2019-2020年中考安徽名校大联考试卷
安徽省2019-2020学年九年级上学期第一次大联考化学试卷 (含解析)
安徽省2019-2020学年九年级上学期第一次大联考化学试卷一、单选题(本大题共10小题,共20.0分)1.安徽历史文化闻名全国,下列工艺中涉及化学变化的是()A. B.C. D.2.下列反应符合绿色化学理念的是()A. H2CO3=H2O+CO2↑B. 4P+5O2− 点燃 2P2O5C. Zn+H2SO4=ZnSO4+H2↑D. 2HCl+CuO=CuCl2+H2O3.空气是人类生产活动的重要资源,下列有关空气的说法错误的是()A. 拉瓦锡用定量的方法研究了空气的成分B. 空气的成分按体积计算,含量最多的气体是氮气C. 空气是一种十分重要的天然资源,我们要保护空气D. 空气质量报告中所列的空气质量级别越大,空气质量越好4.通过观察蜡烛燃烧以及对燃烧产物的实验探究,得出的正确结论是()①燃烧时发光、放热②燃烧时有水雾生成③火焰的温度最高处是外焰④蜡烛先熔化再燃烧⑤熄灭时蜡烛冒白雾A. 只有①②③B. 只有③④⑤C. ④D. ①②③④5.有关金属或非金属的燃烧,下列说法正确的是()A. 硫在空气中燃烧,生成SO3,发出淡蓝色火焰B. 跑步比赛的发令枪是红磷燃烧,生成白色的P2O5气体C. 木炭在纯氧中燃烧,生成CO2气体,发出白光D. 铁丝在纯氧中燃烧,火星四射,生成黑色的Fe2O36.下列实验操作错误的是()A. 取用固体粉末B. 量液体时读数C. 取用液体试剂D. 闻气体的气味7.实验室制取氧气时,必须满足的条件是()A. 必须使用催化剂B. 必须用含氧元素的物质做原料C. 必须加热D. 必须用排水法收集8.红磷燃烧法测定空气中氧气的含量.对该实验认识不正确的()A. 红磷的量过多会影响实验结论B. 红磷的量过少会影响实验结论C. 装置不漏气是实验成功的重要因素之一D. 完全冷却到室温后,才能打开止水夹9.下列有关氧化反应、化合反应、分解反应的说法中,正确的是()A. 有两种物质参加的反应是化合反应B. 有氧气参加的化合反应,一定是氧化反应C. 化合反应一定是氧化反应,氧化反应不一定是化合反应D. 生成两种或两种以上物质的反应是分解反应10.如图4个图象中,能正确反应变化关系的是()A. 向一定量接近饱和的硝酸钾溶液中不断加入硝酸钾晶体(不考虑温度变化)B. 将等质量的镁片和铝片分别加入过量的等溶质质量分数的稀盐酸中C. 浓H2SO4加入水中D. 向一定质量的二氧化锰中加入过氧化氢二、连线题(本大题共1小题,共6.0分)11.A或B中两题中任选一个作答,若两题均作答,按A计分.A补齐物质与其用途的连线B补齐标识与其含义的连线三、简答题(本大题共1小题,共6.0分)12.空气是一种宝贵的资源(1)焊接金属时常用氮气作保护气,原因是______。
安徽省六安市2019-2020学年中考第一次大联考化学试卷含解析
安徽省六安市2019-2020学年中考第一次大联考化学试卷一、选择题(本题包括12个小题,每小题3分,共36分.每小题只有一个选项符合题意)1.北京大学生命科学学院蒋争凡教授研究组发现,锰离子是细胞内天然免疫激活剂和警报素。
在元素周期表中锰元素的某些信息如图所示,下列有关锰的说法不正确的是A.原子序数为25B.属于金属元素C.原子核内质子数为25D.相对原子质量为54.94g【答案】D【解析】根据所学知识和题中信息知,A、原子序数为25,故A正确;B、属于金属元素,故B正确;C、原子核内质子数为25,原子核内质子数等于原子序数,故C正确;D、相对原子质量为54.94,相对原子质量没有单位,故D错误。
点睛∶原子核内质子数等于原子序数,相对原子质量没有单位。
2.下列根据化学用语获得的信息正确的是()A.——铁原子的原子序数为55.85B.Na2CO3——该物质属于氧化物C.——“+2”表示镁离子带有两个单位正电荷D.——该原子在反应中易得电子【答案】D【解析】【分析】【详解】A、由图示提供的信息可以看出铁原子的原子序数为26,其相对原子质量为55.85,错误;B、Na2CO3是由Na、C、O三种元素组成的化合物,而氧化物是由两种元素组成,其中一种元素是氧的化合物,错误;C、由图示提供的信息可以看出“+2”表示镁元素形成化合物时的化合价,错误;D、由图示可以看出该原子最外层的电子数为7,大于4,在化学反应中易得电子,正确。
故选D。
3.逻辑推理是一种重要的化学思维方法,以下推理合理的是()A.因为H2O和H2O2的组成元素相同,所以它们的化学性质相同B.中和反应都有盐和水生成,有盐和水生成的反应都属于中和反应C.因为燃烧需要同时满足三个条件,所以灭火也要同时控制这三个条件D.单质都是由同种元素组成的,所以由同种元素组成的纯净物一定是单质【答案】D【解析】【详解】A、H2O和H2O2的组成元素相同,但是分子构成不同,因此化学性质不同,故选项说法错误;B、有盐和水生成的反应不都属于中和反应,例如氢氧化钠和二氧化碳的反应有盐和水生成,但不属于中和反应,故选项说法错误;C、燃烧需要同时满足三个条件,只要破坏其中的一个条件即可达到灭火的目的,故选项说法错误;D、单质都是由同种元素组成的,所以由同种元素组成的纯净物一定是单质,故选项说法正确。
2019-2020年中考安徽名校大联考(三)语文试题
2019-2020年中考安徽名校大联考(三)语文试题注意事项:1.你拿到的试卷满分为150分(其中卷面书写占5分),考试时间为150分钟。
2.试卷包括“试题卷”和“答题卷”两部分。
请务必在“答题卷...”上答题,在“试题卷”上答题是无效的。
3.答题过程中,可以随时使用你所带的《新华字典》。
4.考试结束后,请将“试题卷”和“答题卷”一并交回。
一、语文积累与综合运用(35分)1.默写古诗文中的名句名篇。
(10分)(1)补写出下列名句中的上句或下句。
(任选其中....6.句.)①潮平两岸阔,。
(王湾《次北固山下》)②人生自古谁无死,。
(文天祥《过零丁洋》)③出淤泥而不染,。
(周敦颐《爱莲说》)④苔痕上阶绿,。
(刘禹锡《陋室铭》)⑤,长河落日圆。
(王维《使至塞上》)⑥,西北望,射天狼。
(苏轼《江城子》)⑦,回清倒影。
(郦道元《三峡》)⑧,大庇天下寒士俱欢颜。
(杜甫《茅屋为秋风所破歌》)(2)将马致远的《天净沙·秋思》补充完整。
(4分),,,夕阳西下,。
2.阅读下面的文字,完成(1)~(4)题。
(9分)我心里感到无量的喜悦,仿佛饮了仙露,吸了醍.醐,大有飘飘欲仙的感概了。
这声音时慢时急,时高时低,时响时沉,时断时续,有时如金声玉zhèn(),有时如黄钟大吕,有时如大珠小珠落玉盘,有时如红珊白瑚沉海里,有时如弹素琴,有时如舞霹lì(),有时如百鸟争鸣,有时如兔落鹘起,我浮想联翩,不能自已,心花怒放,风生笔底。
死文字仿佛活了起来,我也仿佛又溢满了青春活力。
(1)根据拼音写出相应的汉字,给加点的字注音。
(3分)金声玉zhèn()霹lì()醍.醐()(2)文中有错别字的一个词是“”,这个词的正确写法是“”。
(2分)(3)“联翩”的意思是。
“浮想联翩”在文段中的意思是。
(2分)(4)这段文字主要运用了、等修辞方法。
(2分)3.运用你课外阅读积累的知识,完成(1)~(2)题。
安徽省六安市2019-2020学年中考第四次大联考数学试卷含解析
