科学计算方法20(常微分方程数值解)

合集下载

常微分方程的数值解

常微分方程的数值解

f ( x, y1 ) f ( x, y2 ) L y1 y2
(其中 L 为 Lipschitz 常数)则初值问题( 1 )存 在唯一的连续解。
求问题(1)的数值解,就是要寻找解函数在一 系列离散节点x1 < x2 <……< xn < xn+1 上的近似 值y1, y 2,…,yn 。 为了计算方便,可取 xn=x0+nh,(n=0,1,2,…), h称为步长。
(1),(2)式称为初值问题,(3)式称为边值问题。 在实际应用中还经常需要求解常微分方程组:
f1 ( x, y1 , y2 ) y1 ( x0 ) y10 y1 (4) f 2 ( x, y1 , y2 ) y2 ( x0 ) y20 y2
本章主要研究问题(1)的数值解法,对(2)~(4)只 作简单介绍。
得 yn1 yn hf ( xn1 , yn1 )
上式称后退的Euler方法,又称隐式Euler方法。 可用迭代法求解
二、梯形方法 由
y( xn1 ) y( xn )
xn1 xn
f ( x, y( x))dx
利用梯形求积公式: x h x f ( x, y( x))dx 2 f ( xn , y( xn )) f ( xn1 , y( xn1 ))
常微分方程的数言 简单的数值方法 Runge-Kutta方法 一阶常微分方程组和高阶方程
引言
在高等数学中我们见过以下常微分方程:
y f ( x, y, y) a x b y f ( x, y ) a x b (2) (1) (1) y ( x ) y , y ( x ) y 0 0 0 0 y ( x0 ) y0 y f ( x, y, y) a x b (3) y(a) y0 , y(b) yn

求常微分方程的数值解

求常微分方程的数值解

求常微分方程的数值解一、背景介绍常微分方程(Ordinary Differential Equation,ODE)是描述自然界中变化的数学模型。

常微分方程的解析解往往难以求得,因此需要寻找数值解来近似地描述其行为。

求解常微分方程的数值方法主要有欧拉法、改进欧拉法、龙格-库塔法等。

二、数值方法1. 欧拉法欧拉法是最简单的求解常微分方程的数值方法之一。

它基于导数的定义,将微分方程转化为差分方程,通过迭代计算得到近似解。

欧拉法的公式如下:$$y_{n+1}=y_n+f(t_n,y_n)\Delta t$$其中,$y_n$表示第$n$个时间步长处的函数值,$f(t_n,y_n)$表示在$(t_n,y_n)$处的导数,$\Delta t$表示时间步长。

欧拉法具有易于实现和理解的优点,但精度较低。

2. 改进欧拉法(Heun方法)改进欧拉法又称Heun方法或两步龙格-库塔方法,是对欧拉法进行了精度上提升后得到的一种方法。

它利用两个斜率来近似函数值,并通过加权平均来计算下一个时间步长处的函数值。

改进欧拉法的公式如下:$$k_1=f(t_n,y_n)$$$$k_2=f(t_n+\Delta t,y_n+k_1\Delta t)$$$$y_{n+1}=y_n+\frac{1}{2}(k_1+k_2)\Delta t$$改进欧拉法比欧拉法精度更高,但计算量也更大。

3. 龙格-库塔法(RK4方法)龙格-库塔法是求解常微分方程中最常用的数值方法之一。

它通过计算多个斜率来近似函数值,并通过加权平均来计算下一个时间步长处的函数值。

RK4方法是龙格-库塔法中最常用的一种方法,其公式如下:$$k_1=f(t_n,y_n)$$$$k_2=f(t_n+\frac{\Delta t}{2},y_n+\frac{k_1\Delta t}{2})$$ $$k_3=f(t_n+\frac{\Delta t}{2},y_n+\frac{k_2\Delta t}{2})$$ $$k_4=f(t_n+\Delta t,y_n+k_3\Delta t)$$$$y_{n+1}=y_n+\frac{1}{6}(k_1+2k_2+2k_3+k_4)\Delta t$$三、数值求解步骤对于给定的常微分方程,可以通过以下步骤求解其数值解:1. 确定初值条件:确定$t=0$时刻的函数值$y(0)$。

常微分方程的数值解算法

常微分方程的数值解算法

常微分方程的数值解算法常微分方程的数值解算法是一种对常微分方程进行数值计算的方法,这可以帮助我们更好地理解和研究自然现象和工程问题。

在本文中,我们将介绍一些常用的数值解算法,探讨它们的优缺点和适用范围。

常微分方程(ODE)是描述自然现象和工程问题的重要数学工具。

然而,对于许多ODE解析解是无法求出的,因此我们需要通过数值方法对其进行求解。

常微分方程可以写作:y' = f(t, y)其中,y是函数,f是给定的函数,表示y随t的变化率。

这个方程可以写成初始值问题(IVP)的形式:y'(t) = f(t,y(t)),y(t0) = y0其中,y(t0)=y0是方程的初始条件。

解决IVP问题的典型方法是数值方法。

欧拉方法欧拉方法是最简单的一阶数值方法。

在欧拉方法中,我们从初始条件开始,并在t = t0到t = tn的时间内,用以下公式逐步递推求解:y n+1 = y n + hf (t n, y n)其中,f(t n,y n)是点(t n,y n)处的导数, h = tn - tn-1是时间间隔。

欧拉方法的优点是简单易懂,容易实现。

然而,它的缺点是在整个时间段上的精度不一致。

程度取决于使用的时间间隔。

改进的欧拉方法如果我们使用欧拉方法中每个时间段的中间点而不是起始点来估计下一个时间点,精度就会有所提高。

这个方法叫做改进的欧拉方法(或Heun方法)。

公式为:y n+1 = y n + h½[f(t n, y n)+f(tn+1, yn + h f (tn, yn))]这是一个二阶方法,精度比欧拉方法高,但计算量也大一些。

