成比500000大、且没有重复数字的自然数的个数是.4. 现有4个男生和2个女生排成一排,两端不能排女生,共有种不同的方法.5. 在5天内安排3次不同的考试,若每天至多安排一次考试,则不同的排法有种.1..一个学生有20本不同的书.所有这些书能够以多少种不同的方式排在一个单层的书架上?2.学校要安排一场文艺晚会的11个节目的演出顺序.除第一个节目和最后一个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,求共有多少种不同的排法?【反思 】1. 正确选择是分类还是分步的方法,分类要做到“不重不漏”,分步要做到“步骤完整.2..正确分清是否为排列问题满足两个条件:从不同元素中取出元素,然后排顺序.《组合(1)》导学案【学习目标 】1. 正确理解组合与组合数的概念;2. 弄清组合与排列之间的关系;3. 会做组合数的简单运算;. 【重点难点 】1. 正确理解组合与组合数的概念;2. 弄清组合与排列之间的关系;3. 会做组合数的简单运算; 【学法指导】(预习教材P 21~ P 23,找出疑惑之处)复习1:什么叫排列?排列的定义包括两个方面,分别是 和 . 复习2:排列数的定义:从 个不同元素中,任取 个元素的 排列的个数叫做从n 个元素中取出m 元素的排列数,用符号 表示复习3:排列数公式:mn A = (,,m n N m n *∈≤)【教学过程 】 (一)导入探究任务一:组合的概念问题:从甲,乙,丙3名同学中选出2名去参加一项活动,有多少种不同的选法?新知:一般地,从 个 元素中取出 ()m n ≤个元素 一组,叫做从n 个不同元素中取出m 个元素的一个组合.试试:试写出集合{}a,b,c,d,e 的所有含有2个元素的子集.反思:组合与元素的顺序 关,两个相同的组合需要 个条件,是 ;排列与组合有何关系? 探究任务二.组合数的概念:从n 个 元素中取出m ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号 表示. 探究任务三 组合数公式 m n C = =我们规定:=0nC (二)深入学习例1 甲、乙、丙、丁4个人,(1)从中选3个人组成一组,有多少种不同的方法?列出所有可能情况; (2)从中选3个人排成一排,有多少种不同的方法?变式: 甲、乙、丙、丁4个足球队举行单循环赛: (1)列出所有各场比赛的双方; (2)列出所有冠亚军的可能情况.小结:排列不仅与元素有关,而且与元素的排列顺序有关,组合只与元素有关,与顺序无关,要正确区分排列与组合.例2 计算:(1)47C ; (2)710C变式:求证:11+⋅-+=m n m nC mn m C※ 动手试试 练1.计算:⑴ 26C ; ⑵ 38C ;⑶ 2637C C -; ⑷ 253823C C -.练2. 已知平面内A ,B ,C ,D 这4个点中任何3个点都不在一条直线上,写出由其中每3点为顶点的所有三角形.练3. 学校开设了6门任意选修课,要求每个学生从中选学3门,共有多少种选法?【当堂检测 】1. 若8名学生每2人互通一次电话,共通 次电话.2. 设集合{}A a,b,c,d,e ,B A =⊂,已知a B ∈,且B 中含有3个元素,则集合B 有个. 3. 计算:310C = .4. 从2,3,5,7四个数字中任取两个不同的数相乘,有m 个不同的积;任取两个不同的数相除,有n 个不同的商,则m :n = .5.写出从a,b,c,d,e 中每次取3个元素且包含字母a ,不包含字母b 的所有组合 1.计算:⑴ 215C ; ⑵ 2836C C ÷;2. 圆上有10个点:⑴ 过每2个点画一条弦,一共可以画多少条弦?⑵ 过每3点画一个圆内接三角形,一共有多少个圆内接三角形? 、【反思 】1. 正确理解组合和组合数的概念2.组合数公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+==或者:)!(!!m n m n C mn -=),,(n m N m n ≤∈*且《 组合(2)》导学案【学习目标 】1.2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题; 【重点难点 】1.2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题; 【学法指导 】(预习教材P 24~ P 25,找出疑惑之处)复习1:从 个 元素中取出 ()m n ≤个元素 一组,叫做从n 个不同元素中取出m 个元素的一个组合;从 个 元素中取出 ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号 表示.复习2: 组合数公式: m n C = =【教学过程 】 (一)导入探究任务一:组合数的性质问题1:高二(6)班有42个同学⑴ 从中选出1名同学参加学校篮球队有多少种选法? ⑵ 从中选出41名同学不参加学校篮球队有多少种选法? ⑶ 上面两个问题有何关系?新知1:组合数的性质1:mn n m n C C -=.一般地,从n 个不同元素中取出m 个元素后,剩下n m -个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:mn n m n C C -=试试:计算:1820C反思:⑴若y x =,一定有yn x n C C =?⑵若yn x n C C =,一定有y x =吗?问题2 从121,,,+n a a a 这n +1个不同元素中取出m 个元素的组合数是 ,这些组合可以分为两类:一类含有元素1a ,一类是不含有1a .含有1a 的组合是从132,,,+n a a a 这 个元素中取出 个元素与1a 组成的,共有 个;不含有1a 的组合是从132,,,+n a a a 这 个元素中取出 个元素组成的,共有 个.从中你能得到什么结论?