安徽省六安市2019-2020学年中考第四次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列函数中,二次函数是( ) A .y =﹣4x+5 B .y =x(2x ﹣3) C .y =(x+4)2﹣x 2D .y =21x2.-sin60°的倒数为( ) A .-2B .12C .-33D .-2333.在同一平面直角坐标系中,一次函数y =kx ﹣2k 和二次函数y =﹣kx 2+2x ﹣4(k 是常数且k≠0)的图象可能是( )A .B .C .D .4.如图,⊙O 的直径AB=2,C 是弧AB 的中点,AE ,BE 分别平分∠BAC 和∠ABC ,以E 为圆心,AE 为半径作扇形EAB ,π取3,则阴影部分的面积为( )A 1324﹣4 B .2﹣4C .6﹣524D 3255.如图,△ABC 内接于⊙O ,AD 为⊙O 的直径,交BC 于点E ,若DE=2,OE=3,则tan ∠ACB·tan ∠ABC=( )A.2 B.3 C.4 D.56.计算22783-⨯的结果是()A.3B.43C.533D.237.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,48.在1、﹣1、3、﹣2这四个数中,最大的数是()A.1 B.﹣1 C.3 D.﹣29.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差10.下列运算正确的是()A.2a2+3a2=5a4B.(﹣12)﹣2=4C.(a+b)(﹣a﹣b)=a2﹣b2D.8ab÷4ab=2ab 11.下列计算中,错误的是()A.020181=;B.224-=;C.1242=;D.1133 -=.12.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B 重合),则2PD+PB的最小值为()A.B.C.10 D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在每个小正方形的边长为1的网格中,点A,B,C,D均在格点上,AB与CD相交于点E.(1)AB的长等于_____;(2)点F 是线段DE 的中点,在线段BF 上有一点P ,满足53BP PF =,请在如图所示的网格中,用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明)_____.14.不等式组372291x x +≥⎧⎨-<⎩的非负整数解的个数是_____.15.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数是_______.16.如图,在直角坐标平面xOy 中,点A 坐标为()3,2,90AOB ∠=o ,30OAB ∠=o ,AB 与x 轴交于点C ,那么AC :BC 的值为______.17.如图,已知CD 是Rt △ABC 的斜边上的高,其中AD=9cm ,BD=4cm ,那么CD 等于_______cm.18.一艘货轮以18km/h 的速度在海面上沿正东方向航行,当行驶至A 处时,发现它的东南方向有一灯塔B ,货轮继续向东航行30分钟后到达C 处,发现灯塔B 在它的南偏东15°方向,则此时货轮与灯塔B 的距离是________km.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB 的度数为.在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=1.请直接写出线段BE的长为.20.(6分)下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:如图2,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是______.21.(6分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).请你用画树状图或列表的方法,写出点M所有可能的坐标;求点M(x,y)在函数y=﹣的图象上的概率.22.(8分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.23.(8分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.24.(10分)在某校举办的2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200 个以上可以按折扣价出售;购买200 个以下(包括200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050 元;若多买35 个,则按折扣价付款,恰好共需1050 元.设小王按原计划购买纪念品x 个.(1)求x 的范围;(2)如果按原价购买5 个纪念品与按打折价购买6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?25.(10分)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=42,点P 为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.(1)求证:PC CECD CB=; (2)连接BD ,请你判断AC 与BD 有什么位置关系?并说明理由; (3)若PE =1,求△PBD 的面积.26.(12分)先化简,再求值:2222+244a b a b a b a ab b --÷++﹣1,其中a=2sin60°﹣tan45°,b=1. 27.(12分)先化简,再求值:2231422a a a a a a-÷--+-,其中a 与2,3构成ABC ∆的三边,且a 为整数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】A. y=-4x+5是一次函数,故此选项错误;B. y= x(2x-3)=2x 2-3x ,是二次函数,故此选项正确;C. y=(x+4)2−x 2=8x+16,为一次函数,故此选项错误;D. y=21x 是组合函数,故此选项错误. 故选B. 2.D 【解析】分析:3sin 60-︒=根据乘积为1的两个数互为倒数,求出它的倒数即可. 详解:3sin 60-︒=1,⎛⎛⨯= ⎝⎭⎝⎭Q的倒数是3-. 故选D.点睛:考查特殊角的三角函数和倒数的定义,熟记特殊角的三角函数值是解题的关键. 3.C 【解析】 【分析】根据一次函数与二次函数的图象的性质,求出k 的取值范围,再逐项判断即可. 【详解】解:A 、由一次函数图象可知,k >0,∴﹣k <0,∴二次函数的图象开口应该向下,故A 选项不合题意; B 、由一次函数图象可知,k >0,∴﹣k <0,-22k -=1k>0,∴二次函数的图象开口向下,且对称轴在x 轴的正半轴,故B 选项不合题意; C 、由一次函数图象可知,k <0,∴﹣k >0,-22k -=1k<0,,∴二次函数的图象开口向上,且对称轴在x 轴的负半轴,一次函数必经过点(2,0),当x =2时,二次函数值y =﹣4k >0,故C 选项符合题意; D 、由一次函数图象可知,k <0,∴﹣k >0,-22k -=1k<0,,∴二次函数的图象开口向上,且对称轴在x 轴的负半轴,一次函数必经过点(2,0),当x =2时,二次函数值y =﹣4k >0,故D 选项不合题意; 故选:C . 