信号发生器实验报告(波形发生器实验报告)

合集下载

波形发生器设计实验报告

波形发生器设计实验报告

波形发生器设计实验报告一、实验目的(1)熟悉555型集成时基电路结构、工作原理及其特点。

(2)掌握555型集成时基电路的基本应用。

(3)掌握由555集成型时基电路组成的占空比可调的方波信号发生器。

二、实验基本原理555电路的工作原理555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。

但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。

此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。

由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体。

555芯片管脚介绍555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。

其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(TR),是下比较器的输入;3脚是输出端(Vo),它有O和1两种状态,由输入端所加的电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改变上下触发电平值;8脚是电源端,1脚是地端。

用555定时器组成的多谐振荡器如图所示。

接通电源后,电容C2被充电,当电容C2上端电压Vc升到2Vcc/3时使555第3脚V0为低电平,同时555内放电三极管T导通,此时电容C2通过R1放电,Vc下降。

当Vc下降到Vcc/3时,V0翻转为高电平。

电容器C2放电所需的时间为t,R1,C,ln2pL2 ( 1-1)当放电结束时,T截止,Vcc将通过R1,R2,R3向电容器C2充电,Vc由Vcc/3 上升到2Vcc/3所需的时间为t,(R1,R2,R3)Cln2,0.7(R1,R2,R3)CpH22 (1-2)当Vc上升到2Vcc/3时,电路又翻转为低电平。

EDA实验-正弦波信号发生器设计

EDA实验-正弦波信号发生器设计

实验八正弦信号发生器的设计一、实验目的1、学习用VHDL设计波形发生器和扫频信号发生器。

2、掌握FPGA对D/A的接口和控制技术,学会LPM_ROM在波形发生器设计中的实用方法。

二、实验仪器PC机、EDA实验箱一台Quartus II 6.0软件三、实验原理如实验图所示,完整的波形发生器由4部分组成:• FPGA中的波形发生器控制电路,它通过外来控制信号和高速时钟信号,向波形数据ROM 发出地址信号,输出波形的频率由发出的地址信号的速度决定;当以固定频率扫描输出地址时,模拟输出波形是固定频率,而当以周期性时变方式扫描输出地址时,则模拟输出波形为扫频信号。

•波形数据ROM中存有发生器的波形数据,如正弦波或三角波数据。

当接受来自FPGA的地址信号后,将从数据线输出相应的波形数据,地址变化得越快,则输出数据的速度越快,从而使D/A输出的模拟信号的变化速度越快。

波形数据ROM可以由多种方式实现,如在FPGA外面外接普通ROM;由逻辑方式在FPGA中实现(如例6);或由FPGA中的EAB模块担当,如利用LPM_ROM实现。

相比之下,第1种方式的容量最大,但速度最慢;,第2种方式容量最小,但速度最最快;第3种方式则兼顾了两方面的因素;• D/A转换器负责将ROM输出的数据转换成模拟信号,经滤波电路后输出。

输出波形的频率上限与D/A器件的转换速度有重要关系,本例采用DAC0832器件。

DAC0832是8位D/A转换器,转换周期为1µs,其引脚信号以及与FPGA目标器件典型的接口方式如附图2—7所示。

其参考电压与+5V工作电压相接(实用电路应接精密基准电压).DAC0832的引脚功能简述如下:•ILE(PIN 19):数据锁存允许信号,高电平有效,系统板上已直接连在+5V上。

•WR1、WR2(PIN 2、18):写信号1、2,低电平有效。

•XFER(PIN 17):数据传送控制信号,低电平有效。

•VREF(PIN 8):基准电压,可正可负,-10V~+10V.•RFB(PIN 9):反馈电阻端。

波形发生器报告汇总

波形发生器报告汇总

通信工程学院实训报告实训名称波形发生器的设计专业班级学生姓名学号实习地点____________ 信息楼b101指导教师实习起止时间:2016 年10月9 日至2016 年11月4日目录1•项目目的与意义及所承担工作 (1)2. 研究背景、现状及应用前景 (1)2.1项目的研究背景 (1)3. 项目原理的简述 (1)4. 方案分析与总体设计 (2)5. 各功能模块实现原理与实现 (3)5.1控制模块 (3)5.2按键模块 (3)5.3液晶显示模块 (3)5.4 DAC 模块 (3)5.5软件设计 (4)6. 测试结果与分析 (5)6.1三角波仿真结果 (5)6.2正弦波仿真结果 (5)6.3方波波仿真结果 (5)6.4锯齿波波仿真结果 (6)7. 实训中遇到的问题与解决途径及方法 (7)8. 总结与展望 (7)9. 参考文献 (7)附录1 (8)电路原理图 (8)附录二 (8)PCB板图 (8)附录3 (9)实物调试结果图 (9)1. 项目目的与意义及所承担工作随着电子技术的不断发展,波形发生器已被广泛运用于各类电子设备、仪器仪表的测试、校准和故障检修等。