新知2 组合数性质2 m n C 1+=m n C +1-m n C(二)深入学习例1(1)计算:69584737C C C C +++;变式1:计算2222345100C C C C ++++例2 求证:n m C 2+=n m C +12-n m C +2-n m C变式2:证明:111m m m n n n C C C ++++=小结:组合数的两个性质对化简和计算组合数中用用处广泛,但在使用时要看清公式的形式.例3解不等式()321010n n-C n -<∈+C N .练3 :解不等式:46n nC C <※ 动手试试练1.若542216444x x C -C C C -=+,求x 的值练2. 解方程: (1)3213113-+=x x C C(2)333222101+-+-+=+x x x x x A C C【当堂检测 】1. 908910099C -C =2. 若231212n n-C C =,则n =3.有3张参观券,要在5人中确定3人去参观,不同方法的种数是 ;4. 若7781n n n C C C +=+,则n = ;5. 化简:9981m m m C -C C ++= .1. 计算:⑴ 197200C ; ⑵ 21-+•n n n n C C2. 壹圆,贰圆,伍圆,拾圆的人民币各1张,一共可以组成多少种币值?3. 若128n n C C =,求21n C 的值【反思 】1. 组合数的性质1:mn n m n C C -=2. 组合数性质2:m n C 1+=m n C +1-m n C《组合(3)》导学案 【学习目标 】 1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题.【重点难点 】1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题.【学法指导 】(预习教材P 27~ P 28,找出疑惑之处)复习1:⑴ 从 个 元素中取出 ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数...,用符号 表示;从 个 元素中取出 (n m ≤)个元素的 的个数,叫做从n 个不同元素取出m 元素的排列数,用符合 表示. ⑵ mn A =mn C = =m n A 与mn C 关系公式是 复习2:组合数的性质1: .组合数的性质2: .【教学过程 】 (一)导入探究任务一:排列组合的应用问题:一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问: ⑴ 这位教练从17位学员中可以形成多少种学员上场方案?⑵ 如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事?新知:排列组合在实际运用中,可以同时使用,但要分清他们的使用条件:排列与元素的顺序有关,而组合只要选出元素即可,不要考虑元素的顺序.试试:⑴平面内有10个点,以其中每2个点为端点的线段共有多少条? ⑵平面内有10个点,以其中每2个点为端点的有向线段多少条? 反思:排列组合在一个问题中能同时使用吗? (二)深入学习 例1 在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件.⑴ 有多少种不同的抽法?⑵ 抽出的3件中恰好有1件是次品的抽法有多少种?⑶ 抽出的3件中至少有1件是次品的抽法有多少种?变式:在200件产品中有2件次品,从中任取5件: ⑴ 其中恰有2件次品的抽法有多少种?⑵ 其中恰有1件次品的抽法有多少种?⑶ 其中没有次品的抽法有多少种? ⑷ 其中至少有1件次品的抽法有多少种?小结:对综合应用两个计数原理以及组合知识问题,思路是:先分类,后分步.例2 现有6本不同书,分别求下列分法种数:⑴分成三堆,一堆3本,一堆2本,一堆1本;⑵分给3个人,一人3本,一人2本,一人1本;⑶平均分成三堆.变式:6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?例 3 现有五种不同颜色要对如图中的四个部分进行着色,要求有公共边的两块不能用一种颜色,问共有几种不同的着色方法?变式:某同学邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?※动手试试练1. 甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表?练2. 高二(1)班共有35名同学,其中男生20名,女生15名,今从中取出3名同学参加活动, (1)其中某一女生必须在内,不同的取法有多少种?(2)其中某一女生不能在内, 不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)至多有2名女生在内,不同的取法有多少种?【当堂检测】1. 凸五边形对角线有条;2. 以正方体的顶点为顶点作三棱锥,可得不同的三棱锥有个;3.要从5件不同的礼物中选出3件送给3个同学,不同方法的种数是;4.有5名工人要在3天中各自选择1天休息,不同方法的种数是;5. 从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,一共可以组成没有重复数字的五位数?1. 在一次考试的选做题部分,要求在第1题的4个小题中选做3个小题,在第2题的3个小题中选做2个小题,在第3题的2个小题中选做1个小题.有多少种不同的选法?路漫漫其修远兮,吾将上下而求索 - 百度文库2. 从5名男生和4名女生中选出4人去参加辩论比赛.⑴如果4人中男生和女生各选2名,有多少种选法?⑵如果男生中的甲和女生中的乙必须在内,有多少种选法?⑶如果男生中的甲和女生中的乙至少有1人在内,有多少种选法?⑷如果4人中必须既有男生又有女生,有多少种选法?【反思】1. 正确区分排列组合问题2. 对综合问题,要“先分类,后分步”,对特别元素,应优先考虑.1111。