【点睛】本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等. 4.A 【解析】∵O 的直径AB=2, ∴∠C=90°,∵C 是弧AB 的中点,∴»»AC BC=, ∴AC=BC ,∴∠CAB=∠CBA=45°,∵AE ,BE 分别平分∠BAC 和∠ABC , ∴∠EAB=∠EBA=22.5°,∴∠AEB=180°−12(∠BAC+∠CBA)=135°, 连接EO ,∵∠EAB=∠EBA , ∴EA=EB , ∵OA=OB , ∴EO ⊥AB ,∴EO 为Rt △ABC 内切圆半径, ∴S △ABC =12(AB+AC+BC)⋅EO=12AC ⋅BC , ∴2−1,∴AE 2=AO 2+EO 2=122−1)22, ∴扇形EAB 的面积135(422)π-9(22)-△ABE 的面积=12AB ⋅2−1,∴弓形AB 的面积=扇形EAB 的面积−△ABE 的面积22132-, ∴阴影部分的面积=12O 的面积−弓形AB 的面积=32−(221324-)=1324−4,故选:A. 5.C 【解析】 【分析】如图(见解析),连接BD 、CD ,根据圆周角定理可得,ACB ADB ABC ADC ∠=∠∠=∠,再根据相似三角形的判定定理可得ACE BDE ∆~∆,然后由相似三角形的性质可得AC CE BD DE =,同理可得AB AECD CE=;又根据圆周角定理可得90ABD ACD ∠=∠=︒,再根据正切的定义可得tan tan ,tan tan AB ACACB ADB ABC ADC BD CD∠=∠=∠=∠=,然后求两个正切值之积即可得出答案. 【详解】如图,连接BD 、CD,ACB ADB ABC ADC ∴∠=∠∠=∠在ACE ∆和BDE ∆中,ACE BDEAEC BED ∠=∠⎧⎨∠=∠⎩ACE BDE ∴∆~∆AC CEBD DE∴= 2,3DE OE ==Q5,8OA OD DE OE AE OA OE ∴==+==+=2AC CEBD ∴= 同理可得:ABE CDE ∆~∆AB AE CD CE ∴=,即8AB CD CE= AD Q 为⊙O 的直径90ABD ACD ∠∴∠==︒tan tan ,tan tan AB ACACB ADB ABC ADC BD CD ∴∠=∠=∠=∠= 8tan tan 42AB AC AC AB CE ACB ABC BD CD BD CD CE∴∠⋅∠=⋅=⋅=⋅=故选:C .【点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键. 6.C 【解析】 【分析】化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可. 【详解】原式=33﹣22·63=33﹣433=533.故选C.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.7.B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.8.C【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得-2<-1<1<1,∴在1、-1、1、-2这四个数中,最大的数是1.故选C.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.9.D【解析】A. ∵原平均数是:(1+2+3+3+4+1) ÷6=3;添加一个数据3后的平均数是:(1+2+3+3+4+1+3) ÷7=3;∴平均数不发生变化.B. ∵原众数是:3;添加一个数据3后的众数是:3;∴众数不发生变化;C. ∵原中位数是:3;添加一个数据3后的中位数是:3;∴中位数不发生变化;D. ∵原方差是:()()()()()22222313233234355=63-+-+-⨯+-+-; 添加一个数据3后的方差是:()()()()()222223132333343510=77-+-+-⨯+-+-; ∴方差发生了变化.故选D. 点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键. 10.B【解析】【分析】根据合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则对各选项依次进行判断即可解答.【详解】A. 2a 2+3a 2=5a 2,故本选项错误;B. (−12)-2=4,正确; C. (a+b)(−a−b)=−a 2−2ab−b 2,故本选项错误;D. 8ab÷4ab=2,故本选项错误.故答案选B.【点睛】本题考查了合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则,解题的关键是熟练的掌握合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则.11.B【解析】分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.详解:A .020181=,故A 正确;B .224-=-,故B 错误;C .1242=.故C 正确;D .1133-=,故D 正确; 故选B .点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.12.D【解析】【分析】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根据勾股定理得到PP′=,求得2PD+PB≥4,于是得到结论.【详解】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,∵=2,∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=,∴2PD+PB≥4,∴2PD+PB的最小值为4,故选D.【点睛】本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13109见图形【解析】分析:(Ⅰ)利用勾股定理计算即可;(Ⅱ)连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F,因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接IJ交BD于K,因为BI∥DJ,所以BK:DK=BI:DJ=5:2,连接EK交BF于P,可证BP:PF=5:3;详解:(Ⅰ)AB的长=22=109;310(Ⅱ)由题意:连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1.取格点G、H,连接GH交DE于F.∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接IJ交BD于K.∵BI∥DJ,∴BK:DK=BI:DJ=5:2.连接EK交BF于P,可证BP:PF=5:3.109;(Ⅱ)由题意:连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F.因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接IJ交BD于K.因为BI∥DJ,所以BK:DK=BI:DJ=5:2,连接EK交BF于P,可证BP:PF=5:3.点睛:本题考查了作图﹣应用与设计,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.14.1【解析】【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.【详解】解:372 291xx+≥⎧⎨-<⎩①②解①得:x≥﹣53,解②得:x<1,∴不等式组的解集为﹣53≤x<1,∴其非负整数解为0、1、2、3、4共1个,故答案为1.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.15.1【解析】【分析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值.【详解】解:根据题意得9n=1%,解得n=1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.