2010年五年级奥数题:定义新运算(b)

合集下载

五年级奥数定义新运算练习题

五年级奥数定义新运算练习题

五年级奥数定义新运算练习题知识要点:定义新运算,是指用某些特殊的符号,表示特定的意义,从而解答某些特殊的算式的一种运算。

定义新运算中运算符号有:#、*、※、▽等,有时借用一些已有的运算符号“+、-、×、÷”,但与四则中的运算符号是有区别的。

解答定义新运算,必须先理解新定义的含义,遵循新定义的关系式,把问题转化为一般四则运算。

例题解答例1:已知a※b=a÷b×2+3×a-b,计算169※13例2:对于整数a,b,规定运算如下:a⊙b=a×b-a-b+1,求⊙2练习1、规定a⊕b=×b,求⊕52、对于任意整数a和b,规定a▲b=3a+2b-2,求11▲10的值。

3、已知a#b=a÷b×2+3,若256#a=19,求a定义新运算测试题1、假设x△y=÷4,求13△17的值;2△的值;求a△16=10中a的值。

2、已知P※Q=3、如果A⊙B=P?Q,求3※的值。

A?B,照这样的规则:3⊙[6⊙]的结果是多少?4、如果a□b表示a×b+a+b,那么□1=29,a是多少?5、如果a※b表示a×b+a,那么当x※5比5※x大100时,x是多少?6、若A☆B=A++++??+,那么X☆10=65中X的值是多少?7、令A#B=4A+3B,那么,#的结果是多少?五年级奥数专题三:定义新运算关键词:运算四则四则运算定义奥数符号意义这些表示年级我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。

除此之外,还会有什么别的运算吗?这两讲我们就来研究这个问题。

这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。

例 1 对于任意数a,b,定义运算“*”:a*b=a×b-a-b。

定义新运算(小学数学五年级奥数)

定义新运算(小学数学五年级奥数)

定义新运算知识与方法:对于常用的加、减、乘、除等运算,我们已经熟知它们的运算法则和计算方法,如6+2=8,6×2=12等。

都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。

由此可见,一种运算实际就是两个数与一个数的一种对应方法。

对应法则不同就是不同的运算。

当然,这个对应法则应该是对应任意两个数。

通过这个法则都有一个唯一确定的数与它们对应。

这节课,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。

解决定义新运算这类题的关键:是抓住定义的本质——借用“+、-、×、÷”四则运算进行的,解答时要弄清新运算与四则运算的关系。

特别注意运算顺序,每个新定义的运算符号只能在本题中使用,新运算不一定符合运算定律。

例1:设a、b都表示数,规定:a△b =3×a-2×b。

试计算:(1)3△2;(2)2△3。

练习1:1.设a、b都表示数,规定:a○b=5×a-2×b。

试计算3○4。

2.设a、b都表示数,规定:a*b=3×a+2×b。

试计算:5*6例2:对于两个数a与b,规定a△b=3a+2a,试计算2△(3△5)。

练习2:1.对于两个数a与b,规定:a○b=a+3b,试计算4○5○6。

2.对于两个数A与B,规定:A△B=2×A-B,试计算5△6△7。

例3:对于两个数a,b,规定:a⊕b=a×b+a+b,试计算:9⊕。

练习3:1.对于两个数a,b,规定:a⊕b=a×b-(a+b),试计算:6⊕7.2..对于两个数A与B,规定:AθB=A×B÷2,试计算:8θ9。

例4:如果2△3=2+3+4,5△4=5+6+7+8,那么按此规律计算:(1)3△5;(2)8△3。

练习4:1.如果4△2=4×5,2△3=2×3×4,那么按此规律计算:5△4。

(完整版)定义新运算(小学数学五年级奥数)

(完整版)定义新运算(小学数学五年级奥数)