新人教版小学数学二年级上册第八单元简单的排列导学案教学案

新人教版小学数学二年级上册第八单元简单的排列导学案教学案

新人教版小学数学二年级上册第八单元《简单的排列》导学案教学案第1课时简单的排列导学案设计课题简单的排列课型新授课设计说明本节课的教学任务是结合学生日常生活中的最简单的事例,向学生渗透有关排列的数学思想方法,引导学生运用操作、实验、猜测等直观手段解决一些简单的排列问题,初步培养学生全面、有序地思考问题的意识。

鉴于本节课的教学任务及学情实际,本节课在教学设计上突出了以下两点:1.以故事创设情境,激活思维。

小学生特别喜欢听故事,教学中,精心创设儿童化、趣味化的故事情境,激发学生强烈的求知欲,让学生在生动、有趣的故事的引导下,不知不觉地走进数学世界,引发学生思考,使学生切实体验到身边有数学,用数学可以解决生活中的实际问题,从而对数学产生亲切感,增强学生应用数学知识解决实际问题的意识。

2.以说理助思考,感受有序。

数学学科本身具有抽象性,而小学生通常以具体形象思维为主。

所以教学中不但要组织学生动眼看、动手做、动脑想,还要注意引导学生动口说。

通过引导学生交流摆卡片的体会,交流有序排列的理由,使学生在说理中进一步体会到全面、有序地思考问题的好处,同时在说理中探索性得到开拓,创新性得到发展。

课前准备教师准备:PPT课件数字卡片学生准备:人物卡片数字卡片彩笔教学过程教学环节教师指导学生活动效果检测一、故事导入。

(3分钟)1.借助故事激发学生的学习兴趣。

(故事内容见教学片段一)2.提问,引发思考。

用1、2和3组成两位数,每个两位数的十位数和个位数不能一样,能组成几个两位数?(板书课题及问题)1.认真听故事,初步感知排列问题。

2.认真思考用1、2和3这三个数字到底能组成几个两位数。

1.摆一摆,说一说。

用2和3两张数字卡片摆一摆,看能摆出几个两位数,并说一说摆法。

二、操作探究。

(18分钟)1.引导学生猜一猜能组成几个两位数。

2.引导学生想一想用什么方法可以使组成的两位数既不遗漏,也不重复。

3.组织学生动手摆一摆数字卡片。

排列导学案

排列导学案

主备人: 审核: 包科领导: 年级组长: 使用时间:3. m n A ;【合作探究】1.某劳模要到5个单位去各作1场报告,不同的安排顺序种数为( )A. 15A B 55A C 44A D 15A 22A2. 有3名儿童,5个座位,让儿童都坐下,不同的安排方法种数是( )A .33AB 55AC 35AD 其它数3.用0,1,2,3,4五个数字可组成( )个没有重复数字的三位数。

A .48B 60C 36D 244. 从6本不同的书中选3本送给3名同学每人1本,有 种不同送法.5. 7个人按下列要求站成一排,分别有多少种不同的站法?(1)甲站左端(2)甲不站左端(3)甲不站两端(4)甲乙都不站两端(5)甲不站左端,乙不站右端(6)甲乙相邻(7)甲乙相邻,且甲在左(8)甲乙不相邻(9)甲乙之间恰有二人【巩固提高】1. 下列各式中与排列数m n A 相等的是( ). (A))(n m n - (B)n(n -1)(n -2)…(n -m) (C)m n A m n n 11-+- (D)111--m n n A A 2. 3名男同学3名女同学站成一排,男女间隔的排法种数是( )A36 B72 C144 D2883.7个人排成一排照合影,其中甲乙要求在一起,丙丁要求分开,则不同的排法有( )A 480种B 720 种 C960种 D 1200种4.若n ∈N 且n <20,则(27-n)(28-n)…(34-n)等于( ).(A)827n A - (B)n n A --2734 (C)734n A - (D)834n A - ★5. 7人站成前后两排,前排3人,后排4人,有多少种不同的排法?★6. 7个相同的小球,任意放入4个不同的盒子中,每个盒子都不空的放法共有多少种?。

《排序导学案》

《排序导学案》

《排序》导学案
一、导学目标
1. 了解排序算法的基本观点和应用途景;
2. 掌握常见的排序算法及其时间复杂度;
3. 能够编写和实现常见的排序算法。

二、导学内容
1. 排序算法的定义和分类;
2. 常见的排序算法及其原理;
3. 排序算法的时间复杂度分析;
4. 排序算法的应用途景。

三、导学步骤
1. 导入:通过举例引入排序算法的观点,如对一组数字进行升序排列;
2. 进修:讲解常见的排序算法,包括冒泡排序、选择排序、插入排序、快速排序等;
3. 练习:让学生进行实际编写和实现排序算法的练习;
4. 总结:总结各种排序算法的特点和时间复杂度,以及它们在实际应用中的优缺点。

四、导学材料
1. PPT:介绍排序算法的基本观点和分类;
2. 代码示例:展示各种排序算法的实摩登码;
3. 练习题:让学生进行排序算法的实际练习。

五、导学反馈
1. 学生通过编写和实现排序算法的练习来检验自己的掌握水平;
2. 学生可以提出问题和疑惑,老师进行解答和指导;
3. 学生进行小组讨论,分享对排序算法的理解和应用经验。

六、导学延伸
1. 学生可以进一步了解更复杂的排序算法,如归并排序、堆排序等;
2. 学生可以尝试应用排序算法解决实际问题,如对大量数据进行排序。

七、导学总结
通过本节课的进修,学生掌握了排序算法的基本原理和应用,能够编写和实现常见的排序算法,为以后的算法进修和实践打下基础。

希望学生在以后的进修和工作中能够灵活运用排序算法解决问题,提高自己的编程能力和算法水平。

教案《排列》

教案《排列》

《排列》教案一、教学目标1. 知识目标:了解排列的概念,能够利用排列的方法计算不同情景下的项数和种类。

2. 能力目标:培养学生分析问题、归纳总结的能力,提高解决问题的能力和思维能力。

3. 情感目标:培养学生合作学习和互相协作的意识,增强学生解决问题的自信心。

二、教学重难点1. 教学重点:掌握排列的定义和基本计算方法。

2. 教学难点:在复杂问题中应用排列的方法进行计算。

三、教学过程1. 导入新课引入排列的概念,通过问题引入,让学生感受排列的应用场景。

例如:小明手里有3种颜色的糖果,他想把这些糖果放进一袋子里,问他一共有多少种不同的放法呢?2. 讲解排列的定义和性质向学生介绍排列的概念,即从给定的元素中按一定的顺序选取若干个进行排列。

同时解释排列的两个基本要素:元素的个数和选取元素的顺序。

3. 讲解排列的计算方法以简单的问题为例,向学生讲解如何计算排列的种类。

通过分析问题,归纳总结出排列的计算方法,如利用等差数列的性质或乘法原理进行计算。

4. 练习排列的计算让学生进行一些基础的排列计算练习,通过练习巩固掌握排列的计算方法。

5. 拓展排列的应用引导学生思考排列在日常生活中的应用场景,例如:某活动有5个游戏项目,一共有10位同学参加,每位同学只能参加一个项目,问共有多少种不同的组队方式?6. 讨论排列问题将学生分成小组,让小组成员之间互相讨论和比较不同排列问题的计算方法,并交流解题思路。

