激光快速成形技术
激光快速成形技术
间较长,因此制作成本相对较高。
2021/3/2
8
激光快速成型技术
2.选择性激光烧结技术(SLS)
原理:选择性激光烧结技术(SLS技术)与立体光造型技术(SLA技术) 很相似,也是用激光束来扫描各原材料,但用粉末物质代替了液态光聚 合物,并以一定的扫描速度和能量作用于粉末材料 。选择性激光烧结 技术的基本原理如图所示。
新 旧 流 程 图 如 右 图
图7-22 立体光造型技术的原理示意图
主要优点
• 快速性:生产制品的周期较传统加工工艺短。RP对设计的敏感性很低, 制造时几乎不用考虑制品的外形问题,由此可节约大量时间。
• 适合成型复杂零件:不论零件多复杂,都由计算机分解为二维数据进行 成型制作,无简单复杂之分,因此他特别适合成型形状复杂,传统方法 难以制造甚至无法制造的零件。
体离散
面离散
线离散
后处理
有序面 面叠加
有序线
点
有序点
叠
加
线叠加
3、激光快速成型与传统工艺比较
由于快速成型技术(包括激光快速成型技术)仅在需要增加材料的地方加上 材料,所以从设计到制造自动化,从知识获取到计算机处理,从计划到 接口、通讯等方面来看,非常适合于CIM、CAD及CAM,同传统的制造 方法相比较,显示出诸多优点。
选 择 性 激 光 烧 结 技 术 基 本 原 理
优点:
1、与其他工艺相比,能生产很硬的模具。有直接金属型的 概念。 2、可以采用多种原料,例如绝大多数工程用塑料、蜡、金属、陶瓷等。 3、 零件的构建时间短,可达到1in/h高度。 4、 无需对零件进行后矫正。
SLA成型材料的研究概况
SLA成型材料的研究概况SLA(激光快速成型)是一种三维打印技术,通过使用激光光束扫描光敏树脂,逐层堆积并逐渐硬化,最终形成一个完整的实体模型。
SLA成型材料是确定最终产品质量和性能的关键因素之一、本文将概述当前SLA成型材料的研究概况,包括材料种类、性能以及未来研究方向等。
1.SLA成型材料的种类:目前市场上常见的SLA成型材料主要分为两大类:光敏树脂和复合材料。
其中,光敏树脂是最常用的SLA成型材料。
它具有高度精细的打印分辨率、良好的细节表现能力和较好的机械性能,并且可用于制造高质量的模型和产品。
复合材料是光敏树脂与其他添加剂的混合物,旨在提高材料的机械性能、热稳定性和耐腐蚀性。
2.SLA成型材料的性能:SLA成型材料的性能包括打印精度、机械性能、耐热性、耐腐蚀性等。
打印精度是衡量SLA技术的关键指标之一,它取决于材料的流变性能和硬化速度。
机械性能是指材料的强度和刚度等力学性能,它取决于材料的硬化程度和分子结构。
耐热性和耐腐蚀性是指材料在高温和腐蚀环境下的性能表现。
当前的SLA成型材料在这些性能方面已经有了很大的进展,但仍然存在改进的空间。
3.SLA成型材料的研究进展:近年来,研究人员对SLA成型材料进行了广泛的研究,以改善其性能和提高生产效率。
研究的方向包括材料的合成改性、打印参数的优化、后处理方法的改进等。
例如,通过改变光敏树脂的成分和配比,可以实现不同的打印性能和机械性能。
另外,优化打印参数如激光功率、扫描速度和层厚等,可以提高打印质量和效率。
此外,采用后处理方法如光照固化、温度热处理等,可以进一步提高材料的性能。
4.SLA成型材料的未来研究方向:未来,SLA成型材料的研究方向主要集中在以下几个方面:一是开发新型材料,如高温耐热材料、生物可降解材料等,以满足不同应用领域的需求;二是优化打印参数和工艺方法,以提高打印速度和质量稳定性;三是改进后处理方法,以提高材料的性能和表面质量;四是研究多材料打印和多功能材料的开发,以实现更广泛的应用。
四种典型的快速成型技术的成型原理
四种典型的快速成型技术的成型原理一、激光烧结成型原理激光烧结成型(Selective Laser Sintering,简称SLS)是一种快速成型技术,其成型原理是利用激光束对粉末材料进行烧结,逐层堆积形成所需的三维实体。
激光烧结成型的过程主要包括以下几个步骤:首先,利用计算机辅助设计(CAD)软件将待制造的物体进行三维建模,并将模型数据转化为机器能够识别的格式。
然后,将烧结材料粉末均匀地铺在工作台上,使其表面平整。
接下来,利用激光束控制系统,将激光束按照预定的路径和参数扫描在粉末层表面,使其局部熔融烧结。
激光束的能量使粉末颗粒之间发生熔融和烧结,形成一层固体物质。
再次铺上一层新的粉末材料,重复上述步骤,逐层堆积,直至形成整个三维实体。
最后,将成品从未熔融的粉末中清理出来,并进行后续处理,如热处理或表面处理。
激光烧结成型技术具有成型速度快、制作精度高、制造复杂度高等优点。
由于其成型过程中无需使用支撑材料,可以制造出具有复杂内部结构的零件,因此被广泛应用于航空航天、汽车、医疗器械等领域。
二、光固化成型原理光固化成型(Stereolithography,简称SLA)是一种常见的快速成型技术,其成型原理是利用紫外线激光束对光固化树脂进行逐层固化,最终形成所需的三维实体。
光固化成型的过程主要包括以下几个步骤:首先,利用计算机辅助设计(CAD)软件将待制造的物体进行三维建模,并将模型数据转化为机器能够识别的格式。
然后,将液态光固化树脂均匀地铺在工作台上。
接下来,利用紫外线激光束扫描器,将激光束按照预定的路径和参数照射在树脂表面,使其局部固化。
激光束的能量使树脂中的光敏物质发生聚合反应,从而使树脂由液态变为固态。
再次涂覆一层新的液态光固化树脂,重复上述步骤,逐层固化,最终形成整个三维实体。
最后,将成品从未固化的树脂中清洗出来,并进行后续处理,如烘干或光刻。