定义新运算知识与方法:对于常用的加、减、乘、除等运算,我们已经熟知它们的运算法则和计算方法,如6+ 2=8, 6X2=12等。

都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。

由此可见,一种运算实际就是两个数与一个数的一种对应方法。

对应法则不同就是不同的运算。

当然,这个对应法则应该是对应任意两个数。

通过这个法则都有一个唯一确定的数与它们对应。

这节课,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。

解决定义新运算这类题的关键:是抓住定义的本质借用“ +、一、X、十”四则运算进行的,解答时要弄活新运算与四则运算的关系。

特别注意运算顺序,每个新定义的运算符号只能在本题中使用,新运算不一定符合运算定律。

例1:设a、b都表示数,规定:aAb =3X a— 2X b。

试计算:(1) 3A2; (2) 2A3。

练习1:1. 设a b都表示数,规定:a。

b=5X a— 2X b。

试计算3042. 设a b都表示数,规定:a*b=3x a+ 2X b。

试计算:5*6例2:对于两个数a与b,规定b=3a+ 2a,试计算( 3^5)练习2:1.对于两个数a与b,规定:aOb=a+3b,试计算405062.对于两个数A与B,规定:A△ B=2X A — B,试计算5A6A7例3:对于两个数a, b,规定:a金b=ax b+ a+ b,试计算:9 ®练习3:1.对于两个数a, b,规定:a$b=ax b— ( a+ b),试计算:6 ® 7.2..对于两个数A与B,规定:A GB=A X B-2,试计算:8 99例4:如果2、3=2 + 3 + 4, 5A4=5+ 6+ 7+ 8,那么按此规律计算:(1) 3A5;(2) 8A3。

练习4:1.如果4A2=4X 5, 2A3=2X 3X 4,那么按此规律计算:5A4。

2.如果24=24- (2+ 4), 3V6=36- (3 + 6), 6V3=63- (6+ 3),那么按此规律计算:7V2.例5:对于两个数a与b,规定aDb=a(a+1)+(a+2)+・・・(a+b— 1)。

(完整版)小学五年级奥数第一讲__定义新运算及作业

(完整版)小学五年级奥数第一讲__定义新运算及作业

第一讲定义新运算一、a、b是自然数,规定a※b=(a+b)÷2,求:3※(4※6)的值。

二、对于任意两个自然数a、b,定义一种新运算“*”:a*b=ab+a÷b,求75*5=?,12*4=?三、定义运算符“◎”:a◎b=3a+4b-5,求6◎9=?9◎6=?四、定义两种运算“○+”和“○×”,对于任意两个整数a、b规定:a○+b=a+b-1,a○×b=a×b-1,那么8○× [(6○+10)○+(5○×3)]等于多少?五、定义运算“○+”=(a+b)÷3,那么(3○+6)○+12与3○+(6○+12)哪一个大?大的比小的大多少?六、a、b是自然数,规定a⊙b= ab-a-b-10,求8⊙8=?七、如果1*2=1+2,2*3=2+3+4,3*4=3+4+5+6,……,请按照此规则计算3*7=?八、规定运算a@b=(a+b)÷2,且3@(x@2)=2,求x=?九、规定a△b=ab+2a, a▽b=2b-a,求(8△3)▽(9△5)的值。

第二讲定义新运算作业十、定义新运算“*”:a*b=3a+4b-2,求(1)10*11;(2)11*10。

十一、定义新运算“△”:a△b= a÷b×3,求(1)24△6;(2)36△9。

十二、规定a○+b,表示自然数a到b的各个数之和,例如:3 ○+10=3+4+5+6+7+8+9+10=52,求1○+200的值。

十三、定义新运算“○×”,a○×b=10a+20b,求(3○×7)+(4○×8)。

十四、定义新运算“△”:a△b=6a+3b+7,那么5△6和6△5哪个大?大的比小的大多少?十五、规定a*b=(a+b)÷2,求[(1*9)*9]*3的值。

十六、规定a☆b=3a-2b,如果x☆(4☆1)=7,求x的值。

十七、规定X○+Y=(X+Y)÷4求:(1)2○+(3○+5),(2)如果X○+16=10,求X的值。

有关定义新运算的奥数题

有关定义新运算的奥数题

有关定义新运算的奥数题
定义新运算的奥数题通常涉及数学中的某些基本概念,如数论、代数、几何等,并且通常需要使用一些特殊的工具或方法来解决。

以下是一些有关定义新运算的奥数题:
1. 定义新运算“+”,使得对于任意的整数 a、b 和 c,有
a+(b+c)=a+b+c。

请证明这个运算的封闭性、结合律和交换律。

2. 定义新运算“*”,使得对于任意的整数 a、b 和 c,有
a*b*c=a*b*(a*b+c)。

请证明这个运算的封闭性、结合律和交换律。

3. 定义新运算“/”,使得对于任意的整数 a、b 和 c,有
a/b/c=a/(b*c)。

请证明这个运算的封闭性、结合律和交换律。

4. 定义新运算“+”,使得对于任意的整数 a、b 和 c,有
a+(b-c)=a+b-c。

请证明这个运算的封闭性、结合律和交换律。

5. 定义新运算“*”,使得对于任意的整数 a、b 和 c,有
a*b*(a-b)=a*b-a*b*c。

请证明这个运算的封闭性、结合律和交换律。

解决这些问题需要深入的数学知识和技巧,例如代数、几何和概率等。

在解决这些问题时,通常需要使用一些特殊的方法和工具,例如归纳法、递推法、递归法等。

定义新运算的奥数题是数学中的一个重要分支,它们能够帮助学生发展他们的数学思维和解决问题的能力。

通过解决这些问题,学生可以更深入地了解数学中的各种概念和技巧,并且可以提高他们的数学素养。

五年级奥数培优之定义新运算

五年级奥数培优之定义新运算

定义新运算是指用一个符号和已知运算表达式表示一种新的运算。

解答定义新运算关键是要正确理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

例1 设b a,表示两个不同的数,规定b a b a 43.求6)78(.例2 规定:6* 2=6+66=72,2*3=2+22+222=246,1*4=1+11+111+1111=1234。