7. 解决实际问题教师出示一些实际的排列问题,让学生利用所学的排列计算方法进行解决。

并进行讨论和总结。

8. 知识点总结再次总结排列的概念、性质和计算方法,并进行知识点的梳理和归纳。

9. 课堂作业布置相关的课后作业,巩固学生对排列知识的掌握程度。

四、教学反思通过本节教学,学生能够了解排列的概念、性质和计算方法,并能够应用排列的思维解决问题。

同时,通过小组合作和讨论的形式,培养了学生合作学习和互相协作的意识。

为了提高教学效果,可以在课堂中提供更多的排列应用案例,并采用更多的互动方式培养学生的解决问题的能力和思维能力。

高中数学选择性必修三 6 2 1- 6 2 2排列与排列数导学案

高中数学选择性必修三 6 2 1- 6 2 2排列与排列数导学案

6.2.1- 6.2.2 排列与排列数1.理解并掌握排列、排列数的概念,能用列举法、树状图法列出简单的排列.2.掌握排列数公式及其变式,并能运用排列数公式熟练地进行相关计算.3.掌握有限制条件的排列应用题的一些常用方法,并能运用排列的相关知识解一些简单的排列应用题.重点:理解排列的定义及排列数的计算难点:运用排列解决计算问题两个原理的联系与区别1.联系:分类加法计数原理和分步乘法计数原理都是解决计数问题最基本、最重要的方法.2.区别一、排列的相关概念1.排列:一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.相同排列:两个排列的元素完全相同,且元素的排列顺序也相同.名师点析理解排列应注意的问题(1)排列的定义中包括两个基本内容,一是“取出元素”,二是“按一定顺序排列”.(2)定义中的“一定顺序”说明了排列的本质:有序.二、排列数与排列数公式1.排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A n m表示.,这里m,n∈N*,并且m≤n.2.排列数公式:A n m=n(n-1)(n-2)…(n-m+1)=n!(n-m)!3.全排列和阶乘:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列.这时,排列数公式中m=n,即有A n n=n(n-1)(n-2)×…×3×2×1.也就是说,将n个不同的元素全部取出的排列数,等于正整数1到n的连乘积.正整数1到n的连乘积,叫做n的阶乘,用n!表示.于是,n个元素的全排列数公式可以写成A n n=n!.另外,我们规定,0!=1.1.下列问题中:①10本不同的书分给10名同学,每人一本;②10位同学互通一次电话;③10位同学互通一封信;④10个没有任何三点共线的点构成的线段.属于排列的有()A.1个B.2个C.3个D.4个一、问题探究问题1. 从甲、乙、丙三名同学中选出2人参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动.如果把上面问题中被取出的对象叫做元素,则问题可叙述为:从3个不同的元素中任意取出2个,并按一定的顺序排成一列,共有多少种不同的排列方法?问题2. 从1,2,3,4这4个数字中选出3个能构成多少个无重复数字的三位数?同样,问题2可以归结为:从4个不同的元素a,b,c,d 中任意取出3个,并按一定的顺序排成一列,共有多少种不同的排列方法?问题3. 你认为“排列”和“排列数”是同一个概念吗?它们有什么区别?二、典例解析例1. 某省中学足球队赛预选赛每组有6支队,每支队都要与同组的其他各队在主、客场 分别比赛1场,那么每组共进行多少场比赛?例2. (1)一张餐桌上有5盘不同的菜,甲、乙、丙3名同学每人从中各取1盘菜,共有多少种不同的取法?(2)学校食堂的一个窗口共卖5种菜,甲、乙、丙3名同学每人从中选一种,共有多少种不同的选法? 例3.计算:(1)A 73;(2)A 74;(3)A 77A 44;(4)A 64×A 22.例4.用0~9这10个数字,可以组成多少个没有重复数字的三位数?1.此类题目从不同的视角可以选择不同的方法,我们用各种方法解决这个题的目的是:希望通过对本题的感悟,能掌握更多的解决这类问题的方法.2.元素分析法最基本,位置分析法对重要元素区别对待,间接法对对立面比较容易求解的题目特别实用.跟踪训练 有语文、数学、英语、物理、化学、生物6门课程,从中选4门安排在上午的4节课中,其中化学不排在第四节,共有多少种不同的安排方法?1.从5本不同的书中选两本送给2名同学,每人一本,则不同的送书方法的种数为()A.5B.10C.20D.606=()2.设m∈N*,且m<15,则A20-mA.(20-m)(21-m)(22-m)(23-m)(24-m)(25-m)B.(20-m)(19-m)(18-m)(17-m)(16-m)C.(20-m)(19-m)(18-m)(17-m)(16-m)(15-m)D.(19-m)(18-m)(17-m)(16-m)(15-m)3.某次演出共有6位演员参加,规定甲只能排在第一个或最后一个出场,乙和丙必须排在相邻的顺序出场,不同的演出顺序共有()A.24种B.144种C.48种D.96种4.有8种不同的菜种,任选4种种在不同土质的4块地里,有种不同的种法.5.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?参考答案:知识梳理1.解析:由排列的定义可知①③是排列,②④不是排列.答案:B学习过程一、问题探究问题1. 分析:要完成的一件事是“选出2名同学参加活动,1名参加上午的活动,另1名参加下午的活动”,可以分两个步骤:第1步,确定上午的同学,从3人中任选1人,有3种选法;第2步,确定下午的同学,只能从剩下的2人中去选,有2种选法.根据分步乘法计数原理,不同的选法种数为3×2=6.问题2.分析:从4个数中每次取出三个按“百位、十位、个位” 的顺序排成一列,就得到一个三位数.因此有多少种不同的排列方法就有多少个不同的三位数,可以分三个步骤解决:第1步,确定百位上的数字,从1、2、3、4这4个数中任取一个,有4种方法;第2步,确定十位上的数字,只能从余下的3个数字中取,有3种方法;第3步,确定个位上的数字,只能从余下的2个数字中取,有2种方法;根据分步乘法计数原理,从1、2、3、4这4个不同的数字中,每次取出3个数字,按百位、十位、个位的顺序排成一列,不同的排列方法为4×3×2=24因而共可得到24个不同的三位数,如图所示同样,问题2可以归结为:从4个不同的元素a,b,c,d中任意取出3个,并按一定的顺序排成一列,共有多少种不同的排列方法?abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cbd,dab,dac,dba,dbc,dca,dcb,不同的排列方法为4×3×2=24上述问题1,2的共同特点是什么?你能将它们推广到一般情形吗?问题3. “排列”与“排列数”是两个不同的概念,一个排列是指“从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序排成一列”,它不是一个数,而是具体的一件事.“排列数”是指“从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数”,它是一个数. 二、典例解析例1. 分析:每组任意2支队之间进行的1场比赛,可以看作是从该组6支队中选取2支,按“主队、客队”的顺序排成的一个排列.解:可以先从这6支队中选1支为主队,然后从剩下的5支队中选1支为客队. 按分步乘法计数原理,每组进行的比赛场数为 6×5=30.例2. 分析:3名同学每人从5盘不同的菜中取1盘菜,可看作是从这5盘菜中任取3盘,放在3个位置(给3名同学)的一个排列;而3名同学每人从食堂窗口的5种菜中选1种,每人都有5种选法,不能看成一个排列.解: (1)可以先从这5盘菜中取1盘给同学甲,然后从剩下的4盘菜中取1盘给同学乙,最后从剩下的3盘菜中取1盘给同学丙.按分步乘法计数原理,不同的取法种数为 5×4×3=60.(2)可以先让同学甲从5种菜中选1种,有5种选法;再让同学乙从5种菜中选1种,也有5种选法;最后让同学丙从5种菜中选1种,同样有5种选法. 按分步乘法计数原理,不同的取法种数为 5×5×5=125.问题3. “排列”与“排列数”是两个不同的概念,一个排列是指“从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序排成一列”,它不是一个数,而是具体的一件事.“排列数”是指“从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数”,它是一个数. 例3. 解:根据排列数公式,可得 (1)A 73 =7×6×5=210; (2)A 74 =7×6×5×4=840; (3)A 77A 44 =7!4!=7×6×5=210;(4)A 64×A 22=6×5×4×3×2×1=720.由例3可以看出,A 77A 44 =7!4!;A 64×A 22=6!=A 66,即A 64=A 66A 22 =6!2!;观察这两个结果,从中你发现它们的共性了吗?事实上,A n m =n (n −1)(n −2)…(n −m +1)=n (n −1)(n −2)…(n −m +1)(n −m )…×2×1(n −m )×…×2×1=A nm A n−m n−m =n!(n−m )!即A n m =n!(n−m )!例4.分析:在0~9这10个数字中,因为0不能在百位上,而其他9个数字可以在任意数位上,因此0是一个特殊的元素。