对于易受噪声干扰的问题,改进的欧拉方法是个很好的选择。

Runge-Kutta方法Runge-Kutta方法是ODE计算的最常用的二阶和高阶数值方法之一。

这个方法对定义域内的每个点都计算一个导数。

显式四阶Runge-Kutta方法(RK4)是最常用的Runge-Kutta方法之一,并已得到大量实践的验证。

常微分方程中的数值方法

常微分方程中的数值方法

常微分方程中的数值方法常微分方程是数学中的一个重要分支。

它主要研究的对象是随时间变化的函数。

在实际应用中,我们需要求解这些函数的解析解,但通常情况下,解析解并不容易得到,甚至是不可能得到。

因此,我们需要使用数值方法来求解这些函数的数值近似解。

在本文中,我们将介绍常微分方程中的数值方法。

一、欧拉法欧拉法是常微分方程数值解法中最基本的一种方法。

它是根据欧拉公式推导而来的。

具体地,我们可以将一阶常微分方程dy/dt=f(t,y)写成如下形式:y(t+h)=y(t)+hf(t,y(t))其中,h是步长,f(t,y)是t时刻y的导数。

欧拉法就是通过上面的公式进行逐步逼近,然后得到最终的数值解。

欧拉法的计算过程非常简单,但所得到的解可能会出现误差。

这是因为欧拉法忽略了f(t+h,y(t+h))和f(t,y(t))之间的变化。

因此,我们需要使用更为精确的数值方法来解决这个问题。

二、改进欧拉法为了解决欧拉法中的误差问题,我们可以使用改进欧拉法。

改进欧拉法又称作四阶龙格-库塔法。

它的基本思想是对欧拉法公式进行改进,以提高计算精度。

具体地,根据龙格-库塔公式,可将改进欧拉法表示为:y(t+h)=y(t)+1/6(k1+2k2+2k3+k4)其中,k1=h*f(t,y)k2=h*f(t+h/2,y+k1/2)k3=h*f(t+h/2,y+k2/2)k4=h*f(t+h,y+k3)改进欧拉法的计算过程比欧拉法要复杂些,但所得到的数值解比欧拉法更精确。

这种方法适用于一些特殊的问题,但在求解一些更为复杂的问题时,还需要使用其他的数值方法。

三、龙格-库塔法龙格-库塔法是求解常微分方程中数值解的常用方法之一。

它最常用的是四阶龙格-库塔法。

这种方法的基本思想是使用四个不同的斜率来计算数值解。

具体地,我们可以将四阶龙格-库塔法表示为:y(t+h)=y(t)+1/6(k1+2k2+2k3+k4)其中,k1=h*f(t,y)k2=h*f(t+h/2,y+k1/2)k3=h*f(t+h/2,y+k2/2)k4=h*f(t+h,y+k3)与改进欧拉法相比,龙格-库塔法的计算复杂度更高,但所得到的数值解更为精确。