求7*5例3 设ab b a b a 5.024,求34)14(x 中的未知数x 。

专题:定义新运算1、定义运算?为a ?b =5×)(b a b a .则11?12=2、b a,表示两个数,记为:a ※b =2×b b a 41.则8※(4※16)= .3、设y x,为两个不同的数,规定x □y 4)(y x.求a □16=10中a = 4、有一个符号“?”,使下列算式成立:4?8=16,10?6=26,6?10=22,18?14=50.求7?3=5、如果a △b 表示(a-2)×b ,例如:3△4=(3-2)×4=4,那么当( a △2)△3=12时,a=6、对于数b a,规定运算“▽”为)5()3(b a ba .求)76(57、Q P,表示两个数,P ※Q =2Q P ,如3※4=243=3.5.求4※(6※8);如果x※(6※8)=6,那么x ?. 8、对任意的数a ,b ,定义:f (a )=a2+1, k (b )=2b(1)已知f (m )=26,求m 的值;(2)求f (k (3))+k (f (3))的值9、规定a ⊕)1()2()1(b a a a a b ,(b a,均为自然数,a b ).如果x ⊕10=65,那么x ?10、有A ,B ,C ,D 四种装置,将一个数输入一种装置后会输出另一个数。

装置A ∶将输入的数加上5;装置B ∶将输入的数除以2;装置C ∶将输入的数减去4;装置D ∶将输入的数乘以3。

定义新运算题目及答案解析-小学奥数

定义新运算题目及答案解析-小学奥数

专题定义新运算知识点1 直接运算型【基础训练】1、【★】设a,b都表示两个不同的数,规定:a△b=2×a+3×b,表示a的2倍加上b的3倍的和.(1)求4△7的值.(2)求2△3的值.【答案】(1)29;(2)13【解析】(1)找到a与b对应的数,根据定义的新运算,将算式中的a与b换成对应的数,再进行计算,即a=4,b=7,4△7=2×4+3×7=29;(2)方法同上,即a=2,b=3,2△3=2×2+3×3=13.2、【★★】设a、b都表示两个不同的数,规定:a▽b=a×b-(a+b).(1)求5▽6▽7的值.(2)求7▽(5▽4)的值.【答案】107;59【解析】(1)按照从左往右的顺序计算,①先算5▽6=5×6-(5+6)=30-11=19,②再算19▽7=19×7-(19+7)=133-26=107,所以5▽6▽7=107.(2)有括号的要先算括号里面的,①先算5▽4=5×4-(5+4)=20-9=11,②再算7▽11=7×11-(7+11)=77-18=59,所以7▽(5▽4)=59.3、【★★】x,y表示两个数,规定新运算“☆”及“○”如下:x☆y=2×x+3×y,x○y=6×x×y.(1)求10☆2的值.(2)求4○25的值.【答案】26;600【解析】(1)原式=2×10+3×2=26;(2)原式=6×4×25=600【拓展提升】1、【★★★】规定:a□b=a+(a+1)+(a+2)+…+(a+b-1),其中a、b表示自然数.求1□100的值.【答案】5050【解析】1□100=1+2+3+…+100=(1+100)×100÷2=50502、【★★★】已知x、y是任意有理数.我们规定:x☆y=x+y-1,x○y=x×y-2.(1)求10☆9.(2)求7○8.(3)求4○[(6☆8)☆(3○5)]的值.【答案】18;54;98【解析】(1)10☆9=10+9-1=18;(2)7○8=7×8-2=54(3)先算小括号里面的6☆8和3○5,6☆8=6+8-1=13,3○5=3×5-2=13.再计算中括号里面的13☆13=13+13-1=25.最后计算4○25=4×25-2=98.知识点2 反解未知型【拓展提升】1、【★★★】设x、y都表示两个不同的数,规定:x□y=x×y+2A,已知3□4=16.(1)求常数A是多少?(2)求3□(4□5)【答案】2;76【解析】(1)建立方程,3×4+2A=16,解得A=2.(2)先算括号里面的,①4□5=4×5+2×2=20+4=24,②再算3□24=3×24+2×2=72+4=762、【★★★★】规定:()()()121a b a a a a b ∆=+++++++-,其中a 、b 表示自然数. 已知1465x ∆∆=(),求x .【答案】x=2【解析】先求1△4=1+2+3+4=10,再算x △10=65,那么x+(x+1)+(x+2)+(x+3)+…+(x+9)=65,即10x+45=65,解得x=2知识点3 总结规律型【拓展提升】1、【★★★】已知:13123*=⨯⨯,242345*=⨯⨯⨯,4545678*=⨯⨯⨯⨯,…(1)求33*的值.(2)求25*的值.【答案】60;7202、【★★★】已知:12111∇=+,23222222∇=++,444444444444∇=+++,……(1)求73∇的值 。