通过本项目的实训,结合软硬件的设计与调试,可以掌握单片机控制、DAC 设计等方面内容,综合有效地提高解决实际问题的能力。

我在小组里面所承担的工作主要是电路板的设计及绘制,软件的仿真实验,还有硬件电路面包板的搭建及调试运行。

所应用到的软件是keil 和proteus。

2. 研究背景、现状及应用前景2.1 项目的研究背景波形发生器是一种广泛地应用于电子电路、自动控制系统和教学实验等领域。

函数信号发生器在电路实验和设备检测中具有十分广泛的用途,函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。

过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。

目前使用的信号发生器大部分是函数信号发生器,且特殊波形发生器的价格昂贵。

波形发生器实验报告 模电波形发生器实验报告

波形发生器实验报告 模电波形发生器实验报告

波形发生器实验报告模电波形发生器实验报告精品文档,仅供参考波形发生器实验报告模电波形发生器实验报告实验报告是把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报。

应用写作给出的定义如下科技实验报告是描述、记录某个科研课题过程和结果的一种科技应用文体。

下面是本站为大家带来的[波形发生器实验报告],希望能帮助到大家!波形发生器实验报告第一部分设计内容一、任务利用运算放大器设计并制作一台信号发生器,能产生正弦波、方波、三角波、锯齿波等信号,其系统框图如图所示。

二、要求1不使用单片机,实现以下功能:(1)至少能产生正弦波、方波、三角波、锯齿波四种周期性波形;在示波器上可以清晰地看清楚每种波形。

20分(2)输出信号的频率可通过按钮调节;(范围越大越好)20分(3)输出信号的幅度可通过按钮调节;(范围越大越好)20分(4)输出信号波形无明显失真;10分(5)稳压电源自制。

10分(6)其他2种扩展功能。

20分信号发生器系统框图第二部分方案比较与论证方案一、以555芯片为核心,分别产生方波,三角波,锯齿波,正弦波电路配置如图1所示图1此方案较简单,但是产生的频率不够大最后输出正弦波时,信号受干扰大。

方案二由简单的分立元件产生,可以利用晶体管、LC振荡回路,积分电路的实现方波三角波,正弦波的产生。

此方案原理简单但是调试复杂,受干扰也严重。

方案三、采用集成运放如(LM324)搭建RC文氏正弦振荡器产生正弦波,正弦波的频率,幅度均可调,再将产生的正弦波经过过零比较器,实现方波的输出,再由方波到三角波和锯齿波。

此方案电路简单,在集成运放的作用下,可以较容易的测到所需的波形。

通过调整参数可以得到较完美的波形。

实际设计过程采用方案三,基本原理如图2所示基本设计原理框图(图2)第三部分:电路原理及电路设计电路的构成:1、正弦波采用RC桥式振荡器(如图3), RC 串并联网络是正反馈网络,Rf 和R1为负反馈网络。

实验报告

实验报告

Multisim实验一一、实验目的:1、熟悉Multisim软件里的元件库;2、学会使用Multisim软件里的各种仿真仪器及仿真分析方法。

二、实验内容:1、图1为一函数信号发生器,要求在Multisim下完成电路原理图的绘制。

图12、通过仪器观察节点1、2、3的波形,测量其辅值V1= ,V2= ,V3= ;3、完成表1要求测量的参数;4、在图1的基础上,试设计输出频率为2K的波形发生器。

表1三、实验结果与过程:电路图:a.R1=R2=6.8k; c1=c2=100nF:V1:2.5V ; V2:6V ; V3: 6.25V ;b.R1=R2=7.5k; c1=c2=120nF:V1: 2.5V ; V2: 5.8 ; V3:8.0 ;c.R1=R2=8.2k; c1=c2=160nF:V1: 2.5V ; V2: 6.0V ; V3:12.0V ;(4)在图1的基础上,试设计输出频率为2K的波形发生器。

四、实验小结:本次试验绘制的函数信号发生器电路可以产生正弦波、方波、三角波,该电路主要使用了三个集成运放,通过调节输入电阻和电容的值,则可输出不同频率的信号波形,具有实用意义。

Multisim实验二一、实验目的:1、掌握在Multisim软件里如何新建及编辑元件;2、进一步熟悉仿真器件的使用。

二、实验内容:1、新建运放ADA4692;步骤一输入元件信息;步骤三输入符号信息;步骤四设置管脚参数;步骤五设置符号与布局封装间的映射信息;步骤六选择仿真模型;步骤七将符号管脚映射至模型管脚;步骤八将元件保存到数据库中;2、将实验一中的运放用ADA4692替换,验证该器件是否可以正常使用。

三、实验步骤与结果:1、创建芯片:(1)输入元件信息:(3)输入符号信息:(4)设置管脚参数:(5)设置符号与布局封装间的映射信息:(6)选择仿真模型:(7)将符号管脚映射至模型管脚:(8)将元件保存到数据库中:2、将实验一中的运放用新建的ADA4692替换,观察各点的输出波形,验证该器件是否可以正常使用。