微分方程的数值解法

微分方程的数值解法

微分方程的数值解法微分方程是描述自然界中众多现象和规律的重要数学工具。

然而,许多微分方程是很难或者无法直接求解的,因此需要使用数值解法来近似求解。

本文将介绍几种常见的微分方程数值解法。

1. 欧拉方法欧拉方法是最简单的数值解法之一。

它将微分方程转化为差分方程,通过计算离散点上的导数来逼近原方程的解。

欧拉方法的基本思想是利用当前点的导数值来估计下一个点的函数值。

具体步骤如下:首先,将自变量区间等分为一系列的小区间。

然后,根据微分方程的初始条件,在起始点确定初始函数值。

接下来,根据导数的定义,计算每个小区间上函数值的斜率。

最后,根据初始函数值和斜率,递推计算得到每个小区间上的函数值。

2. 龙格-库塔方法龙格-库塔方法是一种常用的高阶精度数值解法。

它通过进行多次逼近和修正来提高近似解的准确性。

相比于欧拉方法,龙格-库塔方法在同样的步长下可以获得更精确的解。

具体步骤如下:首先,确定在每个小区间上的步长。

然后,根据微分方程的初始条件,在起始点确定初始函数值。

接下来,根据当前点的导数值,使用权重系数计算多个中间点的函数值。

最后,根据所有中间点的函数值,计算出当前点的函数值。

3. 改进欧拉方法(改进的欧拉-克罗默法)改进欧拉方法是一种中阶精度数值解法,介于欧拉方法和龙格-库塔方法之间。

它通过使用两公式递推来提高精度,并减少计算量。

改进欧拉方法相对于欧拉方法而言,增加了一个估计项,从而减小了局部截断误差。

具体步骤如下:首先,确定在每个小区间上的步长。

然后,根据微分方程的初始条件,在起始点确定初始函数值。

接下来,利用欧拉方法计算出中间点的函数值。

最后,利用中间点的函数值和斜率,计算出当前点的函数值。

总结:微分方程的数值解法为我们研究和解决实际问题提供了有力的工具。

本文介绍了欧拉方法、龙格-库塔方法和改进欧拉方法这几种常见的数值解法。

选择合适的数值解法取决于微分方程的性质以及对解的精确性要求。

在实际应用中,我们应该根据具体情况选择最合适的数值解法,并注意控制步长以尽可能减小误差。

常微分方程数值解

常微分方程数值解

常微分方程数值解常微分方程数值解是数学中的一门重要学科,主要研究如何求解常微分方程,在科学计算中有着重要的应用。

常微分方程模型是自然界中广泛存在的现象描述方法,有着广泛的应用领域。

比如,在物理学中,运动中的物体的位置、速度和加速度随时间的关系就可以通过微分方程描述;在经济学中,经济变化随时间的变化也可以用微分方程来描述。

而常微分方程数值解的求解方法则提供了一种快速、高效的计算手段。

一、常微分方程数值解的基本概念常微分方程就是一个描述自变量(通常是时间)与其导数之间关系的方程。

其一般形式如下:$\frac{dy}{dt} = f(y,t)$其中 $f(y,t)$ 是一个已知的函数。

常微分方程数值解就是对于一个常微分方程,对其进行数字计算求解的方法。

常微分方程数值解常使用数值积分的方法来求解。

由于常微分方程很少有解析解,因此数值解的求解方法显得尤为重要。

二、常微分方程数值解的求解方法常微分方程数值解的求解方法很多,以下介绍其中两种方法。

1.欧拉法欧拉法是最简单的一种数值算法,其思想是通过将一个微分方程转化为一个数值积分方程来求解。

其数值积分方程为:$y_{i+1}=y_i+hf(y_i,t_i)$其中 $h$ 为步长,可以理解为每次计算的间隔。

欧拉法的主要缺点是其精度比较低,收敛速度比较慢。

因此,当需要高精度的数值解时就需要使用其他的算法。

2.级数展开方法级数展开法是通过将一个待求解的微分方程进行Taylor级数展开来求解。

通过对Taylor级数展开的前若干项进行求和,可以得到微分方程与其解的近似解。

由于级数展开法的收敛速度很快,因此可以得到相对较高精度的数值解。

但是,当级数过多时,会出现截断误差。

因此,在实际应用中需要根据所需精度和计算资源的限制来选择适当的级数。

三、常微分方程数值解的应用常微分方程数值解在现代科学技术中有着广泛的应用。

以下介绍其中两个应用领域。

1.物理建模常微分方程的物理建模是常见的应用领域。

常微分方程的数值解法(欧拉法、改进欧拉法、泰勒方法和龙格库塔法)

常微分方程的数值解法(欧拉法、改进欧拉法、泰勒方法和龙格库塔法)

[例1]用欧拉方法与改进的欧拉方法求初值问题h 的数值解。

在区间[0,1]上取0.1[解]欧拉方法的计算公式为x0=0;y0=1;x(1)=0.1;y(1)=y0+0.1*2*x0/(3*y0^2);for n=1:9x(n+1)=0.1*(n+1);y(n+1)=y(n)+0.1*2*x(n)/(3*y(n)^2);end;xy结果为x =Columns 1 through 80.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 Columns 9 through 100.9000 1.0000y =Columns 1 through 81.0000 1.0067 1.0198 1.0391 1.0638 1.0932 1.1267 1.1634 Columns 9 through 101.2028 1.2443改进的欧拉方法其计算公式为本题的精确解为()y x=x0=0;y0=1;ya(1)=y0+0.1*2*x0/(3*y0^2);y(1)=y0+0.05*(2*x0/(3*y0^2)+2*x0/(3*ya^2));for n=1:9x(n+1)=0.1*(n+1);ya(n+1)=ya(n)+0.1*2*x(n)/(3*ya(n)^2);y(n+1)=y(n)+0.05*(2*x(n)/(3*y(n)^2)+2*x(n+1)/(3*ya(n+1)^2));end;xy结果为x =Columns 1 through 80.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 Columns 9 through 100.9000 1.0000y =Columns 1 through 81.0000 1.0099 1.0261 1.0479 1.0748 1.1059 1.1407 1.1783 Columns 9 through 101.2183 1.2600[例2]用泰勒方法解x=0.1, 0.2, …, 1.0处的数值解,并与精确解进行比较。