光固化成型技术具有成型速度快、制造精度高、制造复杂度高等优点。
DLF与SLM激光快速成型方法的比较
DLF和SLM激光快速成型方法的比较激光直接制造(Direct Laser Fabrication,DLF)技术和选择性激光熔化(Selective Laser Melting,SLM)技术是目前较为成熟和先进的激光快速成型技术,涉及机械、材料、激光、计算机和自动控制等多学科领域,充分体现了现代科学发展多学科交叉的特点,具有广泛的研究和发展前景。
DLF技术是基于激光快速成型的“离散一堆积”、“添加式制造”的基本概念和激光熔覆技术而发展起来的金属零件全密度全功能快速直接制造技术。
其实质是利用送粉式激光熔覆逐点、逐层沉积,实现三维任意形状高性能金属零件的近净成型。
SLM技术是以选择性激光烧结(Selective I.aserSinter,SLS)技术为基础,基于快速成型的最基本思想,即逐层熔覆的“增量”制造方式,根据三维CAD模型直接成型具有特定几何形状的零件,成型过程中金属粉末完全熔化,产生冶金结合。
它是快速成型技术的最新发展。
本文采用DLF和SLM两种激光快速成型技术进行一系列实验,根据实验结果,比较分析两种快速成型方法在成型精度和效率、成型件力学性能和组织结构等方面的异同,为激光快速成型方法的选择提供一定的技术依据。
1 DLF和SLM激光快速成型技术的原理1.1 DLF激光快速成型技术的原理DLF技术是将快速成型(Rapid Prototyping,RP)技术和激光熔覆技术相结合,以激光作为加工能源,以金属粉末为加工原料,在金属基板上逐层熔覆堆积,从而形成金属零件的制造技术。
DLF快速成型技术的基本原理哺1如图1所示,先利用三维CAD软件(如UG,Pro/E,Solidworks)生成所需制造零件的三维CAD模型,并转换成STL格式;再利用切片技术将吼格式的CAD模型按照一定的层厚进行分层切片,提取每一层切片所产生的轮廓;然后根据切片轮廓设计合理的扫描路径,并转换成相应的计算机数字控制(Computer Nomencal Control,CNC)工作台指令;激光束在CNC指令控制下进行扫描加工,将加工原料进行熔覆,生成和这一层形状、尺寸一致的熔覆层。
激光快速成型技术
在可持续发展理念的推动下,激光快速成型技术 将更加注重环保和资源循环利用,降低能耗和减 少废弃物排放。
创新与发展
未来,激光快速成型技术将继续创新和发展,与 其他先进制造技术相结合,推动制造业的转型升 级和高质量发展。
05
激光快速成型技术的实 际应用案例
产品原型制作
快速原型制作
01
通过激光快速成型技术,可以在短时间内制作出产品原型,缩
快速性
与传统加工方法相比,激光快速 成型技术能够大大缩短制造周期, 提高生产效率。
灵活性
激光快速成型技术能够制造出各 种形状和结构的零件,适用于复 杂零件的制造。
定义
激光快速成型技术是一种基于数 字模型文件和激光束的高效、高 精度制造技术,能够快速制造出 复杂的三维实体。
材料广泛性
激光快速成型技术可以应用于各 种材料,包括塑料、金属、陶瓷 等。
短了产品开发周期,降低了开发成本。
优化设计流程
02
通过制作原型,设计师可以在早期阶段发现设计中的问题并进
行改进,提高了设计效率。
降低生产风险
03
在产品正式生产前制作原型,可以减少因设计错误导致的生产
风险和成本损失。
定制化产品生产
01
02
03
个性化定制
激光快速成型技术可以根 据客户需求定制个性化产 品,满足消费者对个性化 的需求。
小批量生产
对于一些小批量、高附加 值的产品,激光快速成型 技术可以快速实现生产, 降低生产成本。
定制化服务
在服务行业,激光快速成 型技术可以用于定制化服 务,例如为客户定制饰品、 模型等。
生物医学领域应用
生物材料研究
激光快速成型技术可用于生物材料的 研究,例如用于制作生物组织的模型, 以便更好地了解其结构和功能。
SLA激光快速成型原理
SLA激光快速成型原理SLA原理SLA工艺也称光造型或立体光刻,是基于液态光敏树脂的光聚合原理工作的。
这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。
液槽中盛满液态光固化树脂,激光束在偏转镜作用下,能在液态表面上扫描,扫描的轨迹及光线的有无均有计算机控制,光点打到的地方,液体就固化。
成型开始时,工作平台在液面下一个确定的深度,聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。
当一层扫描完成后,未被照射的地方仍是液态树脂。
然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新固化的一层牢固地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。
SLA方法是目前快速成型技术领域中研究得最多的方法,也是技术上最为成熟的方法。
SLA工艺成型的零件精度较高,加工精度一般可达到0.1mm,原材料利用率近100%。
成型技术特点快速成型技术具有一下几个重要特征:1)可以制造任意复杂的三维几何实体。
由于采用离散/堆积成型的原理,它将一个十分复杂的三维制造过程简化为二维过程的叠加,可实现对任意复杂形状零件的加工。
越是复杂的零件越能显示出RP技术的优越性。
此外,RP技术特别适合复杂型腔、复杂型面等传统方法难以制造甚至无法制造的零件。
2)快速性。
通过对一个CAD模型的修改或重组就可获得一个新零件的设计和加工信息。