排列、组合、二项式定理的精品教案3篇

排列、组合、二项式定理的精品教案3篇

排列、组合、二项式定理的精品教案排列、组合、二项式定理的精品教案精选3篇(一)教案主题:排列、组合、二项式定理教学目标:1. 了解和理解排列、组合的概念和特点;2. 学习排列、组合的计算公式;3. 通过实际问题应用排列、组合的知识;4. 理解和应用二项式定理。

教学准备:1. PowerPoint演示文稿;2. 排列、组合的计算示例;3. 计算器。

教学流程:一、导入(5分钟)1. 引出学生对于排列、组合的了解,以及他们对于二项式定理的了解。

2. 引出排列、组合涉及到的实际问题,如抽奖、排座位等。

二、讲解排列(15分钟)1. 讲解排列的概念:从n个元素中选取r个元素进行排列,一共有多少种不同的排列方式。

2. 讲解排列的计算公式:P(n, r) = n!/(n-r)!。

3. 讲解排列的特点:次序有关,一个元素不能重复选取。

三、讲解组合(15分钟)1. 讲解组合的概念:从n个元素中选取r个元素进行组合,一共有多少种不同的组合方式。

2. 讲解组合的计算公式:C(n, r) = n!/[(n-r)!r!]。

3. 讲解组合的特点:次序无关,一个元素不允许重复选取。

四、讲解二项式定理(15分钟)1. 讲解二项式定理的概念:将一个二项式表达式展开后的结果。

2. 讲解二项式定理的公式:(a+b)^n = C(n, 0) a^n b^0 + C(n, 1) a^n-1 b^1 + ... + C(n, n-1) a^1 b^n-1 + C(n, n) a^0 b^n。