DAC0832波形发生器课程设计实验报告

DAC0832波形发生器课程设计实验报告

DAC0832波形发生器课程设计实验报告目录第1章系统设计方案 (2)1.1 设计思路 (2)1.2 方案比较与选择 (2)第2章系统硬件设计..................................................................................2. 2.1 主控制器电路 (2)2.2 数模转换电路 (3)第3章系统软件设计................................................................................ .6 3.1 系统整体流程...................................................................................... .6 3.2 数模转换程序...................................................................................... .6 第4章系统调试 (8)4.1 proteus的调试 (8)第5章结论与总结 (11)5.1 结论 (11)(系统总体设计与完成做一个总结,是客观的,主要包括:设计思路,设计过程,测试结果及完善改进的方向。

)5.2 总结 (11)(这是一个主观的总结,谈谈自己收获和不足等方面的内容。

)第1章系统设计方案1.1 设计思路(一)、课设需要各个波形的基本输出。

如输出矩形波、锯齿波,正弦波。

这些波形的实现的具体步骤:正弦波的实现是非常麻烦的。

它的实现过程是通过定义一些数据,然后执行时直接输出定义的数据就可以了。

然而为了实现100HZ的频率,终于发现,将总时间除了总步数,根据每步执行时间,算出延时时间,最终达到要求,然后建一个表通过查表来进行输出,这样主要工作任务就落到了建表的过程中。

信号发生器实验报告

信号发生器实验报告

信号发生器实验报告一、信号发生器广泛应用于电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域。

采用集成运放和分立元件相结合的方式,利用迟滞比较器电路产生方波信号,以及充分利用差分电路进行电路转换,从而设计出一个能变换出三角波、正弦波、方波的简易信号发生器。

通过对电路分析,确定了元器件的参数,并利用protuse 软件仿真电路的理想输出结果,克服了设计低频信号发生器电路方面存在的技术难题,使得设计的低频信号发生器结构简单,实现方便。

该设计可产生低于10 Hz 的各波形输出,并已应用于实验操作。

信号发生器一般指能自动产生正弦波、方波、三角波电压波形的电路或者仪器。

电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。

这里,采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于10 Hz 的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。

该电路已经用于实际电路的实验操作。

原理框架图:二、电源硬件电路图的设计(1)单片机的选择根据初步设计方案的分析,设计这样的一个简单的应用系统,可以选择带有EPROM 的单片机,应用程序直接存贮在片内,不用在外部扩展程序存储器,电路可以简化。

ATMEL 公司生产的AT89C 系列单片机,AT89C 系列与C51系列的单片机相比有两大优势:第一,片内程序存储器采用闪存存储器,使程序的写入更加方便;第二,提供了更小尺寸的芯片,使整个硬件电路的体积更小。

它以较小的体积、良好的性能价格备受亲密。

在家电产品、工业控制、计算机产品、医疗器械、汽车工业等应用方面成为用户降低成本的首选器件。

因此,我们可选用AT89C2051单片机。

该芯片的功能与MCS-系列单片机完全兼容,并且还具有程序加密等功能,物美价廉,经济实用。

AT89C2051是ATMEL公司生产的带2K字节课编程闪速存储器的8位COMS单计算机,工作电压范围为2.7~6V,全静态工作频率为0~24MHZ。

信号发生器实验报告

信号发生器实验报告

姓名:好听易唱学号:2010220706363.5 仿真信号产生实验一、实验目的:1.熟悉LabVIEW中仿真信号的多种产生函数及参数设置。

2.掌握常用测试仿真信号的产生。

3.学会产生复杂的函数波形和任意波形。

二、实验内容:1.采用Express VI仿真信号发生器,产生规定的附有噪声的正弦信号,并显示波形。

2. 采用波形发生器VI,产生规定的附有噪声的多波形信号,并显示波形。

3. 产生任意波形信号,并显示和存盘。

4. 采用公式节点,产生规定的复杂函数信号。

三、实验器材:安装有LabVIEW8.5软件的计算机1台四、实验原理:1.虚拟仪器中获得信号数据的3个途径:(1)对被测的模拟信号,使用数据采集卡或其他硬件电路,进行采样和A/D变换,送入计算机。