常微分方程的数值解法

常微分方程的数值解法

常微分方程的数值解法常微分方程是研究变量的变化率与其当前状态之间的关系的数学分支。

它在物理、工程、经济等领域有着广泛的应用。

解常微分方程的精确解往往十分困难甚至不可得,因此数值解法在实际问题中起到了重要的作用。

本文将介绍常见的常微分方程的数值解法,并比较其优缺点。

1. 欧拉方法欧拉方法是最简单的数值解法之一。

它基于近似替代的思想,将微分方程中的导数用差商近似表示。

具体步骤如下:(1)确定初始条件,即问题的初值。

(2)选择相应的步长h。

(3)根据微分方程的定义使用近似来计算下一个点的值。

欧拉方法的计算简单,但是由于误差累积,精度较低。

2. 改进欧拉方法为了提高欧拉方法的精度,改进欧拉方法应运而生。

改进欧拉方法通过使用两个点的斜率的平均值来计算下一个点的值。

具体步骤如下:(1)确定初始条件,即问题的初值。

(2)选择相应的步长h。

(3)根据微分方程的定义使用近似来计算下一个点的值。

改进欧拉方法相较于欧拉方法而言,精度更高。

3. 龙格-库塔法龙格-库塔法(Runge-Kutta)是常微分方程数值解法中最常用的方法之一。

它通过迭代逼近精确解,并在每一步中计算出多个斜率的加权平均值。

具体步骤如下:(1)确定初始条件,即问题的初值。

(2)选择相应的步长h。

(3)计算各阶导数的导数值。

(4)根据权重系数计算下一个点的值。

与欧拉方法和改进欧拉方法相比,龙格-库塔法的精度更高,但计算量也更大。

4. 亚当斯法亚当斯法(Adams)是一种多步法,它利用之前的解来近似下一个点的值。

具体步骤如下:(1)确定初始条件,即问题的初值。

(2)选择相应的步长h。

(3)通过隐式或显式的方式计算下一个点的值。

亚当斯法可以提高精度,并且比龙格-库塔法更加高效。

5. 多步法和多级法除了亚当斯法,还有其他的多步法和多级法可以用于解常微分方程。

多步法通过利用多个点的值来逼近解,从而提高精度。

而多级法则将步长进行分割,分别计算每个子问题的解,再进行组合得到整体解。

求微分方程数值解

求微分方程数值解

求微分方程数值解
微分方程数值解是一种数学方法,用于解决一些复杂的微分方程,特别是那些无法通过解析方法求解的微分方程。

通过数值解法,我们可以得到微分方程的近似解,并且可以在计算机上进行实现,以便更好地理解和分析问题。

我们需要将微分方程转化为差分方程,这样就可以利用数值方法进行求解。

差分方程是一种以离散形式表示微分方程的方法,通过近似替代微分表达式,将连续问题转化为离散问题,从而实现计算机求解。

常见的数值方法包括欧拉方法、龙格-库塔方法等,它们通过不断迭代求解差分方程,逼近微分方程的解。

在应用数值解法求解微分方程时,需要注意选择合适的步长和迭代次数,以确保数值解的准确性和稳定性。

步长过大会导致数值误差增大,步长过小则会增加计算量,影响计算效率。

因此,需要在准确性和效率之间寻找平衡点,选择合适的参数进行计算。

在使用数值解法时,还需要考虑边界条件和初值条件的设定。

这些条件对于微分方程的求解至关重要,不同的条件设定可能会导致不同的数值解,甚至无法得到有效的解。

因此,在进行数值计算之前,需要对问题进行充分的分析和理解,确定合适的条件,以确保数值解的准确性和可靠性。

总的来说,微分方程数值解是一种强大的工具,可以帮助我们解决
复杂的微分方程,探索未知的领域。

通过合理的数值方法和参数选择,我们可以得到准确的数值解,从而更好地理解和应用微分方程的理论。

希望通过不断的探索和实践,我们可以更深入地理解微分方程数值解的原理和方法,为科学研究和工程实践提供更多有益的帮助。

常微分方程初值问题的数值解法

常微分方程初值问题的数值解法

第七章 常微分方程初值问题的数值解法--------学习小结一、本章学习体会通过本章的学习,我了解了常微分方程初值问题的计算方法,对于解决那些很难求解出解析表达式的,甚至有解析表达式但是解不出具体的值的常微分方程非常有用。

在这一章里求解常微分方程的基本思想是将初值问题进行离散化,然后进行迭代求解。

在这里将初值问题离散化的方法有三种,分别是差商代替导数的方法、Taylor 级数法和数值积分法。

常微分方程初值问题的数值解法的分类有显示方法和隐式方法,或者可以分为单步法和多步法。

在这里单步法是指计算第n+1个y 的值时,只用到前一步的值,而多步法则是指计算第n+1个y 的值时,用到了前几步的值。

通过对本章的学习,已经能熟练掌握如何用Taylor 级数法去求解单步法中各方法的公式和截断误差,但是对线性多步法的求解理解不怎么透切,特别是计算过程较复杂的推理。

在本章的学习过程中还遇到不少问题,比如本章知识点多,公式多,在做题时容易混淆,其次对几种R-K 公式的理解不够透彻,处理一个实际问题时,不知道选取哪一种公式,通过课本里面几种方法的计算比较得知其误差并不一样,,这个还需要自己在往后的实际应用中多多实践留意并总结。

二、本章知识梳理常微分方程初值问题的数值解法一般概念步长h ,取节点0,(0,1,...,)n t t nh n M =+=,且M t T ≤,则初值问题000'(,),()y f t y t t Ty t y =≤≤⎧⎨=⎩的数值解法的一般形式是1(,,,...,,)0,(0,1,...,)n n n n k F t y y y h n M k ++==-@显示单步法7.2.1 显示单步法的一般形式1(,,),(0,1,...,1)n n n n y y h t y h n M ϕ+=+=-定理7.2.1 设增量函数(,,)n n t y h ϕ在区域00{(,,)|,||,0}D t y h t t T y h h =≤≤<∞≤≤内对变量y 满足Lipschitz 条件,即存在常数K ,使对D 内任何两点1(,,)t u h 和2(,,)t u h ,不等式1212|(,,)(,,)|||t u h t u h K u u ϕϕ-≤-成立,那么,若单步法的局部截断误差1n R +与1(1)p h p +≥同阶,即11()p n R O h ++=,则单步法的整体截断误差1n ε+与p h 同阶,即1()p n O h ε+=。

求解常微分方程初值问题的中点公式

求解常微分方程初值问题的中点公式

一、概述求解常微分方程初值问题是微积分学中一个重要的问题,常微分方程的数值解法在科学工程计算中有着广泛的应用。

其中,中点公式是一种常用的数值解法之一,本文将对中点公式进行详细介绍和求解方法。

二、常微分方程初值问题的定义常微分方程初值问题是指给定一个微分方程和一个初始条件,在指定的初始条件下求解微分方程的解。

其中,微分方程通常是一阶或高阶的常微分方程,而初始条件则是未知函数在某一点的值和导数值。

三、中点公式的定义中点公式是一种常见的数值解法,用于求解常微分方程初值问题。

它是基于泰勒展开式得到的近似解,通过迭代计算来逼近精确解。

中点公式的基本思想是利用当前点和前一点的导数值来逼近下一点的函数值,从而计算出微分方程的近似解。

四、中点公式的推导与计算过程1. 扩展泰勒展开式我们需要利用泰勒展开式对未知函数进行近似展开,一般来说,我们会选择一阶或者二阶的泰勒展开式,然后将展开式进行求和得到一个近似解。

2. 利用迭代计算在得到展开式的近似解之后,我们可以通过迭代计算的方式不断逼近精确解,这通常需要使用计算机进行数值计算处理。

3. 计算误差在实际应用中,我们还需要对中点公式得到的解进行误差分析,以确保所得解的精确性和可靠性。

五、中点公式的数学原理中点公式是基于泰勒展开式得到的近似解,其数学原理主要包括以下几点:1. 利用当前点和前一点的导数值来近似下一点的函数值;2. 通过迭代计算不断逼近真实解;3. 计算误差以确保解的精确性和可靠性。