从几个小时到几十个小时就可制造出零件,具有快速制造的突出特点。
3)高度柔性。
无需任何专用夹具或工)快速成型技术实现了机械具即可完成复杂的制造过程,快速制造工模型、原型或零件。
4工程学科多年来追求的两大先进目标,即材料的提取(气、液、固相)过程与制造过程一体化和设计(CAD)与制造(CAM)一体化。
5)与逆向工程(Reverse Engineering)、CAD技术、网络技术、虚拟现实等相结合,成为产品快速开发的有力工具。
RP技术简介
RP-Rapid Prototyping(快速成型)技术简介RP技术是80年代后期发展起来的快速成型(Rapid Prototyping简称RP)技术,被认为是近年来制造技术领域的一次重大突破,其对制造业的影响可与数控技术的出现相媲美。
RP系统综合了机械工程、CAD、数控技术,激光技术及材料科学技术,可以自动、直接、快速、精确地将设计思想物化为具有一定功能的原型或直接制造零件,从而可以对产品设计进行快速评价、修改及功能试验,有效地缩短了产品的研发周期。
而以RP 系统为基础发展起来并已成熟的快速模具工装制造( Quick Tooling)技术,快速精铸技术(Quick Casting),快速金属粉末烧结技术(Quick Powder Sintering),则可实现零件的快速成品。
RP技术,迴异于传统的去除成型(如车、削、刨、磨),拼合成型(如焊接),或受迫成型(如铸、锻,粉末冶金)等加工方法,而是采用材料累加法制造零件原型,其原理是先将CAD生成的三维实体模型通过分层软件分成许多细小薄层,每个薄层断面的二维数据用于驱动控制激光光束,扫射液态光敏树脂,使其固化,以逐层固化的薄层累积成所设计的实体原型,激光快速成型技术较之传统的诸多加工方法展示了以下的优越性:1.可以制成几何形状任意复杂的零件,而不受传统机械加工方法中刀具无法达到某些型面的限制。
2.曲面制造过程中,CAD数据的转化(分层)可百分之百地全自动完成,而不靠数控切削加工中需要高级工程人员数天复杂的人工辅助劳动才能转化为完全的工艺数控代码。
3. 不需要传统的刀具或工装等生产准备工作。
任意复杂零件的加工只需在一台设备上完成,因而大大地缩短了新产品的开发成本和周期,其加工效率亦远胜于数控加工。
4.设备购置投资低于数控机床。
目前激光快速成型技术在制造业中已成熟地应用于以下领域:产品设计评估与校审RP技术将CAD的设计构想快速、精确、而又经济地生成可触摸的物理实体。
激光快速成型技术的原理及主要优点
激光快速成型技术的原理及主要优点KG-DFB激光光源采用国外高性能DFB激光器芯片,独特设计的ATC和APC电路以及隔离控制,保证了极高的功率及波长稳定性。
快速成型技术的基本工作原理是离散,堆积。
首先,将零件的物理模型通过CAD造型或三维数字化仪转化为计算机电子模型,然后将CAD模型转化为STD(stereolithography)文件格式,用分层软件将计算机三维实体模型在z向离散,形成一系列具有一定厚度的薄片,用计算机控制下的激光束(或其他能量流)有选择地固化或黏结某一区域,从而形成构成零件实体的一个层面。
这样逐渐堆积形成一个原型(三维实体)。
必要时再通过一些后处理(如深度固化,修磨)工序,使其达到功能件的要求。
近期发展的快速成型技术主要有:立体光造型、选择性激光烧结、薄片叠层制造、熔化沉积模型。
由于快速成型(包括激光快速成型技术)仅在需要增加材料的地方加上材料,所以从设计到制造自动化,从知识获取到计算机处理,从计划到接口,等方面来看。
非常适合于CIM、CAD及CAM,同时传统的制造方法相比较,显示住诸多优点。
1.快速性快速性指有了产品的三维表面或体模型的设计就可以制造原型。
从CAD设计到完成原型制造原型。
只需数小时到十几小时的时间。
相比与其他方法快多了。
2.适合成型复杂零件采用激光快速成型技术制造零件时,不论零件多复杂,都由计算机分解为二位数据进行成型,无简单与复杂之分,因此它特别适合成型形状复杂、传统方法难以制造甚至无法制造的零件。
3.高度柔性无须传统加工的工夹量具及多种设备,零件在一台设备上即可成型出具有一定功能的原型及零件。
若要修改零件,只需修改CAD模型即可,特别适合于单件,小批量生产。
4.高度集成化激光快速成型技术将CAD数据转化为STL(快速成型技术标准接口)格式后,即可开始快速成型制造过程。
CAD到STL文件的转换是在CAD软件中自动完成的。
快速成型过程是二维操作,可以实现高度自动化和程序化,即用简单重复的二维操作成型复杂的三维零件,无需特殊的工具及人工干预。
快速成型:SLA、LOM、SLS、3DP、FDM
快速成型:SLA、LOM、SLS、3DP、FDM快速成型技术根据成型方法可分为两类:基于激光及其他光源的成型技术Laser Technology,例如:光固化成型SLA、分层实体制造LOM、选域激光粉末烧结SLS、形状沉积成型SDM 等;基于喷射的成型技术Jetting Technoloy,例如:熔融沉积成型FDM、三维印刷3DP、多相喷射沉积MJD光造型工艺SLASLA,Stereolithogrphy Apparatus工艺,也称光造型或立体光刻,由Charles Hul 于 1984 年获美国专利。
SLA 技术是基于液态光敏树脂的光聚合原理工作的。
这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。
SLA工作原理SLA工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。