(2)从文件读入以前存储的波形数据,或由其他仪器采集的波形数据。

(3)在LabVIEW中的波形产生函数得到的仿真信号波形数据。

2.测试信号在LabVIEW中的表示在LabVIEW中测试信号已经是离散化的时域波形数据,表示信号的数据类型有数组、波形数据和动态数据3种。

波形数据是一种特殊的簇结构,它由时间起始值t0、两个采样点的时间间隔值dt以及采样数据一维数组Y组合成的一个簇。

它的物理意义是对一个模拟信号x(t)从时间t0开始进行采样和A/D转换,采样率为fs,对应采样时间间隔dt=1/fs ,数组Y为各个时刻的采样值。

对周期信号,1个周期的采样点数等于采样频率除以信号频率。

3.仿真信号产生函数在LabVIEW中产生一个仿真信号,相当于通过软件实现了一个信号发生器的功能。

LabVIEW提供了丰富的仿真信号,包括正弦、方波、三角波、多频信号、调制信号、随机噪声信号、任意波形等。

针对不同的数据形式(动态数据类型、波形数据和数组),LabVIEW中有3个不同层次的信号发生器(Express VI仿真信号发生器、波形发生器VI和普通信号发生器VI)。

4.公式节点产生仿真信号用公式节点可以产生能够用公式进行描述的信号,用公式节点可产生经过复杂运算生成的信号。

波形发生电路 实验报告

波形发生电路 实验报告

.实验报告课程名称:电路与模拟电子技术实验 指导老师: 张冶沁 成绩: 实验名称:波形发生器电路分析与设计 实验类型: 电路实验 同组学生姓名: A.RC 桥式正弦振荡电路设计 1.正弦波振荡电路的起振条件。

2.正弦波振荡电路稳幅环节的作用以及稳幅环节参数变化对输出 波形的影响。

3.选频电路参数变化对输出波形频率的影响。

4.学习正弦振荡电路的仿真分析与调试方法。

B.用集成运放构成的方波、三角波发生电路设计 1.掌握方波和三角波发生电路的设计方法。

2.主要性能指标的测试。

3.学习方波和三角波的仿真与调试方法。

示波器、万用表 模电实验箱1. RC 桥式正弦波振荡电路,起振时应满足的条件是: 闭环放大倍数大于3,即R f >2R 1,引入正反馈 RC 桥式正弦波振荡电路,稳定振荡时应满足的条件是: 电路中有非线性元件起自动稳幅的作用3.RC 桥式正弦波振荡电路的振荡频率: =0f 1/(2πRC)4.RC 桥式正弦波振荡电路里C 的大小:=C 0.01uF5.RC 桥式正弦波振荡电路R1的大小: R1= 15k Ω 6.RC 桥式正弦波振荡电路R2的大小: R2= 21.5k Ω 7.RC 桥式正弦波振荡电路是通过哪几个元器件来实现稳幅作用的? 答:配对选用硅二极管 ,使两只二极管的特性相同,上下对称,根据振荡幅度的变化,采用非线性元件来自动改变放大电路中负反馈的强弱,以实现稳幅目的8.波形发生器电路里A1的输出会不会随电源电压的变化而变化?答:A1输出不会改变,电源电压的变化通过选频网络调节,不影响放大和稳幅环节 专业: 姓名: 学号: 日期:地点:8.波形发生器电路里01v的输出主要由谁决定,当电源电压发生变化时,它会发生变化吗?答:由两只二极管决定,电源电压变化时,V o1不会变化9.波形发生器电路里,R和C的参数大小会不会影响v的输出波形?答:会影响,而且v o的频率和幅值都由RC决定,因为R和C的回路构成选频网络A.RC桥式正弦波振荡电路:原理图:1.PSpice仿真波形:示波器测量的波形:T=616us,=ppv 1.88V,=RMSv667mV根据实际波形,比较实际数据和理论数据之间的差异:理论周期为650us,略大于试验数据,但非常接近,由于实际电阻和二极管的线性或非线性特性与理想状态有所不同,在误差允许范围内认为符合要求v从无到有,从正弦波直2.改变R2的参数(减小或增大R2),使输出至削顶,分析出现这三种情况的原因和条件。

波形发生器设计实验报告(推荐阅读)

波形发生器设计实验报告(推荐阅读)

波形发生器设计实验报告(推荐阅读)第一篇:波形发生器设计实验报告波形发生器设计实验报告一、设计目的掌握用99SE软件制作集成放大器构成方波,三角波函数发生器的设计方法。

二、设计原理波形发生器:函数信号发生器是指产生所需参数的电测试信号的仪器。

按信号波形可分为正弦信号、函(波形)信号、脉冲信号和随机信号发生器等四大类。

而波形发生器是指能够输出方波、三角波、正弦波等多种电压波形的信号源。

它可采用不同的电路形式和元器件来实现,具体可采用运算放大器和分立元件构成,也可用单片专用集成芯片设计。

设计原理图:三、设计元件电阻:R1 5.1K、R2 8.2K、R3 680、R4 3K、R5 39KR6 1K、R7 39K、R8 39K 电容:C 1uF 运算放大器:U1A LM324、U1B LM324 二极管:D1 3.3V、D23.3V 滑动变阻器:RW1 10K 接口:CON3 地线、GND四、设计步骤大概流程图1、打开99SE,建立Sch文件。