六、中点公式的优缺点分析中点公式作为常微分方程初值问题的一种数值解法,具有如下优缺点:1. 优点:a. 简单易用,计算速度快;b. 适用于一些数值解法不稳定的情况;c. 精度较高。

2. 缺点:a. 对初始条件敏感,初始条件的选取会影响求解结果;b. 在某些情况下可能会产生数值不稳定的问题;c. 无法处理高阶微分方程。

七、中点公式在实际应用中的案例分析下面通过一个具体的案例来展示中点公式在实际应用中的情况。

常微分方程数值解法

常微分方程数值解法

第八章 常微分方程的数值解法一.内容要点考虑一阶常微分方程初值问题:⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy微分方程的数值解:设微分方程的解y (x )的存在区间是[a,b ],在[a,b ]内取一系列节点a= x 0< x 1<…< x n =b ,其中h k =x k+1-x k ;(一般采用等距节点,h=(b-a)/n 称为步长)。

在每个节点x k 求解函数y(x)的近似值:y k ≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分方程的数值解。

用数值方法,求得f(x k )的近似值y k ,再用插值或拟合方法就求得y(x)的近似函数。

(一)常微分方程处置问题解得存在唯一性定理对于常微分方程初值问题:⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy如果:(1) 在B y y A x x 00≤-≤≤,的矩形内),(y x f 是一个二元连续函数。

(2) ),(y x f 对于y 满足利普希茨条件,即2121y y L y x f y x f -≤-),(),(则在C x x 0≤≤上方程⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解存在且唯一,这里C=min((A-x 0),x 0+B/L),L 是利普希茨常数。

定义:任何一个一步方法可以写为),,(h y x h y y k k k 1k Φ+=+,其中),,(h y x k k Φ称为算法的增量函数。

收敛性定理:若一步方法满足: (1)是p 解的.(2) 增量函数),,(h y x k k Φ对于y 满足利普希茨条件.(3) 初始值y 0是精确的。

则),()()(p h O x y kh y =-kh =x -x 0,也就是有0x y y lim k x x kh 0h 0=--=→)((一)、主要算法 1.局部截断误差局部截断误差:当y(x k )是精确解时,由y(x k )按照数值方法计算出来的1~+k y 的误差y (x k+1)- 1~+k y 称为局部截断误差。

常微分方程的数值解法

常微分方程的数值解法

数值计算方法
都是一次的,则y称它, y是线, 性的, ,y否(n则) 称为非线性的。
在高等数学中,对于常微分方程的求解,给出 了一些典型方程求解析解的基本方法,如可分离变 量法、常系数齐次线性方程的解法、常系数非齐次 线性方程的解法等。但能求解的常微分方程仍然是 有限的,大多数的常微分方程是不可能给出解析解。 譬如
y x2 y2
这个一阶微分方程就不能用初等函数及其积 分来表达它的解。
再如,方程
y y
y
(0)
1
的解 y e x ,虽然有表可查,但对于表 上没有给出 e x 的值,仍需插值方法来
计算
从实际问题当中归纳出来的微分方程,通常主要依
靠数值解法来解决ቤተ መጻሕፍቲ ባይዱ本章主要讨论一阶常微分方程
初值问题
y f (x, y)
y
(
x0
)
y0
( 7.1 )
在区间a ≤ x ≤ b上的数值解法。
可以证明,如果函数在带形区域 R=a≤x≤b,
-∞<y<∞}内连续,且关于y满足李普希兹
(Lipschitz)条件,即存在常数L(它与x,y无关)使
f (x, y1) f (x, y2 ) L y1 y2
对R内任意两个 y1, y2 都成立,则方程( 7.1 )的解 y y(x) 在a, b上存在且唯一。
数值计算方法
常微分方程的数值解法
包含自变量、未知函数及未知函数的导数或微 分的方程称为微分方程。在微分方程中, 自变量的 个数只有一个, 称为常微分方程.。自变量的个数 为两个或两个以上的微分方程叫偏微分方程。微分 方程中出现的未知函数最高阶导数的阶数称为微分 方程的阶数。如果未知函数y及其各阶导数

常微分方程常用数值解法.

常微分方程常用数值解法.

常微分方程常用数值解法.第一章绪论1.1 引言常微分方程是现代数学的一个重要分支,是人们解决各种实际问题的有效工具。

微分方程的理论和方法从17世纪末开始发展起来,很快成了研究自然现象的强有力工具,在17到18世纪,在力学、天文、科学技术、物理中,就已借助微分方程取得了巨大的成就。

1864年Leverrer根据这个方程预见了海王星的存在,并确定出海王星在天空中的位置。

现在,常微分方程在许多方面获得了日新月异的应用。

这些应用也为常微分方程的进一步发展提供了新的问题,促使人们对微分方程进行更深入的研究,以便适应科学技术飞速发展的需要。

研究常微分方程常用数值解是数学工作者的一项基本的且重要的工作。

在国内外众多数学家的不懈努力,使此学科基本上形成了一套完美的体系。

微分方程的首要问题是如何求一个给定方程的通解或特解。

到目前为止,人们已经对许多微分方程得出了求解的一般方法。

由于在生产实际和科学研究中所遇到的微分方程问题比较复杂,使这些问题的解即使能求出解析表达式,也往往因计算量太大而难于求出,而对于一些典型的微分方程则可以运用基本方法求出其解析解,并可以根据初值问题的条件把其中的任意常数确定下来。