故答案为1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.16.3【解析】过点A 作AD ⊥y 轴,垂足为D ,作BE ⊥y 轴,垂足为E.先证△ADO ∽△OEB ,再根据∠OAB =30°求出三角形的相似比,得到OD:OE=2∶3,根据平行线分线段成比例得到AC:BC=OD:OE=2∶3=23 【详解】解:如图所示:过点A 作AD ⊥y 轴,垂足为D ,作BE ⊥y 轴,垂足为E.∵∠OAB =30°,∠ADE =90°,∠DEB =90°∴∠DOA+∠BOE =90°,∠OBE+∠BOE =90°∴∠DOA=∠OBE∴△ADO ∽△OEB∵∠OAB =30°,∠AOB =90°,∴OA ∶3∵点A 坐标为(3,2)∴AD=3,OD=2 ∵△ADO ∽△OEB∴3AD OA OE OB==∴OE 3=∵OC ∥AD ∥BE根据平行线分线段成比例得:AC:BC=OD:OE=2323 23. 【点睛】 本题考查三角形相似的证明以及平行线分线段成比例.17.1【分析】利用△ACD∽△CBD,对应线段成比例就可以求出.【详解】∵CD⊥AB,∠ACB=90°,∴△ACD∽△CBD,∴CD BD AD CD=,∴49CDCD=,∴CD=1.【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.18.1【解析】【分析】作CE⊥AB于E,根据题意求出AC的长,根据正弦的定义求出CE,根据三角形的外角的性质求出∠B 的度数,根据正弦的定义计算即可.【详解】作CE⊥AB于E,1km/h×30分钟=9km,∴AC=9km,∵∠CAB=45°,∴CE=AC•sin45°=9km,∵灯塔B在它的南偏东15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,∴BC===1km,故答案为:1.【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)①△D′BC是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+3或7﹣3【解析】【分析】(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC 是等边三角形;②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.(1)当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).(3)第①种情况:当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.【详解】(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,AB ABABD ABD BD BD'=⎧⎪∠=∠⎨='⎪⎩∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,AD AD D B D C AB AC=⎧⎪=⎨⎪=''⎩'∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=12∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=12(180°﹣α)=90°﹣12α,∴∠ABD=∠ABC﹣∠DBC=90°﹣12α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣12α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣12α﹣β+90°﹣12α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=12∠BD′C=30°,∴∠ADB=30°.(3)第①情况:当60°<α<110°时,如图3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=3,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣3;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=12(180°﹣α)=90°﹣12α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣12α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣12α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣12α﹣[β﹣(90°﹣12α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴DE=3,∴BE=BD+DE=7+3,故答案为:7+3或7﹣3.【点睛】此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.20.到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线【解析】【分析】利用作法和线段垂直平分线定理的逆定理可得到BC垂直平分AE,然后根据三角形高的定义得到AD为高【详解】解:由作法得BC垂直平分AE,所以该尺规作图的依据为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.故答案为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.【点睛】此题考查三角形高的定义,解题的关键在于利用线段垂直平分线定理的逆定理求解.21.(1)树状图见解析,则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2).【解析】试题分析:(1)画出树状图,可求得所有等可能的结果;(2)由点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),直接利用概率公式求解即可求得答案.试题解析:(1)树状图如下图:则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),∴点M(x,y)在函数y=﹣的图象上的概率为:.考点:列表法或树状图法求概率.22.(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为83或2或8﹣2..【解析】【分析】(1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;(3)①△AGH的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题.【详解】(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC224+4=42∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴AH AC AC AG=,∴AC2=AG•AH.(3)①△AGH的面积不变.理由:∵S△AGH=12•AH•AG=12AC2=12×(42)2=1.∴△AGH的面积为1.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴12 BC BEAH AE==,∴AE=23AB=83.