成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。
当一层扫描完成后.未被照射的地方仍是液态树脂。
然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新周化的一层牢周地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。
SLA 方法是目前快速成型技术领域中研究得最多的方法.也是技术上最为成熟的方法。
S LA 工艺成型的零件精度较高,加工精度一般可达到 0.1 mm ,原材料利用率近 100 %。
但这种方法也有白身的局限性,比如需要支撑、树脂收缩导致精度下降、光固化树脂有一定的毒性等。
叠层实体制造工艺LOMLOM,Laminated Object Manufacturing,LOM工艺称叠层实体制造或分层实体制造,由美国Helisys公司的Michael Feygin于1986 年研制成功。
激光快速成型技术
也有时被简称为SLA(StereoLithography
Apparatus),它以光敏树脂为原料,通过计 算机控制紫外激光使其凝固成型。
光固化成型的基本原理
原理:计算机控 制激光束对光敏 树脂为原料的表 面进行逐点扫描, 被扫描区域 的树脂薄层(约十 分之几毫米)产生 光聚合反应而固 化,形成零件的 一个薄层。
五、展望
RP是一种处在发展完善过程的高新技术。目前 我国有多家机构从事RP技术及相关技术的研究, 在当今缩短产品开发周期和减少开发新产品投 资风险, 成为企业赖以生存的关键。因此, 快速成型、制模、制造技术将会得到进一步发 展。
谢 谢
零件在一台设备上即可快速成型出具有 一定精度﹑满足一定功能的零件(若要修改 零件只要修改CAD模型即可)
• 高度集成化:
激光快速成型技术将CAD数据转换成 STL格式后,即可开始快速制作(该过程是 二维操作在CAD中完成的)。
三、几种激光快速成型技术介绍
1、光固化成型技术
光固化成型工艺,也常被称为立体光刻成型,
光固化成型技术的优点:
• 1、成型过程自动化程度高:SLA系统非常稳定,
加工开始后,成型过程可以完全自动化,直至原型制 作完成。 • 2 、尺寸精度高: SLA原型的尺寸精度可以
达到±0.1mm。 • 3 、具有优良的表面质量 :虽然在每层固化 时侧面及曲面可能出现台阶,但上表面仍可得 到玻璃状的效果。 • 4 、可以制作结构十分复杂的模型 。
激光快速成型技术
一、概括
激光快速成型技术是上个世纪80年代发 展起来的一门高新技术。它是利用激光技术、 CAX技术、自动控制技术、新材料技术、直接 造型、快速制造产品模型的一们多学科综合技 术。目前,激光快速成型技术主要应用在航空 航天、汽车、玩具制造等行业。
激光快速成型技术原理
激光快速成型技术原理1. 引言激光快速成型技术(Laser Rapid Prototyping,简称Laser RP)是一种通过激光熔化或固化材料来逐层构建三维实体的制造技术。
它可以直接从计算机辅助设计(CAD)模型中生成物理模型,无需任何模具或切削工具。
激光快速成型技术的出现,极大地改变了传统制造业的生产方式,为产品研发与制造提供了一种快速、高效、灵活的解决方案。
本文将详细解释激光快速成型技术的基本原理,包括激光熔化成型(Selective Laser Melting,简称SLM)和激光固化成型(Stereolithography,简称SLA)两种常见的激光快速成型技术原理。
2. 激光熔化成型(SLM)原理激光熔化成型是一种通过激光熔化金属粉末来逐层构建金属实体的技术。
其基本原理如下:2.1 扫描路径规划在激光熔化成型过程中,首先需要根据CAD模型生成切片数据,然后使用计算机算法进行扫描路径规划。
扫描路径规划决定了激光在每一层的照射顺序,以及每个点的激光功率和照射时间。
2.2 激光照射在激光熔化成型过程中,使用高能量密度的激光束照射金属粉末,使其迅速熔化。
激光束的功率和照射时间会根据扫描路径规划的要求进行调整,以确保金属粉末被完全熔化。
2.3 层间粘结在每一层金属粉末被熔化后,需要等待熔融池冷却并凝固,形成一层固态金属。
然后,在下一层金属粉末上重复上述过程,直到构建出完整的三维实体。
每一层之间通过熔融池的凝固来实现粘结,确保构建出的实体具有足够的强度。
2.4 支撑结构在激光熔化成型过程中,由于构建过程是逐层进行的,上层的熔化金属会渗入到下层的固态金属中。
为了避免上层结构的变形和下层结构的破坏,通常需要添加支撑结构。
支撑结构可以提供支撑力和热传导,以保持构建过程的稳定性和精度。
2.5 后处理完成激光熔化成型后,需要进行后处理。
后处理包括去除支撑结构、表面处理、热处理等。
去除支撑结构通常需要机械或化学方法,以保持构建物表面的平整度和光洁度。
激光快速成型技术原理
激光快速成型技术原理激光快速成型技术(Laser Rapid Prototyping,LRP)是一种以激光为能源源,通过逐层熔化或固化材料,实现三维实物快速制造的先进制造技术。
它是在计算机辅助设计(CAD)的基础上,利用计算机数控技术、激光技术和材料科学等多学科的综合应用。
激光快速成型技术的原理主要包括建模、切片、成型三个步骤。
首先是建模。
在激光快速成型技术中,首先需要进行三维模型的建立。
通常使用计算机辅助设计软件进行建模,将设计好的三维模型输入到激光快速成型设备中。