五年级奥数第五讲定义新运算

五年级奥数第五讲定义新运算

定义新运算例1.a、b是自然数,规定a※b=(a+b)÷2,求:(1)5※7;(2)3※(4※6)的值。

练1.对于任意两个自然数a、b,定义一种新运算“*”:a*b=ab+a÷b,求75*5=?,12*4=?例2.定义运算“a○+b”=(a+b)÷3,那么(3○+6)○+12与3○+(6○+12)哪一个大?大的比小的大多少?练2.定义新运算“△”:a△b=6a+3b+7,那么5△6和6△5哪个大?大的比小的大多少?例3.规定a△b=ab+2a, a▽b=2b-a,求(8△3)▽(9△5)的值。

练3 y x ,表示两个数,规定新运算“*”及“△”如下:x *y x y 56+=,x △xy y 3=.求(2*3)△4的值.例4.定义一种运算“*”,它的意义是a ∗b=a+a a+aaa+…+(a ,b 都是非0自然数).(1)求:2∗3,3∗2;(2)求:23∗3,340∗2(3)求:5678×(5677∗2) - 5677×(5678∗2).练4.若a*b=a+(a+1)+(a+2)+(a+3)+…+(a+b-1),那么3*4*5=?例5.规定“口”的运算法则如下,对于任何整数a ,b ,有:求:(1口2)+(2口3)+(3口4)+ (4口5)+(5口6)+(6口7)+(7口8)十(8口9)+(9口10).练5.规定“⊕”的运算法则如下,对于任何整数P,Q,有:求:(1⊕2)+(2⊕3)+(3⊕4)+(4⊕5)+(5⊕6)作业1. 设b a ,表示两个不同的数,规定b a b a ⨯-⨯=∆34.求2)34(∆∆.2. 定义新的运算a ⊖b a b a b ++⨯=.求(1⊖2)⊖3.3. 定义两种运算“⊕”、“⊗”,对于任意两个整数b a ,,1-+=⊕b a b a ,1-⨯=⊗b a b a .计算)]53()86[(4⊕⊕⊕⊗的值.4. y x ,表示两个数,规定新运算“※”及“○”如下:x ※y x y 45+=,x ○xy y 6=.求(3※4)○5的值.5.对于任意自然数x和y,定义运算如下:若x和y同奇同偶,则x×y=(x+y)÷2若x和y奇偶性不同,则x×y=(x+y+1)÷2求(1994×1995)+(1995×1996)+(1996×1997)+……+(1999×2000)。

五年级奥数:定义新运算

五年级奥数:定义新运算

五年级奥数:定义新运算五年级奥数重难点:定义新运算定义新运算是指使用新的符号来进行运算。

在解题时需要按照所规定的“运算程序”进行运算,以得出最终结果。

不同的题目有不同的规定,我们应该严格按照题目中的规定进行运算。

类型一:直接运算型在这种类型的问题中,我们需要直接根据运算公式进行计算。

例如,对于题目“★”表示一种新运算,规定A★B=5A+7B,求4★5,我们可以直接代入A=4,B=5,然后按照规定进行计算。

练题:1.设a、b都表示数,规定:a○b=6×a-2×b。

试计算3○4.2.“♀”表示一种新的运算,规定A♀B=2A+3B,求0.3♀1.4.3.设a、b都表示数,规定:a*b=3×a+2×b。

试计算:(1)(5*6)*7(2)5*(6*7)4.a、b是自然数,规定a※b=(a+b)÷2,求3※(4※6)5.令A®B=3×A+4×B,试计算:(1)(4®5)®6(2)(1®5)+(2®4)类型二:反解未知数型在这种类型的问题中,我们需要建立方程来求解未知数。

例如,对于题目规定a&b=3a-2b,如果x&4=7,求x的值,我们可以建立方程3x-8=7,然后解方程得到x=5.练题:1.如果规定 ab cd =a×d-b×c,已知126 x2.4=7.2,求x的值。