如图2中,当CH=HG时,易证AH=BC=4,∵BC∥AH,∴BE BCAE AH==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.在BC 上取一点M ,使得BM =BE ,∴∠BME =∠BEM =43°,∵∠BME =∠MCE+∠MEC ,∴∠MCE =∠MEC =22.3°,∴CM =EM ,设BM =BE =m ,则CM =EM 2m , ∴m+2m =4,∴m =4(2﹣1),∴AE =4﹣4(2﹣1)=8﹣42,综上所述,满足条件的m 的值为83或2或8﹣42. 【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.23.300米【解析】【详解】解:设原来每天加固x 米,根据题意,得.去分母,得 1200+4200=18x (或18x=5400)解得300x =.检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解.答:该地驻军原来每天加固300米.24.(1)0<x≤200,且 x 是整数(2)175【解析】【分析】(1)根据商场的规定确定出x的范围即可;(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.【详解】(1)根据题意得:0<x≤200,且x为整数;(2)设小王原计划购买x个纪念品,根据题意得:105010505635x x⨯=⨯+,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.【点睛】此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.25.(1)见解析;(2) AC∥BD,理由见解析;(3)5 2【解析】【分析】(1)直接利用相似三角形的判定方法得出△BCE∽△DCP,进而得出答案;(2)首先得出△PCE∽△DCB,进而求出∠ACB=∠CBD,即可得出AC与BD的位置关系;(3)首先利用相似三角形的性质表示出BD,PM的长,进而根据三角形的面积公式得到△PBD的面积.【详解】(1)证明:∵△BCE和△CDP均为等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴PC CE CD CB=;(2)解:结论:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵PC CE CD CB=,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB =90°,∴∠ACB =∠CBD ,∴AC ∥BD ;(3)解:如图所示:作PM ⊥BD 于M ,∵AC =42,△ABC 和△BEC 均为等腰直角三角形, ∴BE =CE =4,∵△PCE ∽△DCB , ∴EC PE CB BD=,即4142BD =, ∴BD =2,∵∠PBM =∠CBD ﹣∠CBP =45°,BP =BE +PE =4+1=5,∴PM =5sin45°=52 ∴△PBD 的面积S =12BD•PM =12×2×522=52.【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.263【解析】【分析】对待求式的分子、分母进行因式分解,并将除法化为乘法可得2-+a b a b ×()()()22a b a b a b ++--1,通过约分即可得到化简结果;先利用特殊角的三角函数值求出a 的值,再将a 、b 的值代入化简结果中计算即可解答本题.【详解】原式=2-+a b a b ×()()()22a b a b a b ++--1 =2++a b a b -1 =2a b a b a b a b++-++ =b a b+,当a═2sin60°﹣tan45°=2×2﹣﹣1,b=1时,原式3=. 【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值运算法则.27.1【解析】试题分析:先进行分式的除法运算,再进行分式的加减法运算,根据三角形三边的关系确定出a 的值,然后代入进行计算即可.试题解析:原式=()()()()()()()()()2113212232323233aa a a a a a a a a a a a a a a +--⋅+=+==+--------- , ∵a 与2、3构成△ABC 的三边,∴3−2<a<3+2,即1<a<5,又∵a 为整数,∴a=2或3或4,∵当x=2或3时,原分式无意义,应舍去,∴当a=4时,原式=14-3=1。
安徽省合肥市2019-2020学年中考第三次大联考数学试卷含解析
安徽省合肥市2019-2020学年中考第三次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,下列各数中,数轴上点A表示的可能是()A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根2.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.23B.2 C.3 D.63.已知方程x2﹣x﹣2=0的两个实数根为x1、x2,则代数式x1+x2+x1x2的值为()A.﹣3 B.1 C.3 D.﹣14.下列方程有实数根的是()A.420x+=B.221x-=-C.x+2x−1=0D.111 xx x=--5.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.13B.2C2D226.在3-,1-,0,1这四个数中,最小的数是()A.3-B.1-C.0 D.17.下列命题中真命题是()A.若a2=b2,则a=b B.4的平方根是±2C.两个锐角之和一定是钝角D.相等的两个角是对顶角8.点A、C为半径是4的圆周上两点,点B为»AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为()A.7或22B.7或23C.26或22D.26或239.“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟10.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=2AE2;④S△ABC=4S△ADF.其中正确的个数有()A.1 B.2 C.3 D.411.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1 B.y=(x+2)2+1C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣312.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是_____.14.一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为15.如图,△ABC是直角三角形,∠C=90°,四边形ABDE是菱形且C、B、D共线,AD、BE交于点O,连接OC,若BC=3,AC=4,则tan∠OCB=_____16.如图,在△ABC中,AB=3+3,∠B=45°,∠C=105°,点D、E、F分别在AC、BC、AB上,且四边形ADEF为菱形,若点P是AE上一个动点,则PF+PB的最小值为_____.17.若3,a,4,5的众数是4,则这组数据的平均数是_____.18.按照一定规律排列依次为59111315,1,,,,410131619,…..按此规律,这列数中的第100个数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知函数y=3x(x>0)的图象与一次函数y=ax﹣2(a≠0)的图象交于点A(3,n).(1)求实数a的值;(2)设一次函数y=ax﹣2(a≠0)的图象与y轴交于点B,若点C在y轴上,且S△ABC=2S△AOB,求点C 的坐标.20.(6分)如图,已知□ABCD的面积为S,点P、Q时是▱ABCD对角线BD的三等分点,延长AQ、AP,分别交BC,CD于点E,F,连结EF。