建模过程需要考虑到设计的形状、尺寸、结构等因素,以及材料的特性和制造工艺的要求。
接下来是切片。
在建模完成后,需要将三维模型切片成多个薄层。
切片过程是将三维模型分解为一系列的二维层,每一层都是一个横截面的投影。
切片的精度和层数的选择会直接影响到最终成型件的质量和精度。
最后是成型。
成型过程中,通过控制激光束的扫描轨迹和功率密度,将激光束照射到材料表面,使其局部熔化或固化。
当一层材料完成后,工作台会相应下降一层,然后再次进行激光照射,逐层累积,最终完成整个成型过程。
激光快速成型技术可以使用多种材料,如金属、塑料、陶瓷等,可以制造出具有复杂形状和内部结构的实物。
激光快速成型技术基于激光熔化或固化材料的原理,具有以下优点:激光快速成型技术具有高度的制造自由度。
通过激光束的精确控制,可以实现各种复杂形状的制造,包括内部空腔、薄壁结构等。
这种自由度对于一些特殊形状的零件制造非常有优势。
激光快速成型技术具有高精度和高质量。
激光束的直径非常小,可以实现微米级别的精度。
而且激光束的能量密度非常高,可以使材料迅速熔化或固化,从而得到高质量的成型件。
激光快速成型技术具有快速制造速度。
相比传统的制造方法,激光快速成型技术可以大大缩短制造周期,提高生产效率。
这对于一些小批量、个性化的生产要求非常适用。
激光快速成型技术还具有材料利用率高、减少了加工工序、降低了生产成本等优点。
激光诱导蚀刻快速成型技术_概述及解释说明
激光诱导蚀刻快速成型技术概述及解释说明1. 引言1.1 概述激光诱导蚀刻快速成型技术是一种先进的制造方法,通过利用高能激光束对材料表面进行精确的物理和化学处理,实现对复杂结构零件的快速制造。
这项技术在工业界引起了广泛关注,并被广泛应用于各个领域。
1.2 文章结构本文将分为五个主要部分来介绍激光诱导蚀刻快速成型技术。
首先在引言部分将简要介绍该技术的背景和重要性。
接下来,在第二部分中将详细解释这项技术的定义、原理以及其发展历程。
第三部分将探讨激光源与扫描系统、材料选择与准备工作以及制造参数优化与控制策略等关键技术与方法。
然后,我们将通过实际应用案例分析,包括制造行业中的运用、医疗领域中的应用实例以及航空航天及国防领域的实践案例,来说明该技术在不同领域的优势和应用前景。
最后,在结论部分总结概括了本文的主要内容,并展望了未来该技术的发展趋势和前景。
1.3 目的本文的目标是全面介绍激光诱导蚀刻快速成型技术,包括定义、原理、发展历程以及其在不同领域中的应用案例。
通过深入了解这项技术,我们可以认识到其重要性和潜力,在未来的制造业中推动其进一步发展并促进创新。
此外,本文还旨在为相关领域的研究人员和工程师提供指导,以便更好地应用和开发该技术。
2. 激光诱导蚀刻快速成型技术2.1 定义和原理激光诱导蚀刻快速成型技术(Laser-Induced Etching Rapid Prototyping,简称LIEP)是一种基于激光与材料相互作用的三维打印技术。
它通过控制激光在材料表面的扫描路径和能量分布来实现高精度、高效率的零件制造。
该技术基于激光束在材料表面聚焦产生局部加热,在材料与环境之间形成临界温度,使材料发生化学反应或物理改变。
这些反应或改变可以通过调整激光的功率、扫描速度和扫描路径等参数来精确控制。
同时,由于激光束可以非常准确地聚焦并扫描在材料表面,因此LIEP技术具有较高的空间分辨率和制造精度。
2.2 发展历程激光诱导蚀刻快速成型技术最早起源于20世纪90年代初期,随着激光器、计算机控制系统和材料研究的不断进步,该技术得到了快速发展。
快速成型(RP)技术
快速成型(RP)技术快速成型(RP)技术简介RP技术是80年代后期发展起来的快速成型(Rapid Prototyping 简称RP)技术,被认为是近年来制造技术领域的一次重大突破,其对制造业的影响可与数控技术的出现相媲美。
RP系统综合了机械工程、CAD、数控技术,激光技术及材料科学技术,可以自动、直接、快速、精确地将设计思想物化为具有一定功能的原型或直接制造零件,从而可以对产品设计进行快速评价、修改及功能试验,有效地缩短了产品的研发周期。
而以RP系统为基础发展起来并已成熟的快速模具工装制造( Quick Tooling)技术,快速精铸技术(Quick Casting),快速金属粉末烧结技术(Quick Powder Sintering),则可实现零件的快速成品。
RP技术,迴异于传统的去除成型(如车、削、刨、磨),拼合成型(如焊接),或受迫成型(如铸、锻,粉末冶金)等加工方法,而是采用基于材料累积制造的思想,把三维立体看成是无数平行的、具有不同形状的层面的叠加,能快速制造出产晶原型。
快速原型制造技术(RP)将计算机辅助设计(CAD)、辅助制造(CAM)、计算机辅助控制(CHC)、精密伺服驱动和新材料等先进技术集于一体,依据计算机上构成的产品三维设计模型,对其进行分层切片,得到各层截面的轮廓,激光选择性的切割一层层的纸(或固化一层层的液态树脂、烧结一层层的粉末材料或热喷头选择快速地熔覆一层层的塑料或选择性地向粉末材料喷射一层层粘结剂等),形成各截面轮廓并逐步叠加成三维产品。
目前,它已成为现代制造业的支柱技术,是实现并行工程、集成制造技术和技术开发的必不可少的手段之一。
与传统的切削加工方法相比,快速原型加工具有以下优点:(1)可迅速制造出自由曲面和更为复杂形态的零件,如零件中的凹槽、凸肩和空心部分等,大大降低了新产品的开发成本和开发周期。
(2)属非接触加工,不需要机床切削加工所必需的刀具和夹具,无刀具磨损和切削力影响。