2.对于任意正整数a,b,规定a※b=a÷b×2+3.若256※a=19,求a的值。

3.对于两个数a与b,规定a□b=a+(a+1)+(a+2)+…(a+b-1)。

已知x□6=27,求x。

类型三:观察规律型在这种类型的问题中,我们需要观察规律来进行计算。

例如,对于题目如果1※3=1+2+3=6,5※4=5+6+7+8=26,那么9※5=?我们可以发现,每个数的结果都是从第一个数开始加上后面的连续的几个数,因此9※5=9+10+11+12+13=55.练题:1.已知1∆3=1×2×3,6∆5=6×7×8×9×10,求2∆5.2.如果2※3=2+3+4=9,5※4=5+6+7+8=26,按此规则计算:(1)1※x=15(2)x※3=12类型四:综合类型在这种类型的问题中,我们需要综合运用不同的方法来进行计算。

小学五年级奥数题及答案:定义新运算

小学五年级奥数题及答案:定义新运算

小学五年级奥数题及答案:定义新运算小学五年级奥数题及答案:定义新运算定义新运算:(高等难度) 规定:A○B表示A、B中较大的数,A△B表示A、B中较小的数.若(A○5+B△3)×(B○5+ A△3)=96,且A、B均为大于0的自然数A×B的所有取值有( )个。

定义新运算答案:共5种;分类讨论,因为题目中所要求的定义新运算的符号是较大的数与较大的数,则对于A或者B有3类不同的范围,A小于3,A大于等于3,小于5,A大于等于5。

对于B也有类似,两者合起来共有3×3=9种不同的组合,我们分别讨论。

1) 当A<3,B<3,则(5+B) ×(5+A)=96=6×16=8×12,无解;2) 当3≤A<5,B<3时,则有(5+B)×(5+3)=96,显然无解;3) 当A≥5,B<3时,则有(A+B)×(5+3)=96,则A+B=12.所以有A=10,B=2,此时乘积为20或者A=11,B=1,此时乘积为11。

4) 当A<3,3≤B<5,有(5+3)×(5+A)=96,无解;5) 当3≤A<5,3≤B<5,有(5+3)×(5+3)=96,无解;6) 当A≥5,3≤B<5,有(A+3)×(5+3)=27,则A=9.此时B=3后者B=4。

则他们的乘积有27与36两种;7) 当A<3,B≥5时,有(5+3)×(B+A)=96。

此时A+B=12。

A与B 的乘积有11与20两种;8) 当3≤A<5,B≥5,有(5+3)×(B+3)=96。

此时有B=9.不符;9) 当A≥5,B≥5,有(A+3)×(B+3)=96=8×12。

则A=5,B=9,乘积为45。

所以A与B的乘积有11,20,27,36,45共五种。

2010年四年级奥数题:新定义运算(b)

2010年四年级奥数题:新定义运算(b)

2010年四年级奥数题:新定义运算(B)一、解答题1.设a,b表示两个不同的数,规定a△b=3a+4b.求(8△7)△6.2.定义运算⊖为a⊖b=5×a×b﹣(a+b).求11⊖12.3.a,b表示两个数,记为:a※b=2×.求8※(4※16).4.设x,y为两个不同的数,规定x□y=(x+y)÷4.求a□16=10中a的值.5.规定aΣ.求2Σ10Σ10的值.6.P,Q表示两个数,P※Q=,如3※4==3.5.求4※(6※8);如果x※(6※8)=6,那么x=?7.定义新运算x⊕.求3⊕(2⊕4)的值.8.有一个数学运算符号“⊗”,使下列算式成立:4⊗8=16,10⊗6=26,6⊗10=22,18⊗14=50.求7⊗3=?9.“▽”表示一种新运算,它表示:.求3▽5的值.10.,在x△(5△1)=6中.求x的值.11.规定,而且1△2=2△3,求3△4的值.12.设a、b都表示数,规定a△b=3×a﹣2×b,求3△4的值.13.(2012•武汉模拟)规定a⊕b=a+(a+1)+(a+2)+…+(a+b﹣1),(a,b均为自然数,b>a).如果x⊕10=65,那么x=?14.对于数a,b规定运算“▽”为a∇b=(a+3)×(b﹣5).求5∇(6∇7)的值.15.x,y表示两个数,规定新运算“Σ”及“△”如下:xΣy=6x+5y,x△y=3xy.求(2Σ3)△4的值.2010年四年级奥数题:新定义运算(B)参考答案与试题解析一、解答题1.设a,b表示两个不同的数,规定a△b=3a+4b.求(8△7)△6.2.定义运算⊖为a⊖b=5×a×b﹣(a+b).求11⊖12.3.a,b表示两个数,记为:a※b=2×.求8※(4※16).×﹣×5.规定aΣ.求2Σ10Σ10的值.的值为.6.P,Q表示两个数,P※Q=,如3※4==3.5.求4※(6※8);如果x※(6※8)=6,那么x=?Q=,可得=77=,得方程=6Q=8==5.57.定义新运算x⊕.求3⊕(2⊕4)的值.⊕,找出新的运算方法,再根据新的运算方法,计算)⊕,8.有一个数学运算符号“⊗”,使下列算式成立:4⊗8=16,10⊗6=26,6⊗10=22,18⊗14=50.求7⊗3=?9.“▽”表示一种新运算,它表示:.求3▽5的值.5=10.,在x△(5△1)=6中.求x的值.分析题干由=1.2得到方程=6解:因为1=11.规定,而且1△2=2△3,求3△4的值.根据规定,12.设a、b都表示数,规定a△b=3×a﹣2×b,求3△4的值.13.(2012•武汉模拟)规定a⊕b=a+(a+1)+(a+2)+…+(a+b﹣1),(a,b均为自然数,b>a).如果x⊕10=65,那么x=?14.对于数a,b规定运算“▽”为a∇b=(a+3)×(b﹣5).求5∇(6∇7)的值.15.x,y表示两个数,规定新运算“Σ”及“△”如下:xΣy=6x+5y,x△y=3xy.求(2Σ3)△4的值.。