安徽省宣城市2019-2020学年中考第二次大联考数学试卷含解析
安徽省宣城市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.不等式组325521xx+>⎧⎨-≥⎩的解在数轴上表示为()A.B.C.D.3.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为()A.B.C.D.±4.如图,AB∥CD,直线EF与AB、CD分别相交于E、F,AM⊥EF于点M,若∠EAM=10°,那么∠CFE 等于()A.80°B.85°C.100°D.170°5.等式33=11x xxx--++成立的x的取值范围在数轴上可表示为()A.B.C.D.6.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300 km;②小路的车比小带的车晚出发1 h,却早到1 h;③小路的车出发后2.5 h追上小带的车;④当小带和小路的车相距50 km时,t=54或t=154.其中正确的结论有()A .①②③④B .①②④C .①②D .②③④7.已知关于x 的方程x 2+3x+a=0有一个根为﹣2,则另一个根为( )A .5B .﹣1C .2D .﹣58.下列函数中,二次函数是( )A .y =﹣4x+5B .y =x(2x ﹣3)C .y =(x+4)2﹣x 2D .y =21x 9.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤10.下列运算正确的是( )A .a 2•a 3=a 6B .a 3+a 2=a 5C .(a 2)4=a 8D .a 3﹣a 2=a11.如图,已知函数y=﹣3x 与函数y=ax 2+bx 的交点P 的纵坐标为1,则不等式ax 2+bx+3x>0的解集是( )A .x <﹣3B .﹣3<x <0C .x <﹣3或x >0D .x >012.方程2x 2﹣x ﹣3=0的两个根为( )A .x 1=32,x 2=﹣1B .x 1=﹣32,x 2=1C .x 1=12,x 2=﹣3D .x 1=﹣12,x 2=3 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,一艘海轮位于灯塔P 的北偏东方向60°,距离灯塔为4海里的点A 处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB 长_____海里.14.比较大小:13 ___1.(填“>”、“<”或“=”)15.若关于x 的一元二次方程x 2﹣2x+m=0有实数根,则m 的取值范围是 .16.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.17.分解因式:2a 2﹣2=_____.18.如图,在菱形ABCD 中,AE DC ⊥于E ,AE 8cm =,2sinD 3=,则菱形ABCD 的面积是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形ABCD 中,E ,F 为BC 上两点,且BE=CF ,AF=DE求证:(1)△ABF ≌△DCE ;四边形ABCD 是矩形.20.(6分)如图,已知正方形ABCD 的边长为4,点P 是AB 边上的一个动点,连接CP ,过点P 作PC的垂线交AD 于点E ,以 PE 为边作正方形PEFG ,顶点G 在线段PC 上,对角线EG 、PF 相交于点O .(1)若AP=1,则AE= ;(2)①求证:点O 一定在△APE 的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.21.(6分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.22.(8分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)23.(8分)如图,AB是圆O的直径,AC是圆O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=23.(1)求∠A的度数.(2)求图中阴影部分的面积.24.(10分)某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下(1)样本中D 级的学生人数占全班学生人数的百分比是 ;(2)扇形统计图中A 级所在的扇形的圆心角度数是 ;(3)请把条形统计图补充完整;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A 级和B 级的学生人数之和. 25.(10分)某地铁站口的垂直截图如图所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C 点到地面AD 的距离(结果保留根号).26.(12分)如图,在平行四边形ABCD 中,E 、F 为AD 上两点,AE=EF=FD ,连接BE 、CF 并延长,交于点G , GB=GC .(1)求证:四边形ABCD 是矩形;(1)若△GEF 的面积为1.①求四边形BCFE 的面积;②四边形ABCD 的面积为 .27.(12分)在△ABC 中,AB=AC ,∠BAC=α,点P 是△ABC 内一点,且∠PAC+∠PCA=2,连接PB ,试探究PA 、PB 、PC 满足的等量关系. (1)当α=60°时,将△ABP 绕点A 逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP ≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC 的大小为 度,进而得到△CPP′是直角三角形,这样可以得到PA 、PB 、PC 满足的等量关系为 ;(2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3)PA、PB、PC满足的等量关系为.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.不是轴对称图形,也不是中心对称图形.故错误;B.不是轴对称图形,也不是中心对称图形.故错误;C.是轴对称图形,也是中心对称图形.故正确;D.不是轴对称图形,是中心对称图形.故错误.故选C.【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.2.C【解析】【分析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【详解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴数轴表示的正确方法为C.故选C.【点睛】考核知识点:解不等式组.3.D【解析】【分析】根据一次函数的图象过原点得出一次函数式正比例函数,设一次函数的解析式为y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组,求出方程组的解即可.