激光成型技术
激光成型技术摘要:激光快速成型技术(LPR)是上个世纪80年代发展起来的一门高新技术,他是利用激光技术,CAX技术,自动控制技术,新材料技术,直接造型,快速制造产品模型的一们多学科综合技术。
本文简单介绍激光成型技术的基本原理,特点,应用,及发展现状!关键词:激光成型技术、特点、应用、发展现状。
一:激光成型技术的基本原理。
激光快速成形(Laser Rapid Prototyping:LRP)是将CAD、CAM、CNC、激光、精密伺服驱动和新材料等先进技术集成的一种全新制造技术。
近期发展的LPR主要有:立体光造型(SLA) 技术;选择性激光烧结(SLS) 技术;激光熔覆成形(LCF)技术;激光近形(LENS)技术;激光薄片叠层制造(LOM) 技术;激光诱发热应力成形(LF)技术及三维印刷技术等。
下面将分别介绍以上几种技术!1:立体光造形(SLA)技术SLA技术又称光固化快速成形技术,其原理是计算机控制激光束对光敏树脂为原料的表面进行逐点扫描,被扫描区域的树脂薄层(约十分之几毫米)产生光聚合反应而固化,形成零件的一个薄层。
工作台下移一个层厚的距离,以便固化好的树脂表面再敷上一层新的液态树脂,进行下一层的扫描加工,如此反复,直到整个原型制造完毕。
由于光聚合反应是基于光的作用而不是基于热的作用,故在工作时只需功率较低的激光源。
此外,因为没有热扩散,加上链式反应能够很好地控制,能保证聚合反应不发生在激光点之外,因而加工精度高),表面质量好,原材料的利用率接近100%,能制造形状复杂、精细的零件,效率高。
对于尺寸较大的零件,则可采用先分块成形然后粘接的方法进行制作。
美国、日本、德国、比利时等都投入了大量的人力、物力研究该技术,并不断有新产品问世。
我国西安交通大学也研制成功了立体光造型机LPS600A。
目前,全世界有10多家工厂生产该产品。
汽车车身制造中的应用 SLA技术可制造出所需比例的精密铸造磨具,从而浇铸出一定比例的车身金属模型,利用此金属模型可进行风洞和碰撞等试验,从而完成对车身最终评价,以决定其设计是否合理。
SLS激光快速成型技术基本原理和工艺的优缺点
SLS激光快速成型技术基本原理和工艺的优缺点华曙高科指出SLS激光快速成型技术是采用铺粉辊将一层粉末材料平铺在已成型零件的上表面,并加热至恰好低于该粉末烧结点的某一温度,控制系统控制激光束按照该层的截面轮廓在粉层上扫描,使粉末的温度升到熔化点,进行烧结并与下面已成型的部分实现粘结。
一层完成后,工作台下降一层厚度,铺料辊在上面铺上一层均匀密实粉末,进行新一层截面的烧结,直至完成整个模型。
这项技术与SLA很相似,也是用激光束来扫描各层材料,但SLS的激光器为CO2激光器,成型材料为粉末物质。
制作时,粉末被预热到稍低于其熔点温度,然后控制激光束来加热粉末,使其达到烧结温度,从而使之固化并与上一层粘结到一起。
目前烧结的材料主要有标准的铸造蜡材,标准的工程热塑性塑料如聚碳酸酯、尼龙、覆膜金属。
现在国内外正在研究陶瓷以及其它工程塑料的烧结成型,下面由华曙高科快速模型给大家分析下SLS激光快速成型技术工艺的优缺点。
优点:(1)可采用多种材料。
理论上讲,可采用加热时黏度降低的任何粉末材料,通过材料或各种含黏结剂的涂层颗粒制造任何造型。
(2)制造工艺简单。
由于可用材料比较多,该工艺按材料的不同可以直接生产复杂形状的原型、型腔模三维构建或部件及工具。
(3)高精度。
该工艺一般能够达到工件整体范围内(0.05-2.5)mm的公差。
(4)无需支撑结构。
叠层过程出现的悬空层可直接由未烧结的粉末来支撑。
(5)材料利用率高。
该工艺不用支撑,不需制作基底支撑,为常见几种RP工艺利用率最高的,且价格较便宜。
缺点:(1)表面粗糙。
由于原材料是粉状的,原型建造是由材料粉层经过加热熔化实现逐层粘结的,因此,原型表面严格讲是粉粒状的,因而表面质量不高。
(2)烧结过程有异味。
SLS工艺中粉层需要激光使其加热达到熔化状态,高分子材料或者粉粒在激光烧结时会挥发异味气体。
(3)有时辅助工艺较复杂。
拿聚酰胺粉末烧结来说,为避免激光扫描烧结过程中材料因高温起火燃烧,需在工作空间加入阻燃气体,多为氮气。
激光快速成型技术在模具设计中的应用
( 苏电大 宜兴 学 院,江 苏 宜兴 江 240 ) 12 6
摘 要 :激光快速成型技术是一种新型的添加成型技术。在模具设计中 ,根据离散堆积原理 ,利用 合
适 的材 料 ,采 用 一 种 全 新 的成 型 方 法— — 分层 加 工 、迭 加 成 型 ,可实 现 任 意 复 杂 形 状 的 模 具 样件 的快 速
制 造 。其 应 用 已从 单 一 模 型 制 作 向快 速 模 具 制 造 及 快 速铸 造 等 多用 途 方 向发 展 ,为 实 现 模具 设 计 的短 周
期 、多 品种 、低 费 用 、高精 度 提 供 了一 条 捷 径 。
关 键 词 :激光快速成型 ; 模具设计 ; 三维建模 ; 快速制造 中 图 分 类 号 :T 7 G6 文 献 标 识 码 :A 文 章 编 号 :10 — 04 (00 6 04 — 3 05 68 2 1)0 — 03 0
术 .它 可 以 自动 快 速 地将 设 计 思 想 物 化 为具 有
一
定 结 构 和 性 能 的 原 型 或直 接 制 造 零 部 件 。应
用 于 模 具 设 计 中 .可 实 现任 意 复 杂 形状 的模 具
ห้องสมุดไป่ตู้
1 激 光 快速 成 型 技 术及 其 成 型原 理
11 激 光快速 成型 技术 .