绘制原理图。

绘制原理图时要注意放大器的引脚(注意引脚上所对应的数字)和二极管的引脚(注意原理图和PCB中的引脚参数是否一致)。

元件元件库代码电阻:RES2 滑动变阻器:POT2电容:CAP 放大器:OPAMP 二极管:ZENER3 元件封装代码电阻: AXIAL0.4 滑动变阻器:VR5 放大器:DIP14二极管:DIODE0.4 电容:RB.2/.42、生成网络表格本步骤可完成建立材料清单(可执行report中的Bill of Material)、电器规则检查(Tools中ERC)、建立网络表(Design中Create Netlist,点击OK即可)3、PCB文件的设置建立PCB文件单双面板设置:Design中Options进行设置单双面板,及面板大小(8cm*7cm)建立原点(Edit中Origin中的set)并在KeepOutLayer层中制板4、引入网络表执行Design中Load Nets载入网络表,屏幕弹出对话框,点击Browse按钮选择网络表文件(*net),载入网络表,单机Execute,便成功引入网络表。

北邮模电实验报告函数发生器

北邮模电实验报告函数发生器

北京邮电大学课程头验报告课杲程名称:电子测量与电子电路设计题目:函数信号发生器院系: 电子工程学院电子科学与技术专业班级2013211209学生姓名:刘博闻学号2013211049指导教师:咼惠平摘要函数信号发生器广泛地应用于各大院校和科研场所。

随着科技的进步,社会的发展,单一的函数信号发生器已经不能满足人们的需求,本实验设计的正是多种波形发生器。

本实验由两个电路组成,方波—三角波发生电路和三角波—正弦波变换电路。

方波一三角波发生电路由自激的单线比较器产生方波,通过RC积分电路产生三角波,在经过差分电路可实现三角波—正弦波的变换。

本电路振荡频率和幅度用电位器调节,输出方波幅度的大小由稳压管的稳压值决定;而正弦波幅度和电路的对称性也分别由两个电位器调节,以实现良好的正弦波输出图形。

它的制作成本不高,电路简单,使用方便,有效的节省了人力,物力资源,具有实际的应用价值。

关键词:三角波方波正弦波幅度调节频率调节设计要求 (1)1 •前言 (1)2. 方波、三角波、正弦波发生器方案 (1)2.1原理框图 (1)2.2系统组成框图 (2)3. 各组成部分的工作原理 (2)3.1方波-三角波产生电路的工作原理 (2)3.2三角波-正弦波转换电路的工作原理 (4)3.3总电路图 (6)4. 用Mutisim电路仿真 (7)4.1方波一三角波电路的仿真 (7)4.2方波一正弦波电路的仿真 (8)5电路的实验结果及分析 (9)5.1方波波形产生电路的实验结果 (9)5.2方波---三角波转换电路的实验结果 (10)5.3正弦波发生电路的实验结果 (11)5.4实验结果分析 (12)6. 实验总结 (12)7. 仪器仪表清单 (13)7.1所用仪器及元器件: (13)7.2仪器清单表 (13)8. 参考文献 (16)9. 致谢 (166)方波一三角波一正弦波函数信号发生器设计要求1. 设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。

产生波形电路实验报告

产生波形电路实验报告

一、实验目的1. 掌握产生波形电路的基本原理和设计方法。

2. 学习使用电子仪器测量波形参数。

3. 分析不同波形电路的特性及其在实际应用中的意义。

二、实验原理产生波形电路是指利用电子元件和电路设计方法,产生不同波形(如正弦波、方波、三角波等)的电路。

常见的波形产生电路包括:1. 正弦波振荡电路:利用RC或LC振荡电路产生正弦波信号。

2. 方波振荡电路:利用555定时器、施密特触发器等产生方波信号。

3. 三角波振荡电路:利用积分电路和微分电路产生三角波信号。

三、实验仪器与设备1. 信号发生器2. 示波器3. 万用表4. 集成运算放大器5. 电阻、电容、电感等电子元件6. 连接导线四、实验内容及步骤1. 正弦波振荡电路实验(1)搭建RC振荡电路,利用电阻和电容产生正弦波信号。