【详解】解:设一次函数的解析式为:y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组,由①得:,把③代入②得:,解得:.故选:D.【点睛】本题考查了用待定系数法求一次函数的解析式,主要考查学生运用性质进行计算的能力.4.C【解析】【分析】根据题意,求出∠AEM,再根据AB∥CD,得出∠AEM与∠CFE互补,求出∠CFE.【详解】∵AM⊥EF,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故选C.【点睛】本题考查三角形内角和与两条直线平行内错角相等.5.B【解析】【分析】根据二次根式有意义的条件即可求出x的范围.【详解】由题意可知:3010xx-≥⎧⎨+>⎩,解得:3x…,故选:B.【点睛】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.6.C【解析】【分析】观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【详解】由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,∴①②都正确;设小带车离开A城的距离y与t的关系式为y小带=kt,把(5,300)代入可求得k=60,∴y小带=60t,设小路车离开A城的距离y与t的关系式为y小路=mt+n,把(1,0)和(4,300)代入可得0 4300 m nm n+=⎧⎨+=⎩解得100100 mn=⎧⎨=-⎩∴y小路=100t-100,令y小带=y小路,可得60t=100t-100,解得t=2.5,即小带和小路两直线的交点横坐标为t=2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,∴③不正确;令|y小带-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,当100-40t=50时,可解得t=54,当100-40t=-50时,可解得t=154,又当t=56时,y小带=50,此时小路还没出发,当t=256时,小路到达B城,y小带=250.综上可知当t的值为54或154或56或256时,两车相距50 km,∴④不正确.故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.B【解析】【分析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,∴-2+m=−31,解得,m=-1,故选B.8.B【解析】A. y=-4x+5是一次函数,故此选项错误;B. y= x(2x-3)=2x2-3x,是二次函数,故此选项正确;C. y=(x+4)2−x 2=8x+16,为一次函数,故此选项错误;D. y=21x是组合函数,故此选项错误. 故选B.9.A【解析】【分析】由抛物线的开口方向判断a 与2的关系,由抛物线与y 轴的交点判断c 与2的关系,然后根据对称轴判定b 与2的关系以及2a+b=2;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >2.【详解】①∵对称轴在y 轴右侧,∴a 、b 异号,∴ab <2,故正确; ②∵对称轴1,2b x a=-= ∴2a+b=2;故正确;③∵2a+b=2,∴b=﹣2a ,∵当x=﹣1时,y=a ﹣b+c <2,∴a ﹣(﹣2a )+c=3a+c <2,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am 2+bm+c≤a+b+c ,所以a+b≥m (am+b )(m 为实数).故正确.⑤如图,当﹣1<x <3时,y 不只是大于2.故错误.故选A .【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当a >2时,抛物线向上开口;当a <2时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >2),对称轴在y 轴左; 当a 与b 异号时(即ab <2),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(2,c ).10.C【解析】【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘进行计算即可.【详解】A、a2•a3=a5,故原题计算错误;B、a3和a2不是同类项,不能合并,故原题计算错误;C、(a2)4=a8,故原题计算正确;D、a3和a2不是同类项,不能合并,故原题计算错误;故选:C.【点睛】此题主要考查了幂的乘方、同底数幂的乘法,以及合并同类项,关键是掌握计算法则.11.C【解析】【分析】首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+3x>1的解集.【详解】∵函数y=﹣3x与函数y=ax2+bx的交点P的纵坐标为1,∴1=﹣3x,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+3x>1的解集是:x<﹣3或x>1.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.12.A【解析】【分析】利用因式分解法解方程即可.【详解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=32,x2=-1.故选A.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】分析:首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP•cos∠A=1海里.详解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos∠A=4×cos60°=4×12=1海里.故答案为1.点睛:本题考查了解直角三角形的应用-方向角问题,平行线的性质,三角函数的定义,正确理解方向角的定义是解题的关键.14.<.【解析】【分析】根据算术平方根的定义即可求解.【详解】1,1,1.故答案为<.【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.【解析】试题分析:由题意知,△=4﹣4m≥0,∴m≤1.故答案为m≤1.考点:根的判别式.16.8【解析】【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【详解】∵四边形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S阴影=1·2AB CE=8,故答案为8.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.17.2(a+1)(a﹣1).【解析】【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【详解】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).【点睛】本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.296cm【解析】根据题意可求AD的长度,即可得CD的长度,根据菱形ABCD的面积=CD×AE,可求菱形ABCD的面积.【详解】∵sinD=23 AEAD=∴823 AD=∴AD=11∵四边形ABCD是菱形∴AD=CD=11∴菱形ABCD的面积=11×8=96cm1.