3. 讲解二项式定理的应用:展开二项式表达式,求特定项的值。

五、练习与应用(20分钟)1. 给出一些排列、组合的计算问题,让学生自主计算并回答。

2. 提供一些实际问题,让学生应用排列、组合的知识进行解决。

六、总结与延伸(5分钟)1. 对排列、组合和二项式定理进行简要总结。

2. 探讨一些延伸问题,如多项式展开、二项式系数等。

教学反思:1. 教学内容安排合理,从概念到计算公式,再到实际应用,能够让学生逐步理解和掌握知识。

高中数学 1.2.1《排列》教案 新人教A版选修2-3

高中数学 1.2.1《排列》教案 新人教A版选修2-3

排列【教学目的】理解排列、排列数的概念,了解排列数公式的推导;能用“树型图”写出一个排列中所有的排列;能用排列数公式计算。

【教学重点】排列、排列数的概念。

【教学难点】排列数公式的推导一、问题情景〖问题1〗从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对象叫做元素。

a b c d这四个字母中,每次取出3个按顺序排成一列,共有多少种不同的排〖问题2〗.从,,,法?分析:解决这个问题分三个步骤:第一步先确定左边的字母,在4个字母中任取1个,有4种方法;第二步确定中间的字母,从余下的3个字母中取,有3种方法;第三步确定右边的字母,从余下的2个字母中取,有2种方法由分步计数原理共有:4×3×2=24种不同的方法,用树型图排出,并写出所有的排列由此可写出所有的排法二、数学构建≤)个元素(这里的被取元素各不相1.排列的概念:从n个不同元素中,任取m(m n同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同≤)个元素的所有排列的个数叫做2.排列数的定义:从n个不同元素中,任取m(m n从n个元素中取出m元素的排列数,用符号m n A表示注意区别排列和排列数的不同:“一个排列”是指:从n个不同元素中,任取m个元素按照一定的顺序排成一列,不是数;“排≤)个元素的所有列数”是指从n个不同元素中,任取m(m nA只表示排列数,而不表示具排列的个数,是一个数所以符号mn体的排列。

7.3排列与组合(2)学案-2021-2022学年高二下学期数学苏教版(2019)选择性必修第二册

7.3排列与组合(2)学案-2021-2022学年高二下学期数学苏教版(2019)选择性必修第二册

氾水高级中学2021-2022学年度高二数学(下)导学活动单(30)课题排列与组合(2)学习目标1、会求解实际应用问题中,排列组合的混合问题;2、掌握排列组合应用题的处理策略和常用方法。

教学过程学法指导活动一:问题诊断1、平面M内有5个点,平面N内有4个点,且平面M与平面N平行,这9个点最多能构成_______个不同的四面体。

2、从1,3,5,7,9 中任取3 个数字,从2,4,6,8中任取2 个数字,一共可以组成_____个没有重复数字的五位数。

活动二:活动探究类型有限制条件的排列组合混合应用问题例1、6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?变式拓展:1、6本不同的书全部送给5人,有多少种不同的送书方法?2、5本不同的书全部送给6人,每人至多1本,有多少种不同的送书方法?3、5本相同的书全部送给6人,每人至多1本,有多少种不同的送书方法?4、6本不同的书全部送给3人,每人2本,有多少种不同的送书方法?例2、某考生打算从7所重点大学中选3所填在第一档次的3个志愿栏内,其中A校定为第一志愿,再从5所一般大学中选3所填在第二档次的三个志愿栏内,其中B、C两校必选,且B在C前,问此考生共有多少种不同的填表方法?练习:某中学高二年级有7个班,从中选出12名同学参加市中学生数学竞赛,每班至少1人,问名额分配方案有有多少种?例3、将编号为1、2、3、4的4个小球放入编号为1、2、3、4的4个盒子中,(1)有多少种不同的方法?(2)每个盒内至多放1个球,有多少种不同的方法?(3)恰好有1个空盒,有多少种不同的方法?(4)每个盒内放1个球,且恰好有1个球的编号与盒子的编号相同,有多少种不同的方法?(5)把4个不同的小球换成4个相同的小球,恰有1个空盒,有多少种不同的方法?(6)把4个不同的小球换成20个相同的小球,要求每个盒内的球数不少于它的编号数,有多少种不同的方法?练习:6个不同的小球放入编号为1、2、3、4的4个盒子中,(1)有多少种不同的方法(允许有空盒)?(2)每个盒内至少放1个球,有多少种不同的方法?(3)恰好有1个空盒,有多少种不同的方法?例4、有10只不同的实验产品,其中4只不合格品,6只合格品,现每次取一只测试,直到4只不合格品全部测出为止,问最后一只不合格品正好是第五次测试时被查出的不同情况有多少种?变式拓展:有10只不同的实验产品,其中4只不合格品,6只合格品,现每次取一只测试,直到4只不合格品全部测出为止,问最后一只不合格品正好是第六次测试时被查出的不同情况有多少种?活动三:课堂检测1、某人抛掷硬币8次,其中4次正面向上,则向上的4次中恰有3次连在一起的情形的不同种数有_______2、从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为_______3、如图所示,某地有南北街道5条,东西街道6条,一邮递员从该地东北角的邮局A出发,送信到西南角的B地,且途径C地,要求所走路程最短,共有_______种不同的走法(用数字作答)。

(完整版)《排列》教学设计

(完整版)《排列》教学设计

1.2.1排列(第1课时)【教材】人教版数学选修2-3第一章 1.2排列第1课时【教学对象】新丰一中高二(1)学生(临界班学生)一、内容和内容分析本节课是人教版A版《数学选修2-3》第一章第二节的第一节课,排列是一类特殊而重要的计数问题,教科书从简化运算的角度提出了排列的学习任务,通过具体实例概括而得出排列的概念,应用分步计数原理得出排列数公式,对于排列,有两个想法贯穿始终,一是根据一类问题的特点和规律寻找简便的计数方法,就像乘法作为加法的简便运算一样,而是注意应用两个计数原理思考和解决问题。