(2)使用示波器观察输出波形,调整电路参数使波形稳定。

(3)测量输出波形的频率、幅值等参数。

2. 方波振荡电路实验(1)搭建555定时器振荡电路,产生方波信号。

(2)使用示波器观察输出波形,调整电路参数使波形稳定。

(3)测量输出波形的频率、幅值等参数。

3. 三角波振荡电路实验(1)搭建积分电路,利用电容和电阻产生三角波信号。

(2)使用示波器观察输出波形,调整电路参数使波形稳定。

(3)测量输出波形的频率、幅值等参数。

五、实验结果与分析1. 正弦波振荡电路通过实验,成功搭建了RC振荡电路,并观察到了稳定的正弦波信号。

根据实验数据,计算了振荡电路的频率、幅值等参数,并与理论值进行了比较。

2. 方波振荡电路通过实验,成功搭建了555定时器振荡电路,并观察到了稳定的方波信号。

根据实验数据,计算了振荡电路的频率、幅值等参数,并与理论值进行了比较。

3. 三角波振荡电路通过实验,成功搭建了积分电路,并观察到了稳定的三角波信号。

根据实验数据,计算了振荡电路的频率、幅值等参数,并与理论值进行了比较。

六、实验总结1. 通过本次实验,掌握了产生波形电路的基本原理和设计方法。

电路综合设计实验-设计实验2-实验报告

电路综合设计实验-设计实验2-实验报告

设计实验2:多功能函数信号发生器一、摘要任意波形发生器是不断发展的数字信号处理技术和大规模集成电路工艺孕育出来的一种新型测量仪器,能够满足人们对各种复杂信号或特殊信号的需求,代表了信号源的发展方向。

可编程门阵列(FPGA)具有髙集成度、髙速度、可重构等特性。

使用FPGA来开发数字电路, 可以大大缩短设计时间,减小印制电路板的面积,提高系统的可靠性和灵活性。

此次实验我们采用DEO-CV开发板,实现函数信号发生器,根据按键选择生产正弦波信号、方波信号、三角信号。

频率范围为10KHz~300KHz,频率稳定度W10-4,频率最小不进10kHz。

提供DAC0832, LM358o二、正文1.方案论证基于实验要求,我们选择了老师提供的数模转换芯片DAC0832,运算放大器LM358以及DEO-CV开发板来实现函数信号发生器。

DAC0832是基于先进CMOS/Si-Cr技术的八位乘法数模转换器,它被设计用来与8080, 8048,8085, Z80和其他的主流的微处理器进行直接交互。

一个沉积硅辂R-2R电阻梯形网络将参考电流进行分流同时为这个电路提供一个非常完美的温度期望的跟踪特性(0. 05%的全温度范围过温最大线性误差)。

该电路使用互补金属氧化物半导体电流开关和控制逻辑来实现低功率消耗和较低的输出泄露电流误差。

在一些特殊的电路系统中,一般会使用晶体管晶体管逻辑电路(TTL) 提高逻辑输入电压电平的兼容性。

另外,双缓冲区的存在允许这些DAC 数模转换器在保持一下个数字 词的同时输出一个与当时的数字词对应的电压。

DAC0830系列数模转 换器是八位可兼容微处理器为核心的DAC 数模转换器大家族的一员。

LM358是双运算放大器。

内部包括有两个独立的、高增益、内部频 率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也 适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压 无关。

它的使用范围包括传感放大器、直流增益模块和其他所有可用 单电源供电的使用运算放大器的场合。

DSP三角波方波锯齿波信发生器

DSP三角波方波锯齿波信发生器

D S P三角波方波锯齿波
信发生器
CKBOOD was revised in the early morning of December 17, 2020.
《DSP原理及应用》课程实验报告
学生:
所在班级:电信1001
指导教师:
记分及评价:
项目满分5分
得分
一、实验名称
实验8:函数波形信号发生器
二、任务及要求
1.设计一个可产生方波、三角波、锯齿波的信号发生器,要求频率可调。

2.在CCS软件环境下用时频图演示出来。

三、波形发生器源程序
#include <>
#include <>
#define N 1024
#define t 1齿波
2.方波
3.三角波
四、硬件验证

五、小结
在对设计的信号发生器进行调试时采用了集成开发环境Code Composer Studio(CCS),即对C55xx的C语言程序进行调试。

本次实验以基于DSP 的信号发生器完成了三角波、方波、锯齿波输出任意频率的波形任务。

但是上述工作尚有许多不成熟、不完善的地方,这就需要今后进一步开展的工作。

六、波形调试方法。

正弦波发生器实验报告

正弦波发生器实验报告

正弦波发生器实验报告正弦波发生器实验报告一、引言正弦波发生器是电子实验中常用的一种信号发生器,用于产生稳定的正弦波信号。

在本实验中,我们将通过搭建一个简单的正弦波发生器电路,来探究其工作原理和性能。

二、实验目的1. 了解正弦波发生器的基本原理;2. 掌握正弦波发生器的搭建方法;3. 分析正弦波发生器的输出特性。

三、实验器材与原理本实验所需器材有:函数发生器、示波器、电阻、电容、集成电路等。

正弦波发生器的基本原理是利用反馈电路使放大器的输出信号与输入信号具有相同的幅度和相位,从而实现正弦波的产生。

四、实验步骤1. 搭建正弦波发生器电路:将函数发生器的输出信号接入放大器的输入端,通过反馈电路将放大器的输出信号再次输入到放大器的输入端,形成闭环反馈;2. 调节函数发生器的频率和幅度,观察放大器输出信号的变化;3. 使用示波器测量放大器输出信号的频率和幅度,并记录数据;4. 改变电路中的电阻和电容数值,观察输出信号的变化,并记录数据;5. 分析实验结果,总结正弦波发生器的性能。