由于求通解存在许多困难,人们就开始研究带某种定解条件的特解。

首先是Cauchy对微分方程初始解的存在惟一性进行了研究。

目前解的存在惟一性、延拓性、大范围的存在性以及解对初始解和参数的延续性和可微性等理论问题都已发展成熟。

与此同时,人们开始采取各种近似方法来求微分方程的特解,例如求微分方程数值解的Euler折线法、Runge-Kutta法等,可以求得若干个点上微分方程的近似解。

最后,由于当代高科技的发展为数学的广泛应用和深入研究提供了更好的手段。

用计算机结合Matlab软件求方程的精确解、近似解,对解的性态进行图示和定性、稳定性研究都十分方便有效。

本章先介绍常微分的一般概念、导出微分方程的一些典型例子及求解微分方程的思路分析。

微分方程的数值解法

微分方程的数值解法

微分方程的数值解法微分方程是数学中的一种重要的基础理论,广泛用于科学技术的研究中。

微分方程的解析解往往比较难求得,而数值解法则成为了解决微分方程的重要手段之一。

本文将阐述微分方程的数值解法,探讨一些经典的数值方法及其应用。

一、数值解法的基本思想微分方程的数值解法的基本思想是建立微分方程的差分方程,然后通过数值计算的方法求得差分方程的近似解,最终得到微分方程的数值解。

其中,差分方程是微分方程的离散化,将微分方程转化为差分方程的过程称为离散化或网格化。

离散化的目的是将连续问题转化为离散问题,使问题求解更为方便。

差分方程的计算通常需要将区间分成若干份,每一份都对应着一个节点,节点的个数与区间长度有关。

在每个节点处采集函数值,根据这些函数值计算出差分方程的值,再根据差分方程的迭代公式计算出每个节点的函数值。

因此差分方程的求解问题就转化成了求解节点函数值的问题。

二、欧拉法欧拉法是微分方程数值解法中最简单的一种方法,广泛应用于各种领域。

欧拉法的基本思想是运用泰勒公式,将函数在某一点展开成一次多项式,用两个相邻节点之间的差分来逼近导数的值,从而得到连续问题的离散解。

具体实现过程如下:1. 将微分方程的初始值问题区间[a,a]分成若干个小区间,每个小区间长度为a,共有a个节点,其中节点序列为a0,a1,a2,⋯,aa,节点之间的间隔为a。

2. 根据微分方程的迭代公式得到差分方程,即令aa+1=aa+aa(aa,aa)3. 按照差分方程的迭代公式,从初始值a0开始,逐一计算得到函数值,a1,a2,⋯,aa。

欧拉法的精度比较低,误差常常会较大,但是它运算速度快,实现简单,计算量小,因此在计算简单模型时常常使用。

三、龙格-库塔法龙格-库塔法是微分方程数值解法中精度最高的一种方法,具有比欧拉法更精确、更稳定的特点,广泛应用于各种实际问题中。

龙格-库塔法的主要思想是用多阶段逼近法估算每一步的函数值,从而提高时间的精度。

具体实现过程如下:1. 将微分方程的初始值问题区间[a,a]分成若干个小区间,每个小区间长度为a,共有a个节点,其中节点序列为a0,a1,a2,⋯,aa,节点之间的间隔为a。

第六章常微分方程的数值解法

第六章常微分方程的数值解法

第六章常微分方程的数值解法第六章常微分方程的数值解法在自然科学研究和工程技术领域中,常常会遇到常微分方程的求解问题。

传统的数学分析方法仅能给出一些简单的、常系数的、经典的线性方程的解析表达式,不能处理复杂的、变系数的、非线性方程,对于这些方面的问题,只能求诸于近似解法和数值解法。

而且在许多实际问题中,确确实实并不总是需要精确的解析解,往往只需获得近似的解或者解在若干个点上的数值即可。

在高等数学课程中介绍过的级数解法和逐步逼近法,能够给出解的近似表达式,这一类方法称为近似解法。

还有一类方法是通过计算机来求解微分方程的数值解,给出解在一些离散点上的近似值,这一类方法称作为数值方法。

本章主要介绍常微分方程初值问题的数值解法,包括Euler 方法、Runge-Kutta 方法、线性多步法以及微分方程组与高阶微分方程的数值解法。

同时,对于求解常微分方程的边值问题中比较常用的打靶法与有限差分法作了一个简单的介绍。

§1 基本概念1.1 常微分方程初值问题的一般提法常微分方程初值问题的一般提法是求解满足如下条件的函数,,b x a x y ≤≤)(=<<=α)(),(a y bx a y x f dxdy, (1.1) 其中),(y x f 是已知函数,α是给定的数值。

通常假定上面所给出的函数),(y x f 在给定的区域},),{(+∞<≤≤=yb x a y x D 上面满足如下条件:(1) 函数),(y x f 在区域D 上面连续;(2) 函数),(y x f 在区域D 上关于变量y 满足Lipschitz(李普希茨)条件:212121,),(),(y y b x a y y L y x f y x f ?≤≤?≤?,, (1.2)其中常数L 称为Lipschitz(李普希茨)常数。

由常微分方程的基本理论可以知道,假如(1.1)中的),(y x f 满足上面两个条件,则常微分方程初值问题(1.1)对于任意给定的初始值α都存在着唯一的解,,b x a x y ≤≤)(并且该唯一解在区间[a,b]上是连续可微的。