本节课具有承上启下的地位,理解排列的概念是应用分步计数原理推导排列数公式的前提,对具体的排列问题的分析又为排列数公式提供了基础。

排列数公式的推导过程是分步计数原理的一个重要应用,同时,排列数公式又是推导组合数公式的主要依据。

基于学生的认知规律,本节课只是对排列和排列数公式的初步认识,在后面知识的学习过程中,逐步加深理解和灵活运用。

本节课的教学重点是排列的概念、排列数公式,教学难点是排列的概念,排列的概念有一定的抽象性,本节课结合教科书的编排,采取了由特殊到一般的归纳思想来建构概念的理解过程,通过引导学生分析三个典型事例,从中归纳出共同特征,再进一步概括出本质特征,得出排列的定义,再跟进10个具体的事例多角度加深对概念的理解,并多次强调一个排列的特点,n个不同的元素,取出m个元素,元素的顺序,奠定学生对排列定义的理解基础,为后面组合概念的提出埋下伏笔。

同时通过有规律的展示分步计数原理得到的一长串排列数,为后面水到渠成得到排列数公式做好铺垫,排列数公式的简单应用体现了排列简化步骤的优点,让学生直观感受学习排列的必要。

二、教学目标:1.理解并能熟练掌握求排列的一般方法,对不同题型寻求到一种恰当的解答方式。

2.进一步培养学生分析问题、解决问题的能力,体验数学思想方法的发现和运用带来的解题便利,体会数学的实用价值和魅力。

排列教学设计 -完整版教学设计

排列教学设计 -完整版教学设计

课题:排列(—)一、教材分析1、教材内容:《排列》这节课是北京师范大学出版社出版,第一章《计数原理》第二大节课。

本节内容的学习分为两个阶段,通过解决问题发现问题中存在的共同特征,抽象概括出排列的定义,会用分布计数原理探索出排列数公式,重点会用排列分析和解决一些简单的问题。

2、教材的地位和作用:计数问题是数学研究的重要问题之一。

本章内容独立,自成体系,学生将以两个记数原理为基础,掌握排列,组合,二项式定理及其应用,了解计数与实际生活的紧密联系。

这一部分内容是高考必考内容,而且是后面概率统计的重要基础,重要的是通过学习这章内容能提高学生的抽象能力和逻辑推理能力,提高学生分析问题和解决问题的能力。

本节让学生掌握排列的定义、排列数及排列数公式,既是分步计数原理的应用,又是组合数公式推导的依据,有着承上启下的地位。

二、教学目标的确定【知识与能力】1、通过实例理解排列的概念,能用计数原理推导数列数公式;2、会用排列数公式解决简单的实际问题。

【过程与方法】理解排列的意义,体验简单的排列过程,会用分步乘法计数原理推导出排列数公式,能根据具体的问题,写出符合要求的排列并抽象概括出排列的定义。

【情感态度与价值观】会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力。

三、教学重点理解排列概念及符号mA的意义。

n四、教学难点会利用排列分析和解决一些简单的应用问题,用分步乘法原理推导排列数公式。

五、教学方法,学法指导,数学思想,数学方法1、教学方法:启发引导法、问题切入法、合作探究法及课堂讨论法等。

2、学法指导:示范指导、交流指导及点拨指导等指导方法。

3、数学思想:数学结合思想、分类讨论思想及化归转化思想。

4、数学方法:数形结合法,归纳总结及抽象概括法。

六、学情分析:对于高二的学生,知识经验已较为丰富,他们已具备了一定的抽象思维能力和演绎推理能力,所以我在设计导学案时注重学生的心理发展特点,以预习引导、启发、师生共同研究和探讨、学生展示自己研究成果的一个教学流程,使学生主动获取、整理、贮存、运用知识和获得学习能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复习引入《排列》导学案2教学目标:知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。