五、实验结果与分析通过实验观察和测量,我们得到了一系列正弦波信号的输出结果。

实验中我们发现,正弦波发生器的输出频率与函数发生器的输入频率基本一致,但是幅度会有一定的衰减。

这是因为反馈电路中的电阻和电容会引入一定的阻尼,导致输出信号的幅度减小。

在改变电路中的电阻和电容数值时,我们发现输出信号的频率和幅度也会相应改变。

增加电容的数值会使输出信号的频率降低,而增加电阻的数值会使输出信号的幅度降低。

这是因为电容和电阻对信号的传递和衰减起到了重要作用。

六、实验总结通过本次实验,我们了解了正弦波发生器的基本原理和搭建方法。

实验结果表明,正弦波发生器可以产生稳定的正弦波信号,但是在输出过程中会有一定的衰减。

同时,电路中的电阻和电容数值的改变也会对输出信号的频率和幅度产生影响。

在实际应用中,正弦波发生器广泛用于各种电子设备和实验中,如音频设备、通信设备等。

信号发生器实验报告

信号发生器实验报告

信号发生器摘要函数发生器是一种在科研和生产中经常用到的基本波形产生器,集成函数波形发生器一般都采用ICL8038或5G8038。

本文介绍由单片机AT89S52和D/A转换器DAC0832及LM35组成的函数波形发生器,该电路能够产生正弦波、方波和三角波信号,频率能在100Hz~100kHz范围内可调。

关键词:函数波形发生器;单片机AT89S52; D/A转换器DAC0832;LM358;电位器;稳压管;二极管;第一部分:系统需求分析一、概论信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

各种波形曲线均可以用三角函数方程式来表示。

能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。

函数信号发生器在电路实验和设备检测中具有十分广泛的用途。

例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。

在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

本设计要求实现一个信号发生器,能够产生正弦波,三角波和方波信号。

二、技术指标(1)输出信号频率在100Hz~100kHz范围内可调;(2)输出信号频率稳定度优于10-3;(3)在1k 负载条件下,输出正弦波信号的电压峰-峰值Vopp在0~5V范围内可调;三、要求(1)信号发生器能产生正弦波、方波和三角波三种周期性波形(2)输出信号波形无明显失真;(3)自制稳压电源。

第二部分:方案设计与论证一、方案论证与比较函数信号产生方案对于函数信号产生电路,一般有多种实现方案,如模拟电路实现方案、数字电路实现方案(如DDS 方式)、模数结合的实现方案等。

数字电路的实现方案:一般可事先在存储器里存储好函数信号波形,再用D/A 转换器进行逐点恢复。

这种方案的波形精度主要取决于函数信号波形的存储点数、D/A 转换器的转换速度、以及整个电路的时序处理等。

DAC0832波形发生器课程设计实验报告1

DAC0832波形发生器课程设计实验报告1

微机原理与接口技术课程设计报告书题目:DAC0832 波形发生器学院名称:湖南科技大学潇湘学院班级:电子信息工程001班指导老师:欧青立陈君宋芳学号: 0954030110姓名:赵翔目录一、引言 (1)二、设计目的 (2)三、原理说明 (2)四、硬件设计 (4)五、设计原理 (6)六、程序编译 (7)1、输出方波子程序 (7)2、输出三角波子程序 (8)3、输出锯齿波子程序 (8)4、输出正弦波子程序 (9)5、输出梯形波的子程序 (10)6、主程序 (11)七、调试方法与结果 (15)八、心得体会 (16)一.引言波形发生器是一种常用的信号源,广泛的应用于电子电路、自动控制系统和教学实验等领域,是现代测试领域内应用最为广泛的通用仪器之一。

在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都需要有信号源。

由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察。

测量被测仪器的输出响应,以分析确定它们的性能参数。

信号发生器是电子测量领域中最基本、应用最为广泛的一类电子仪器。

它可以产生多种波形信号,如锯齿波、三角波、梯形波等,因而广泛应用于通信、雷达、导航、宇航等领域。

本次课程设计使用的AT89C51单片机构成的发生器可产生三角波,波形的周期可用程序改变,并可根据需要选择单极性输出或双极性输出,具有线路简单、结构紧凑、性能优越等特点。

此设计给出了源代码,通过仿真测试,其性能指标达到了设计要求。

二、设计目的1、掌握DAC0832与PC机的接口方法。

2、掌握D/A转换应用程序设计方法。

三、原理说明◆知识简介:DAC0832当今世界在以电子信是8位分辨率的D/A转换集成芯片,与微处理器完全兼容,这个系列的芯片以其价格低廉、接口简单、转换控制容易等优点,在单片机应用系统中得到了广泛的应用。

这类D/A转换器由8位输入锁存器,8位DAC寄存器,8位DA转换电路及转换控制电路构成。

◆原理框图:◆硬件设计1、DAC0832的引脚及功能:DAC0832是8分辨率的D/A转换集成芯片。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号发生器
一、实验目的
1、掌握集成运算放大器的使用方法,加深对集成运算放大器工作原理的理解。