五年级奥数教程 第一讲 定义新运算

五年级奥数教程 第一讲  定义新运算

第一讲 定义新运算在加.减.乘.除四则运算之外,还有其它许多种法则的运算。

在这一讲里,我们学习的新运算就是用“ #”“*”“Δ”等多种符号按照一定的关系“临时”规定的一种运算法则进行的运算。

例1:如果A*B=3A+2B ,那么7*5的值是多少?例2:如果A#B 表示3B A + 照这样的规定,6#(8#5)的结果是多少?例3:规定Y X XY Y X +=∆ 求2Δ10Δ10的值。

例4:设M*N 表示M 的3倍减去N 的2倍,即M*N=3M-2N(1) 计算(14 *10)*6(2) 计算 (58*43) *(1 *21)例5:如果任何数A 和B 有A ¤B=A ×B-(A+B )求(1)10¤7(2)(5¤3)¤4(3)假设2¤X=1求X例6:设P ∞Q=5P+4Q ,当X ∞9=91时,1/5∞(X ∞ 1/4)的值是多少?例7:规定X*Y=XY Y AX +,且5*6=6*5则(3*2)*(1*10)的值是多少?例8:▽表示一种运算符号,它的意义是))((A Y A X XY Y X +++=∇11 已知3211212112=+++=∇))((A 那么20088▽2009=?巩固练习1、已知2▽3=2+22+222=246; 3▽4=3+33+333+3333=3702;按此规则类推(1) 3▽2 (2)5▽3(3)1▽X=123,求X 的值2、已知1△4=1×2×3×4;5△3=5×6×7计算(1)(4△2)+(5△3) (2)(3△5)÷(4△4)3、如果A*B=3A+2B,那么(1)7*5的值是多少?(2)(4*5)*6 (3)(1*5)*(2*4)4、如果A>B,那么{A,B}=A;如果A<B,那么{A,B}=B;试求(1){8,0.8}(2){{1.9,1.901}1.19}5、N为自然数,规定F(N)=3N-2 例如F(4)=3×4-2=10试求:F(1)+F(2)+F(3)+F(4)+F(5)+……+F(100)的值6、如果1=1!1×2=2!1×2×3=3!……1×2×3×4×……×100=100!那么1!+2!+3!+……+100!的个位数字是几?(第四届小学生“迎春杯”数学决赛试题)7、若“+、-、×、÷、=、()”的意义是通常情况,而式子中的“5”却相当于“4”。

奥数专题-定义新运算(带答案完美排版)

奥数专题-定义新运算(带答案完美排版)