过程与方法:能运用所学的排列知识,正确地解决的实际问题情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列、排列数的概念教学难点:排列数公式的推导授课类型:新授课教具:多媒体、实物投影仪1分类加法计数原理:做-•件事情,完成它可以有n类办法,在笫一类办法屮有" 种不同的方法,在笫二类办法屮有加2种不同的方法,……,在笫n类办法屮有加”种不同的方法那么完成这件事共有N = +加2 +・・・+加〃种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有"种不同的方法,做第二步有加2种不同的方法,……,做第n步有加”种不同的方法,那么完成这件事有N = m[xm2x--xm n 种不同的方法分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针対的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤屮的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事应用两种原理解题:1•分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制二、讲解新课:1问题:问题1.从甲、乙、丙3名同学屮选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学小每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对彖叫做元素解决这一问题可分两个步骤:第1步,确定参加上午活动的同学,从3人中任选1人, 有3种方法;笫2步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的2人屮去选,于是有2种方法.根据分步乘法计数原理,在3 名同学屮选出2名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有3X2=6种,如图1.2—1所示.上午下午相应的排法甲V:■一乙甲乙-7丙甲丙乙V —甲乙甲■丙乙丙丙V —-甲丙甲7丙乙图1.2—1把上面问题屮被取的对象叫做元素,于是问题可叙述为:从3个不同的元素a, b , 0 中任取2个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的排列是ab, ac, ba, be, ca, cb,共有3X2=6种.问题2.从1,2,3, 4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?分析:解决这个问题分三个步骤:第一步先确定左边的数,在4个字母中任取1个,有4种方法;第二步确定中间的数,从余下的3个数中取,有3种方法;第三步确定右边的数, 从余下的2个数中取,有2种方法由分步计数原理共有:4X3X2=24种不同的方法,用树型图排出,并写出所有的排列由此可写出所有的排法显然,从4个数字中,每次取出3个,按“百” “十” “个”位的顺序排成一列,就得到一个三位数.因此有多少种不同的排列方法就有多少个不同的三位数.可以分三个步骤来解决这个问题:第1步,确定百位上的数字,在1 ,2,3, 4这4个数字中任取1个,有4种方法;第2步,确定十位上的数字,当百位上的数字确定后,十位上的数字只能从余下的3个从4个不同的元素a, b, c,数字中去取,有3种方法;第3步,确定个位上的数字,当百位、十位上的数字确定后,个位的数字只能从余下 的2个数字屮去取,有2种方法.根据分步乘法计数原理,从1 ,2,3, 4这4个不同的数字中,每次取出3个数 字,按“百” “十” “个”位的顺序排成一列,共有4X3X2 二 24种不同的排法,因而共可得到24个不同的三位数,如图1. 2-2所示.由此对写出所有的三位数:123, 124,132, 134,142, 143, 213, 214, 231, 234, 241, 243, 312, 314, 321, 324, 341, 342, 412,413, 421, 423, 431, 432 o同样,问题2可以归结为:d 屮任取3个,然后按照一定的顺序排成一列,共有多少种不同的排列方法? 所有不同排列是abc, abd, acb, acd, adb, adc, bac, bad, boa, bed, bda, bd c, cab, cad, cba, cbd, eda, ed b,dab , dac, dba, dbc, dca, de b. 共有4X3X2二24种.\34\4/ 2/2树形图如下2.排列的概念: 从力个不同元素中,任取加(m<n )个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从刃个不同元素屮取出m 个元素的一个排列 • • • • • • •说明:(1)排列的定义包插两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同3. 排列数的定义:从斤个不同元素屮,任取加(m< n)个元素的所有排列的个数叫做从〃个元素屮取出 加元素的排列数,用符号表示注意区别排列和排列数的不同:“一个排列”是指:从比个不同元素中,任取加个元 素按照二底旳顺序排成一列,不是数;“排列数”是指从刃个不同元素中,任取加(m<w) 个元素的所有排列的个数,是一个数所以符号只表示排列数,而不表示具体的排列4. 排列数公式及其推导:由的意义:假定有排好顺序的2个空位,从个元素勺卫2••…匕中任取2个元素去 填空,一个空位填一个元素,每一种填法就得到一个排列,反过来,任一个排列总可以由这 样的一种填法得到,因此,所有不同的填法的种数就是排列数盂.由分步计数原理完成上 述填空共有n{n -1)种填法,・・・A ; =n(n-1)由此 求可以按依次填3个空位来考虑,・・・崙"(斤-1)5-2), 求以按依次填m 个空位来考虑A : = n(n 一l)(n 一2)・・・⑺_加+1), 排列数公式:A : = 7?(72 - l)(n-2)--(n-m + l) (m, n e N\m <n)说明:(1)公式特征:第一个因数是72,后面每一个因数比它前面一个 少1,最后一个因数是/i-m + l,共有加个因数;(2)全排列:当n = m 时即舁个不同元素全部取出的一个排列•全排列数:= (叫做 n 的阶乘) 另外,我们规定0!=1 . 例1.用计算器计算:(1) A 加 (2) £1; (3) A :D由(2 ) ( 3 )我们看到,A ;* = 那么,这个结果有没有一般性呢?即占,A ;;—川“ A ;M (n-m)l'排列数的另一个计算公式:第1位第2位第3位第in 位图 1(b5A: = n(n -1)(/? -2)-••(/:- m +1)加・1・3・・・(2〃—3)(2〃—1) n\1・3・5…(2料一1)=右边n{n - l)(n _ 2)…(n —加 + l)(n _ 加)…3 • 2 • 1/?! A:(/?- m)(« _ 加 _ 1) • • • 3 • 2 • 1(n-m)! A;;[:即A:二——(n-m)\例2.解方程:3A>2A;+1+6A;.解:由排列数公式得:3x(x-l)(x-2) = 2(x + l)x + 6x(x-l),T 兀n 3 ,・°・ 3(兀一1)(兀一2) = 2(兀 +1) + 6(x — 1),即3x~ — 17x +10 = 0,2解得兀=5或兀二一,・・・兀»3, HxeN\ :.原方程的解为兀=5・3例3.解不等式:& >6爲解:原不等式即一>6 -------------------- - -- ,(9 — Q! (11-x)!也就是一'—> ----------------- - ----------- ,化简得:X2-21X +104>0,(9-x)! (ll-x)(10-x)(9-x)!解得xv8或兀>13, XV2<x<9, I XG 7V\所以,原不等式的解集为{2,3,4,5,6,7}.例4.求证:(1)A;: = A;:• A;;];:;(2)字1 = 1・3・5…(2〃一1)・2" • n!72丨证明:(1)A;・A;:[;:=—(n-m)! = n! = A;;9 A原式成立(n-m)!/ 、(2n)l2〃(2〃一1)・(2〃一2)・・・4・3212”・川2"・川25" —1)…2・1・(2〃—1)(2兀一3)…3 12“・川•••原式成立说明:(1)解含排列数的方程和不等式时要注意排列数中,且加这些限制条件,要注意含排列数的方程和不等式中未知数的取值范围;(2)公式船二斤⑺-1)(川-2)・・・(斤-加+ 1)常用來求值,特别是加‘均为己知时,公式A:二—,常用来证明或化简(n-m)!;(2)lxl!+2x2!+3x3!+・・・+ 〃x 川q/1 1 2 3 n — 1例 5 • 化 阳j: ⑴ ---- 1 --- 1 ---- --- ---------2! 3! 4! n\⑴解: 原式 =1! --------- 1 ---------- 1 ---------- ---- ------------------ =1 -------2! 2! 3! 3! 4! (H -1)! n\ n\⑵提示:由(n +1)! = (/? +1)n! = /?x H !+/?!,得HXH ! =+,说明:77 —1_ 1 1n\ (M-1)! n\。

相关文档
最新文档