2、掌握用运算放大器构成波形发生器的设计方法。

3、掌握波形发生器电路调试和制作方法 。

二、设计任务
设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号。

三、具体要求
(1)可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真。

(2)利用一个按钮,可以切换输出波形信号。

(3)频率为1-2KHz 连续可调,波形幅度不作要求。

(4)可以自行设计并采用除集成运放外的其他设计方案
(5)正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真。

四、设计思路
基本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比较器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号。

五、具体电路设计方案
Ⅰ、RC 桥式正弦波振荡器
图1
图2
电路的振荡频率为:RC
f π21
0=
将电阻12k ,62k 及电容100n ,22n ,4.4n 分别代入得频率调节范围为:24.7Hz~127.6Hz ,116.7Hz~603.2Hz ,583.7Hz~3015Hz 。

因为低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。

如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调的正弦信号。

J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率。

R P1采用双联线性电位器50k ,便于频率细调,可获得所需要的输出频率。

R P2 采用200k 的电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定。

下图2为起振波形。

RP2 R4 R13 组成负反馈支路,作为稳幅环节。

R13与D1、D2并联,实现振荡幅度的自动稳定。

D1、D2采用1N4001二极管。

在multisim 软件仿真时,调节电位器25%~35%时能够起振。

电路起振条件:左

22134p p f R R R R A ++=
,代入数据解得Ω≤k R P 11.1002左
Ⅱ方波发生器
由正弦波振荡器产生的一定频率的正弦信号经过比较器产生一同频率的方波。

如图3。

电路输出端引入的限流电阻R6 和两个背靠背的稳压管D3、D4(采用1N4734)组成双向限幅电路。

UA741在这里实际上是一个电压比较器,当输入电压比基准电压高时,输出高电平,当输入电压比基准电压低时,输出低电平,输出端输出与输入同频率的方波。

图3 图4
Ⅲ比例运算放大电路
转换开关J 5的作用是通过开关切换与比例运算放大电路连接,输出一定幅度的正弦波或方波。

通过调节RP3(200k )调节放大倍数,9
36R R R A p f 右
+=。

如图4所示。


multisim
软件仿真时,当
R P3 调节到50%时,(计算结果
10
%50-1*20033.0)
(+=
f A =10.033)放大前信号(左图5)与放大后信号(右图6)如下
图所示。

图5 图6
两幅图所占格数基本一致,左图中每格代表10v ,右图中每格则代表100v ,则此时信号约被放大了10倍。

Ⅳ三角波发生器
将J 公共端接到示波器上,当J 5与J 状态均处于上图状态时,输出的是正弦波,当拨下J 5 但J 状态如上图时,输出的是方波,当同时拨下J 5与J 时,输出的是三角波。

总电路图如下图所示:
被放大后的方波信号通过积分电路既可得到三角波。


-
=dt U C R U i O 9121
s C R 01.0912==τ>> t m
t m 是充电至饱和时间,如此选择参数可以保证电路不出现积分饱和失真,符合设计要求。

六、实验过程及内容:
1按照原理计算参数,确定选用电容电阻的参数
2按照原理图用multisim进行仿真
3按照电路图在电子实验箱中连线,进行测试
4按照电路图焊电路板
5对焊好的电路板进行测试:观察波形及记下实际可调频率,并进行误差分析。

观察到的波形如下图所示:
实测频率为:
23.5 Hz ~124.2 Hz,113 Hz~595 Hz,,562Hz~2870Hz
七、数据处理分析
1波形均未失真,符合设计要求
低档中档高档
min max min max min max 实测值23.5 124.2 113 595 562 2870
理论值24.7 127.6 116.7 603.2 583.7 3015
相对误差 4.86% 2.66% 3.17% 1.36% 3.72% 4.81%
由上表可知,实测频率均比理想频率小,当仍符合低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。

出现误差的可能原因有:
1)电容和电阻实际值和标值不完全一致,可能偏大。

2)导线有微小阻抗,导致电路中阻抗增大。

名称数量
uA741 4
双联线性电位器50k 1
电位器200k 2
稳压二极管1N4732 2
二极管1N4001 2
拨动开关 6
电阻14
电容9
九、所用芯片介绍
uA741(单运放)是高增益运算放大器,用于军事,工业和商业应用。

这类单片硅集成电路器件提供输出短路保护和闭锁自由运作。

芯片引脚和工作说明:
1和5为偏置(调零端),
2为正向输入端,
3为反向输入端,
4接地,
6为输出,
7接电源
8空脚
内部结构图:
十、收获和体会:
通过本次实验充分认识到思考问题的重要性,碰到问题时要冷静分析电路图,实验与理论的结合才能更好的完成设计。

又通过本次实验,从设计电路到焊接以及到最后调试都是慢慢摸索,认真思考,团结合作,学到了很多知识与经验。

相关文档
最新文档