m o e i g; r pi a i g d ln a dm kn
激 光快 速 成 型技 术 .是在 现 代 C D/ A A C M 技 术 、激 光 技 术 、计 算 机 数控 技 术 、精 密伺 服
驱 动 技 术 以及 新 材 料 技术 的基 础 上 集 成发 展 起
快速模具 制造及快速铸 造等多用途方 向发展 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光快速成型技术
3.激光熔覆成型技术 (LCF)
原理 :LCF技术的工作原理与其他快速成形技术基本相同,也是通过对工作台数 控,实现激光束对粉末的扫描熔覆,最终成形出所需形状的零件。激光熔覆成型 技术原理图如图所示,目前用此法制造出复杂截面变换器的零件外形的误差在 0.5mm以内。
激光熔覆成型技术原理示意图
激光快速成形技术
班级:11级机械1班 姓名:孙宁 罗纳德 叶一航
激光快速成形技术
1、激光快速成形技术的基本概念
成型及原理制造 成型方式的分类 成型制造技术的特点
2、激光快速成形技术方法
3、激光快速成形用材料 4、该技术的应用前景与展望
(五种方法)
激光快速成形技术的现状
从国际市场来看,R P 市场正逐渐向RM(快速制) 市场发展,R P 市场本身已进入成熟的商业化阶 段。我国已初步形成了RP设备和材料的制造体系。 近年来,我国已经建立一批向企业提供RP 技术的 服务机构,并开始起到了积极的作用, 推动了该 技术在我国的广泛应用。
4.用于制造活性金属的零件
由于激光快速成型制造能够提供良好的工作气氛环境,材料浪费少,所以可以用 于加工活性金属(如钛、钨、镍等)及其他的特殊金属。 5.用于小批量生产塑料制件 6.用于制造各种模具或模型 选择性激光烧结技术在航空工业中最有发展前途的应用,就是快速制造精密铸 造中的陶瓷模壳和型芯。
2014-5-14 材料成型及控制工程教研组 18
2014-5-14
9
激光快速成型技术
2.选择性激光烧结技术(SLS)
原理:选择性激光烧结技术(SLS技术)与立体光造型技术(SLA技术) 很相似,也是用激光束来扫描各原材料,但用粉末物质代替了液态光聚 合物,并以一定的扫描速度和能量作用于粉末材料 。选择性激光烧结 技术的基本原理如图所示。
选 择 性 激 光 烧 结 技 术 基 本 原 理
优点:
1、与其他工艺相比,能生产很硬的模具。有直接金属型的 概念。 2、可以采用多种原料,例如绝大多数工程用塑料、蜡、金属、陶瓷等。 3、 零件的构建时间短,可达到1in/h高度。 4、 无需对零件进行后矫正。
缺点:
1、需要专门实验室环境,维护费用高昂。 2、预热和冷却时间长,总的成形周期长。 3、成形件强度和表面质量较差,精度低。表面粗糙度的高低受粉末颗粒 大小及激光光斑的限制。 4、 零件的表面一般是多孔性的,为了使表面光滑必须进行渗蜡等较复杂 的后处理。在后处理中难于保证制件尺寸 精度,后处理工艺复杂,样件变型大,无法装配。
缺点
1、需要专门实验室环境,维护费用高昂。 2、成型件需后处理,二次固化,防潮处理等工序。 3、光敏树脂固化后较脆,易断裂,可加工性不 好;工作温度不能超过100℃,成形件易吸湿膨胀,抗 腐蚀能力不强。 4、氦-镉激光管的寿命仅3000小时,价格较昂贵,运行费用高同时需对整个截面进行扫描固化,成型时 间较长,因此制作成本相对较高。
激光近形制造技术的基本原理示意图
4.激光近型制造技术
(1) 计算机 用于建立待制作零件的CAD模型,将零件的CAD模型转换成STL文件,对零件的CAD 模型进行切片处理,生成一系列具有一定厚度的薄层,并形成每一层薄层的扫描 轨迹,以便控制多坐标数控工作台运动。 (2)高功率激光器 使用的是高达几千瓦到十几千瓦功率的CO2激光器,而不像选择性激光烧结技术 中所用的CO2激光器只有50瓦。 (3)多坐标数控工作台 采用多坐标数控工作台的运动实现扫描:在工作台上的零件除能够沿着X,Y轴方向 运动外,还可以绕X,Y轴转动。 (4)送粉装置 送粉装置是激光近形成型制造系统中非常重要并具有特点的一个部分。送粉装置性 能的好坏决定了零件的制作质量。对送粉装置的基本要求是能够提供均匀稳定的粉 末流。送粉装置有两种形式:侧向送粉装置和同轴送粉装置。
激光熔覆的复杂截面变换器
激光快速成型技术
4.激光近型制造技术
原理: LENS技术是将SLS技术和LCF技术相结合,并保持了这两种技术的优点。 激光近形制造技术(简称LENS)技术,将快速成型技术中的选择性激光烧结技术和 激光熔覆成型技术结合了起来。激光近形制造技术的基本原理如图所示。该系统主 要由4部分组成:计算机、高功率激光器、多坐标数控工作台和送粉装置。
2014-5-14 14
激光快速成型技术
5.薄片叠层制造技术(LOM)
原理:是利用在一定条件下(如加热等) 可以黏结的带状材料(通常使用纸或陶 瓷基或金属材料),运用激光切割出按照 RP软件离散出的各层形状,随后再使各 层黏合为一个几何整体。 薄片叠层制造技术是一种常用来制作模具的新型快速成型技术。其工作原理就是, 首先用大功率激光束切割金属薄片。然后将多层薄片叠加,并使其形状逐渐发生变 化,最终获得所需原型(模具)的立体几何形状。
2014-5-14
材料成型及控制工程教研组
22
感谢老师与同学们的的观看
谢谢!