常微分方程数值解算法

常微分方程数值解算法

常微分方程数值解算法常微分方程是在物理、经济、生物、环境科学等领域中最基本的数学工具之一。

为了解决实际问题,需要求解这些方程的解。

但是,大部分常微分方程是无法求得解析解的,因此需要通过数值方法来求解。

在数值方法中,其基本思想是将微分方程化为一个逐步求解的问题。

通过离散化得到一个差分方程,然后通过数值方法求解这个差分方程。

本文将就常微分方程的数值解算法进行介绍和探讨。

1.欧拉方法欧拉方法是最基本的一种常微分方程数值解方法。

它的基本思想是将微分方程化为差分方程。

欧拉方法是一种一阶的显式方法。

通过计算当前点处的斜率即可进行逼近。

如下所示:y(t + h) = y(t) + hf(t, y(t))其中,h是步长。

f(t, y)是微分方程右边的函数。

欧拉方法的由来是其是以欧拉为名的。

这种方法的优点是简单明了,易于理解。

但是,其与真实解的误差随着步长增大而增大,误差不精,计算速度较慢等缺点也使其并非一个完美的数值解方法。

2.改进的欧拉方法改进的欧拉方法被认为是欧拉方法的一个进化版。

它是二阶数值方法,明显优于欧拉方法。

其基本思想是通过步长的平均值h/2来进行逼近。

y(t + h) = y(t) + h[ f(t, y(t)) + f(t + h, y(t) + hf(t, y(t))/2) ]其优点是能够更准确地逼近微分方程的解,只比欧拉方法多计算一些,但是其步长的误差随着步长增大而减小,并且计算速度比欧拉方法稍快。

因此,改进的欧拉方法是比欧拉方法更好的方法,效果相对较好。

3.龙格库塔方法龙格库塔方法是一种经典的数值解方法。

对于非刚性的方程可以得到较为精确的数值解。

其算法思路是利用多阶段迭代的方式,求解一些重要的插值点,并利用插值点的结果来逼近方程的解。

其公式如下:y(t + h) = y(t) + (h/6)*(k1 + 2k2 + 2k3 + k4)其中,k1 = f(t, y(t))k2 = f(t + h/2, y(t) + h/2k1)k3 = f(t + h/2, y(t) + h/2k2)k4 = f(t + h, y(t) + hk3)其优点是更精确,计算速度更快。

常微分方程数值解法

常微分方程数值解法

第八章 常微分方程数值解法教学目的 1. 掌握解常微分方程的单步法:Euler 方法、Taylor 方法和Runge-Kutta 方法;2. 掌握解常微分方程的多步法:Adams 步法、Simpson 方法和Milne 方法等;3. 了解单步法的收敛性、相容性与稳定性;多步法的稳定性。

教学重点及难点 重点是解常微分方程的单步法:Euler 方法、Taylor 方法和Runge-Kutta 方法和解常微分方程的多步法:Adams 步法、Simpson 方法和Milne 方法等;难点是理解单步法的收敛性、相容性与稳定性及多步法的稳定性。

教学时数 20学时 教学过程§1基本概念1.1常微分方程初值问题的一般提法常微分方程初值问题的一般提法是求函数b x a x y ≤≤),(,满足⎪⎩⎪⎨⎧=<<=)2.1()()1.1(),,(αa yb x a y x f dx dy其中),(y x f 是已知函数,α是已知值。

假设),(y x f 在区域},),{(+∞<≤≤=y b x a y x D 上满足条件: (1)),(y x f 在D 上连续; (2)),(y x f 在D 上关于变量y 满足Lipschitz 条件:2121),(),(y y L y x f y x f -≤-,21,,y y b x a ∀≤≤ (1.3)其中常数L 称为Lipschitz 常数。

我们简称条件(1)、(2)的基本条件。

由常微分方程的基本理论,我们有:定理1 当),(y x f 在D 上满足基本条件时,一阶常微分方程初值问题(1.1)、(1.2)对任意给定α存在唯一解)(x y 在],[b a 上连续可微。

定义1 方程(1.1)、(1.2)的解)(x y 称为适定的,若存在常数0>ε和0>K ,对任意满足条件εδ≤及εη≤∞)(x 的δ和)(x η,常微分方程初值问题⎪⎩⎪⎨⎧+=<<+=δηa a z b x a x z x f dx dz)(),(),((1.4)存在唯一解)(x z ,且}.{)()(δη+≤-∞∞K x z x y适定问题的解)(x y 连续依赖于(1.1)右端的),(y x f 和初值α。

常微分方程数值解法

常微分方程数值解法

常微分方程数值解法常微分方程是研究函数的导数与自变量之间的关系的数学分支,广泛应用于物理、工程、生物等领域的建模与分析。

在实际问题中,我们常常遇到无法通过解析方法求得精确解的常微分方程,因此需要利用数值解法进行求解。

本文将介绍几种常用的常微分方程数值解法。

一、欧拉方法(Euler's Method)欧拉方法是最基本的数值解法之一。

它的思想是将微分方程转化为差分方程,通过逐步逼近解的方式求得数值解。

具体步骤如下:1. 将微分方程转化为差分方程:根据微分方程的定义,可以得到差分方程形式。

2. 选择步长:将自变量范围进行离散化,确定步长h。

3. 迭代计算:根据差分方程递推公式,利用前一步的数值解计算后一步的数值解。

二、改进的欧拉方法(Improved Euler's Method)改进的欧拉方法通过使用欧拉方法中的斜率来进行更准确的数值计算。

具体步骤如下:1. 计算欧拉方法的斜率:根据当前节点的数值解计算斜率。

2. 根据斜率计算改进的数值解:将得到的斜率代入欧拉方法的递推公式中,计算改进的数值解。

三、龙格-库塔方法(Runge-Kutta Method)龙格-库塔方法是一类常微分方程数值解法,其中最著名的是四阶龙格-库塔方法。

它通过计算各阶导数的加权平均值来逼近解,在精度和稳定性方面相对较高。

具体步骤如下:1. 计算每一步的斜率:根据当前节点的数值解计算每一步的斜率。

2. 计算权重:根据斜率计算各个权重。

3. 计算下一步的数值解:根据计算得到的权重,将其代入龙格-库塔方法的递推公式中,计算下一步的数值解。

四、多步法(多步差分法)多步法是需要利用多个前面节点的数值解来计算当前节点的数值解的数值方法。

常见的多步法有Adams-Bashforth法和Adams-Moulton法。

具体步骤如下:1. 选择初始值:根据差分方程的初始条件,确定初始值。

2. 迭代计算:根据递推公式,利用前面节点的数值解计算当前节点的数值解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引例1. 人口模型
1/45
引例1. 人口模型
2/45
引例1. 人口模型
3/45
引例1. 人口模型
4/45
差分方法
y( x) f ( x, y( x))
y(
x0
)
y0
(离散化)
数值方法