定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析:解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:① 3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例子可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步39△2=3 ×39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例子可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:① 5※7=5×7-(5+7)=35-12=23,7※ 5=7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例子可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)=8x-13那么8x-13=3 解出x=2.例3、定义新的运算a ?b=a×b+a+b.①求6 ?2,2 ?6;②求(1 ?2)?3,1 ?(2 ?3);③这个运算有交换律和结合律吗?解:① 6 ?2=6×2+6+2=20,2 ?6=2×6+2+6=20.②(1 ?2)?3=(1×2+1+2)?3=5 ?3=5×3+5+3=231 ?(2 ?3)=1 ?(2×3+2+3)=1 ?11=1×11+1+11=23.③先看“?”是否满足交换律:a ?b=a×b+a+bb ?a=b×a+b+a=a×b+a+b(普通加法与乘法的交换律)所以a ?b=b ?a,因此“?”满足交换律.再看“?”是否满足结合律:(a ?b)?c=(a×b+a+b)?c=(a×b+a+b)×c+a×b+a+b+c=abc +ac +bc +ab +a +b +c .a ?(b ?c )=a ?(b ×c +b +c )=a ×(b ×c +b +c )+a +b ×c +b +c=abc +ab +ac +a +bc +b +c=abc +ac +bc +ab +a +b +c .(普通加法的交换律) 所以(a ? b )? c =a ?(b ? c ),因此“?”满足结合律.说明:“?”对于普通的加法不满足分配律,看反例:1 ?(2+3)=1 ? 5=1×5+1+5=11;1 ? 2+1 ? 3=1×2+1+2+1×3+1+3=5+7=12;因此1 ?(2+3)≠ 1 ? 2+1 ? 3.例4、有一个数学运算符号“?”,使下列算式成立:2?4=8,5?3=13,3?5=11,9?7=25,求7?3=?解:通过对2?4=8,5?3=13,3?5=11,9?7=25这几个算式的观察,找到规律:a ?b =2a +b ,因此7?3=2×7+3=17.例5、x 、y 表示两个数,规定新运算“*”及“△”如下:x *y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据“△”的定义:1△2=k ×1×2=2k ,由于k 的值不知道,所以首先要计算出k 的值,k 值求出后,l △2的值也就计算出来了.我们设1△2=a , (1△2)*3=a *3,按“*”的定义: a *3=ma+3n ,在只有求出m 、n 时,我们才能计算a *3的值.因此要计算(1△2)*3的值,我们就要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.解:因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.又因为m 、n 均为自然数,所以解出:①当m=1,n=2时: (2*3)△4=(1×2+2×3)△4=8△4=k ×8×4=32k有32k=64,解出k=2.②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4=9△4=k ×9×4=36k有36k=64,解出k=971,这与k 是自然数矛盾,因此m=3,n =1,k=971 m=1 n =2 m=2 n =23(舍去) m=3n =1这组值应舍去.所以m=l ,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上面这一类定义新运算的问题中,关键的一条是:抓住定义这一点不放,在计算时,严格遵照规定的法则代入数值.还有一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a 一b =b 1a +, ①求2一(3一4)的值; ② 若x 一4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值. 4.定义两种运算“?”、“?”,对于任意两个整数a 、b ,a ?b =a +b +1, a ?b=a ×b -1,①计算4?[(6?8)?(3?5)]的值;②若x ?(x ?4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y ×2x ×m y×x ×6+(其中m 是一个确定的整数),如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值. 8.a ※b=b÷a b a +,在x ※(5※1)=6中,求x 的值. 9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =? 课后习题解答1.2.3.所以有5x-2=30,解出x=6.4 左边: 8.解:由于9.解:按照规定的运算:x △10=x +(x+1)+(x+2)+…+(x+10-1)=10x +(1+2+3+?+9)=10x + 45因此有10x + 45=65,解出x=2.定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a 、b 都表示数,规定a △b =3×a -2×b ,①求 3△2, 2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b =2,求b .例2、定义运算※为 a ※b =a ×b -(a +b ),①求5※7,7※5; ②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗? ④如果3※(5※x )=3,求x . 例3、定义新的运算a ? b =a ×b +a +b .①求6 ? 2,2 ? 6;②求(1 ? 2)? 3,1 ?(2 ? 3);③这个运算有交换律和结合律吗?例4、有一个数学运算符号“?”,使下列算式成立:2?4=8,5?3=13,3?5=11,9?7=25,求7?3=?例5、x 、y 表示两个数,规定新运算“*”及“△”如下:x *y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a 一b =b 1a +, ①求2一(3一4)的值; ② 若x 一4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值. 4.定义两种运算“?”、“?”,对于任意两个整数a 、b ,a ?b =a +b +1, a ?b=a ×b -1,①计算4?[(6?8)?(3?5)]的值;②若x ?(x ?4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y ×2x ×m y×x ×6+(其中m 是一个确定的整数),如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值. 8.a ※b=b÷a b a +,在x ※(5※1)=6中,求x 的值.9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年五年级奥数题:定义新运算(B)