国家级大学生创新创业训练项目
双 缸 摩 托 车 汽 缸 盖 样 件 快速技术生产的发动机蜡模 快速技术生产的发动机零件
LRP模型帮助手术计划
从CT数据到骨骼3D数值模
快速成型技术存在的问题
1﹑零件精度不够高
2﹑材料种类不够高
3﹑机械性能不够高
2014-5-14
21
快速成形技术的发展趋势
1﹑分成方式演变 PR数据处理过程是将CAD数据模型STL文件按一定方式分层片模型数 据CLI文件,以便于加工成层片从而堆积成实体。目前传统的分层已从 二维平面分层向空间的曲面分层。 2 ﹑材料功能 具有特定功能的电﹑磁的特殊功能材料(超导体﹑ 磁存储介质)采用 快速成型技术制造。 3 ﹑组织工程材料 生物医学工程已成为新的科学研究热点,其中生命体的人工合成和器 官的人工替代是该领域的科学前沿。
5/14/2014
17
激光快速成型技术的重要应用
1.用于制造复杂形状的零件 特别适合于在航天航空工业中制作大型带加强筋的整体薄壁结构零件。 2.快速制造原型
可以在极短的时间内设计制造出零件的原型,进行外观、功能和运动上的考核,发 现错误及时纠正,避免由于设计错误而带来的工装、模具等浪费。 3.用于制造多种材料或非均质材料的零件
体离散 面离散 线离散
有序面 后处理 面叠加
有序线
有序点 线叠加
点 叠 加
3、激光快速成型与传统工艺比较
由于快速成型技术(包括激光快速成型技术)仅在需要增加材料的地方加上 材料,所以从设计到制造自动化,从知识获取到计算机处理,从计划到 接口、通讯等方面来看,非常适合于CIM、CAD及CAM,同传统的制造 方法相比较,显示出诸多优点。
好 作砂型/型壳
低 慢 高 一般
好 作砂型/型壳
高/中等 慢/快 中等/低 低/一般
2014-5-14
16
• • • • • •
1 ﹑用于制造复杂形状的零件 2﹑ 快速制造原型 3 ﹑用于制造多种材料或非均匀材料的零件 4 ﹑用于制造活性金属的零件 5 ﹑用于小批量生产塑料制件 6 ﹑用于制造各种模具或模型
激光快速成型技术介绍
1﹑立体光造型技术
2﹑选择性激光烧结技术 3﹑激光熔覆成形技术
激光快速成型技术
1.立体光造型技术(SLA)
原理:计算机控制激光束对光敏树脂为原料的表面进行逐点扫描,被 扫描区域的树脂薄层(约十分之几毫米)产生光聚合反应而固化,形成 零件的一个薄层。立体光造型技术的原理如图所示,是典型的逐层制 造法。
激光快速成形技术
1 、激光快速成形技术集成了激光技术、CAD/CAM技术和材料技术的最新成 果,根据零件的CAD模型,用激光束将光敏聚合材料逐层固化,精确堆积 成样件,不需要模具和刀具即可快速精确地制造形状复杂的零件,该技术 已在航空航天、电子、汽车等工业领域得到广泛应用。
2、 快速成型技术的基本工作原理是离散、堆积。 离散/堆积过程如下
新 旧 流 程 图 如 右 图
图7-22 立体光造型技术的原理示意图
主要优点
• 快速性:生产制品的周期较传统加工工艺短。RP对设计的敏感性很低, 制造时几乎不用考虑制品的外形问题,由此可节约大量时间。 • 适合成型复杂零件:不论零件多复杂,都由计算机分解为二维数据进行 成型制作,无简单复杂之分,因此他特别适合成型形状复杂,传统方法 难以制造甚至无法制造的零件。 • 高度柔性:零件在一台设备上即可快速成型出具有一定精度﹑满足一定 功能的原理及零件(若要修改零件只要修改CAD模型即可) • 高度集成化:激光快速成型技术将CAD数据转换成STL格式后,即可开始 快速制作(该过程是二维操作在CAD只完成的)。
薄 片 叠 层 制 造 技 术 原 理 示 意 图
2014-5-14
材料成型及控制工程教研组
15
主要激光快速成型技术用于制造铸造模的优缺点对比
方法
SLA
LOM
SLS
材料
丙烯酸
纸
丙烯酸、聚碳酸酯
熔模铸造适应性 铸造方法
烧熔前膨胀性 烧熔时间 烧熔后残留物 铸件表面粗糙度
中等/好 作砂型/型壳
高 中等/快 低 低
•
优点
1、系统工作稳定。 2、尺寸精度较高,可确保工件的尺寸精度在 0.1mm以内。 3、 表面质量较好,工件的最上层表面很光滑,侧面可能有台阶不平及不同层面间的曲面不平;比较适 合做小件及较精细件。可直接制造塑料 件,产品为透明体。 4、 系统分辨率较高,因此能构建复杂结构的工件。 5、 成形速度较快。