y( x)
插值 (连续化)

yn , n 0,1, 2,
5/45
前向差分公式
f ( x)= f ( x h) f ( x) h f ( )
xn1 y( x)dx
xn
xn1 f ( x, y( x))dx
xn
左矩形积分公式
xn1 xn
f (x,
y( x))dx
hf
( xn ,
y( xn ))
若用y(xn)的近似值yn代入上式, 并记所得结果为yn+1
Euler公式: yn1 yn hf ( xn ,yn )
13/45
y' = f (x, y)
xn1 y( x)dx xn1 f ( x, y( x))dx
xn
xn
微积分基本定理
b
y( x)dx y(b) y(a)
a
y( xn1) y( xn )
xn1 y( x)dx xn1 f ( x, y( x))dx
xn
xn
右矩形积分公式
xn1 xn
f (x,
y( x))dx hf ( xn1,
y(i+1) = y(i) + h*f(x(i),y(i)); end plot(x,y,'ms-'); hold on, y=(1+2*x).^(1/2); plot(x,y)
10/45
11/45
方程中含有导数项y′, 这是微分方程的本质特征, 也是它难以求解的症结所在。
y f ( x, y)

方程中含有导数项y′, 这是微分方程的本质特征,
也是它难以求解的症结所在。常见解决思路通常为
数值微分和数值积分。
y f ( x, y)
y(
x0
)
y0
将xn 代入方程
y( xn ) f ( xn , y( xn ))
并用前向差分格式代替其中的导数项
y( xn1 ) h
y( xn )
y( xn )
0.3 1.2774 1.2649 0.8 1.6498 1.6125
0.4 1.3582 1.3416 0.9 1.7178 1.6732
0.5 1.4351 1.4142 1.0 1.7848 1.7321
9/45
clear; f = inline('y-2*x/y','x','y'); a = 0; b = 1;n=100; h =(b-a)/n; x=a:h:b; y(1) = 1; for i = 1 : n
f ( xn , y( xn ))
若用y(xn)的近似值yn代入上式, 并记所得结果为yn+1
Euler公式: yn1 yn hf ( xn , yn )
8/45
例1. 用Euler法求初值问题的数值解。
y
y
2x , y
0
x1
y(0) 1
解析解y(x) 1+2x
解: 步长h=0.1, xn= nh (n = 0, 1,···, 10)
12/45
方程中含有导数项y′, 这是微分方程的本质特征, 也是微分方程难以求解的症结所在。常见解决思路 通常为数值微分和数值积分。
y' = f (x, y)
xn1 y( x)dx xn1 f ( x, y( x))dx
xn
xn
微积分基本定理
b
y( x)dx y(b) y(a)
a
y( xn1) y( xn )
Euler公式: yn+1 = yn + 0.1( yn- 2xn /yn) (n = 0, 1, ···,10)
xn
Euler y(xn)
xn
Euler y(xn)
0.1 1.1000 1.0954 0.6 1.5090 1.4832
0.2 1.1918 1.1832 0.7 1.5803 1.5492
yn )
f ( xn1 , yn1 )]
15/45
h 梯形公式: yn1 yn 2 [ f ( xn , yn ) f ( xn1 , yn1 )]
显式格式与隐式格式各有利弊: 显式格式的计算 量小, 但稳定性较差; 与此相反, 隐式格式的稳定性好, 但需要迭代求解, 计算量比较大。
综合使用这两种方法, 先用Euler公式求得一个初 步的近似值, 称为预报值; 预报值的精度不高, 代入右 端的yn+1计算校正值。
xn1 y( x)dx xn1 f ( x, y( x))dx
xn
xn
梯形积分公式:
xn1 xn
f (x,
y( x))dx
h 2 [ f ( xn,
y( xn ))
f ( xn1,
y( xn1 ))]
若用y(xn)的近似值yn代入上式, 并记所得结果为yn+1
梯形公式:
yn1
yn
h 2 [ f ( xn ,
h
2
后向差分公式
f ( x)= f ( x) f ( x h) h f ( )
h
2
中心差分公式
f ( x)=
f ( x h)
f ( x h) h2
f ( )
2h
6
6/45
例1. 用Euler法求初值问题的数值解。
y(
x)
y( x)
2x , y( x)
0
x 1
y(0) 1
解: 步长h=0.1, xn= nh (n = 0, 1,···, 10), 将xn 代入方程
y( xn ) y( xn ) 2 xn / y( xn )
并用前向差分格式代替其中的导数项
y( xn1 ) h
y( xn )
y( xn )
y( xn )
2 xn
/
y( xn )
Euler公式: yn+1 = yn + h( yn- 2xn /yn) (n = 0, 1, ···,10)
7/45
y(
x0
)
y0
将xn+1 代入方程
y( xn1 ) f ( xn1 , y( xn1 ))
并用后向差分格式代替其中的导数项
y( xn1 ) h
y( xn )
y( xn1 )
f ( xn1 , y( xn1 ))
若用y(xn)的近似值yn代入上式, 并记所得结果为yn+1
隐式Euler公式: yn1 yn hf ( xn1 , yn1 )
y( xn1 ))
若用y(xn)的近似值yn代入上式, 并记所得结果为yn+1
隐式Euler公式: yn1 yn hf ( xn1 , yn1 )
14/45
y' = f (x, y)
xn1 y( x)dx xn1 f ( x, y( x))dx
xn
xn
y( xn1) y( xn )
相关文档
最新文档