一、填空题(共10小题,每小题3分,满分30分)
1.(3分)规定:a※b=(b+a)×b,那么(2※3)※5=_________.
2.(3分)如果a△b表示(a﹣2)×b,例如3△4=(3﹣2)×4=4,那么,当a△5=30时,a=_________.
3.(3分)定义运算“△”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的和记为a△b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12=_________.
4.(3分)已知a,b是任意有理数,我们规定:a⊕b=a+b﹣1,a⊗b=ab﹣2,那么4⊗[(6⊕8)⊕(3⊗5)]=_________.
5.(3分)x为正数,<x>表示不超过x的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是_________.
6.(3分)如果a⊙b表示3a﹣2b,例如4⊙5=3×4﹣2×5=2,那么,当x⊙5比5⊙x大5时,x=_________.
7.(3分)如果1※4=1234,2※3=234,7※2=78,那么4※5=_________.
8.(3分)我们规定:符号○表示选择两数中较大数的运算,例如:5○3=3○5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3.
请计算:=_________.
9.(3分)规定一种新运算“※”:a※b=a×(a+1)×…×(a+b﹣1).如果(x※3)※4=421200,那么x=_________.
10.(3分)对于任意有理数x,y,定义一种运算“※”,规定:x※y=ax+by﹣cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x※m=x(m≠0),则m的数值是_________.
二、解答题(共4小题,满分0分)
11.设a,b为自然数,定义a△b=a2+b2﹣ab.
(1)计算(4△3)+(8△5)的值;
(2)计算(2△3)△4;
(3)计算(2△5)△(3△4).
12.设a,b为自然数,定义a※b如下:如果a≥b,定义a※b=a﹣b,如果a<b,则定义a※b=b﹣a.
(1)计算:(3※4)※9;
(2)这个运算满足交换律吗?满足结合律吗?也是就是说,下面两式是否成立?①a※b=b※a;②(a※b)※c=a※(b※c).13.设a,b是两个非零的数,定义a※b=.
(1)计算(2※3)※4与2※(3※4).
(2)如果已知a是一个自然数,且a※3=2,试求出a的值.
14.定义运算“⊙”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的差记为a⊙b.比如:10和14,最小公倍数为70,最大公约数为2,则10⊙14=70﹣2=68.
(1)求12⊙21,5⊙15;
(2)说明,如果c整除a和b,则c也整除a⊙b;如果c整除a和a⊙b,则c也整除b;(3)已知6⊙x=27,求x的值.
2010年五年级奥数题:定义新运算(B)
参考答案与试题解析
一、填空题(共10小题,每小题3分,满分30分)
1.(3分)规定:a※b=(b+a)×b,那么(2※3)※5=100.
2.(3分)如果a△b表示(a﹣2)×b,例如3△4=(3﹣2)×4=4,那么,当a△5=30时,a=8.
3.(3分)定义运算“△”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的和记为a△b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12=42.
4.(3分)已知a,b是任意有理数,我们规定:a⊕b=a+b﹣1,a⊗b=ab﹣2,那么4⊗[(6⊕8)⊕(3⊗5)]=98.
5.(3分)x为正数,<x>表示不超过x的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是11.
6.(3分)如果a⊙b表示3a﹣2b,例如4⊙5=3×4﹣2×5=2,那么,当x⊙5比5⊙x大5时,x=6.
7.(3分)如果1※4=1234,2※3=234,7※2=78,那么4※5=45678.
8.(3分)我们规定:符号○表示选择两数中较大数的运算,例如:5○3=3○5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3.
请计算:=.
○○=,
△=△,
△=△,
О,
=
故答案为:
9.(3分)规定一种新运算“※”:a※b=a×(a+1)×…×(a+b﹣1).如果(x※3)※4=421200,那么x=2.
10.(3分)对于任意有理数x,y,定义一种运算“※”,规定:x※y=ax+by﹣cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x※m=x(m≠0),则m的数值是4.
,得
二、解答题(共4小题,满分0分)
11.设a,b为自然数,定义a△b=a2+b2﹣ab.
(1)计算(4△3)+(8△5)的值;
(2)计算(2△3)△4;
(3)计算(2△5)△(3△4).
12.设a,b为自然数,定义a※b如下:如果a≥b,定义a※b=a﹣b,如果a<b,则定义a※b=b﹣a.
(1)计算:(3※4)※9;
(2)这个运算满足交换律吗?满足结合律吗?也是就是说,下面两式是否成立?①a※b=b※a;②(a※b)※c=a※(b※c).
13.设a,b是两个非零的数,定义a※b=.
(1)计算(2※3)※4与2※(3※4).
(2)如果已知a是一个自然数,且a※3=2,试求出a的值.
3=,,
※,

,则
14.定义运算“⊙”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的差记为a⊙b.比如:10和14,最小公倍数为70,最大公约数为2,则10⊙14=70﹣2=68.
(1)求12⊙21,5⊙15;
(2)说明,如果c整除a和b,则c也整除a⊙b;如果c整除a和a⊙b,则c也整除b;
(3)已知6⊙x=27,求x的值.。

相关文档
最新文档