故答案为:96cm1.【点睛】本题考查了菱形的性质,解直角三角形,熟练运用菱形性质解决问题是本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)见解析.【解析】【分析】(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.【详解】(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∵AB=DC,BF=CE,AF=DE,∴△ABF≌△DCE.(2)∵△ABF≌△DCE,∴∠B=∠C.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四边形ABCD是矩形.20.(1);(2)①证明见解析;②;(3).【解析】试题分析:(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;(2)①A、P、O、E四点共圆,即可得出结论;②连接OA、AC,由勾股定理求出AC=,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可.试题解析:(1)∵四边形ABCD、四边形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴,即,解得:AE=,故答案为:;(2)①∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,∴点O一定在△APE的外接圆上;②连接OA、AC,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==,∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,即点O经过的路径长为;(3)设△APE 的外接圆的圆心为M ,作MN ⊥AB 于N ,如图2所示:则MN ∥AE ,∵ME=MP ,∴AN=PN ,∴MN=AE ,设AP=x ,则BP=4﹣x ,由(1)得:△APE ∽△BCP , ∴,即,解得:AE= =,∴x=2时,AE 的最大值为1,此时MN 的值最大=×1=,即△APE 的圆心到AB 边的距离的最大值为.【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明△APE ∽△BCP 是解题的关键.21.证明见解析【解析】试题分析:通过全等三角形△ADE ≌△CBF 的对应角相等证得∠AED=∠CFB ,则由平行线的判定证得结论.证明:∵平行四边形ABCD 中,AD=BC ,AD ∥BC ,∴∠ADE=∠CBF .∵在△ADE 与△CBF 中,AD=BC ,∠ADE=∠CBF , DE=BF ,∴△ADE ≌△CBF (SAS ).∴∠AED=∠CFB .∴AE ∥CF .22.29.8米.【解析】【分析】作AD BC ⊥,BH CN ⊥,根据题意确定出ABC ∠与BCH ∠的度数,利用锐角三角函数定义求出AD 与BD 的长度,由CD BD +求出BC 的长度,即可求出BH 的长度.【详解】解:如图,作AD BC ⊥,BH CN ⊥,由题意得:MCD 57MCA 12AB CH ∠∠︒︒P =,=,, ACB 45BCH ABC 33∠∠∠∴︒︒=,==,AB 40Q =米,AD CD sin ABC?AB 40sin33m BD AB?cos3340cos33===,==∠∴⨯︒︒⨯︒米,BC CD BD 40sin33cos3355.2∴+⨯︒+︒≈==()米,则BH BC?sin3329.8︒≈=米,答:这架无人飞机的飞行高度为29.8米.【点睛】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键. 23. (1) ∠A=30°;(2)2233π-【解析】【分析】(1)连接OC ,由过点C 的切线交AB 的延长线于点D ,推出OC ⊥CD ,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC ,推出∠A=∠ACO ,由∠A=∠D ,推出∠A=∠ACO=∠D再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.(2)先求∠COD 度数及OC 长度,即可求出图中阴影部分的面积.【详解】解:(1)连结OC∵CD 为⊙O 的切线∴OC ⊥CD∴∠OCD=90°又∵OA=OC∴∠A=∠ACO又∵∠A=∠D∴∠A=∠ACO=∠D而∠A+∠ACD+∠D=180°﹣90°=90° ∴∠A=30°(2)由(1)知:∠D=∠A=30°∴∠COD=60°又∵CD=2∴OC=2∴S阴影=.【点睛】本题考查的知识点是扇形面积的计算及切线的性质,解题的关键是熟练的掌握扇形面积的计算及切线的性质.24.(1)10%; (2)72; (3)5,见解析; (4)330.【解析】【分析】【详解】解:(1)根据题意得:D级的学生人数占全班人数的百分比是:1-20%-46%-24%=10%;(2)A级所在的扇形的圆心角度数是:20%×360°=72°;(3)∵A等人数为10人,所占比例为20%,∴抽查的学生数=10÷20%=50(人),∴D级的学生人数是50×10%=5(人),补图如下:(4)根据题意得:体育测试中A级和B级的学生人数之和是:500×(20%+46%)=330(名),答:体育测试中A级和B级的学生人数之和是330名.【点睛】本题考查统计的知识,要求考生会识别条形统计图和扇形统计图.25.C 点到地面AD 的距离为:(22+2)m .【解析】【分析】直接构造直角三角形,再利用锐角三角函数关系得出BE ,CF 的长,进而得出答案.【详解】过点B 作BE ⊥AD 于E ,作BF ∥AD ,过C 作CF ⊥BF 于F ,在Rt △ABE 中,∵∠A=30°,AB=4m , ∴BE=2m ,由题意可得:BF ∥AD ,则∠FBA=∠A=30°, 在Rt △CBF 中,∵∠ABC=75°,∴∠CBF=45°,∵BC=4m ,∴CF=sin45°•BC=22m ,∴C 点到地面AD 的距离为:()222m .【点睛】考查解直角三角形,熟练掌握锐角三角函数是解题的关键.26.(1)证明见解析;(1)①16;②14;【解析】【分析】(1)根据平行四边形的性质得到AD ∥BC ,AB=DC ,AB ∥CD 于是得到BE=CF ,根据全等三角形的性质得到∠A=∠D ,根据平行线的性质得到∠A+∠D=180°,由矩形的判定定理即可得到结论; (1)①根据相似三角形的性质得到219GEF GBC S EF S BC ==V V (),求得△GBC 的面积为18,于是得到四边形BCFE 的面积为16;②根据四边形BCFE 的面积为16,列方程得到BC•AB=14,即可得到结论.【详解】(1)证明:∵GB=GC , ∴∠GBC=∠GCB ,在平行四边形ABCD 中, ∵AD ∥BC ,AB=DC ,AB ∥CD , ∴GB-GE=GC-GF , ∴BE=CF ,在△ABE 与△DCF 中, AE DF AEB DFC BE CF ⎧⎪∠∠⎨⎪⎩===, ∴△ABE ≌△DCF , ∴∠A=∠D ,∵AB ∥CD ,∴∠A+∠D=180°, ∴∠A=∠D=90°, ∴四边形ABCD 是矩形; (1)①∵EF ∥BC , ∴△GFE ∽△GBC ,∵EF=13AD , ∴EF=13BC , ∴219GEF GBC S EF S BC ==V V (), ∵△GEF 的面积为1, ∴△GBC 的面积为18, ∴四边形BCFE 的面积为16,; ②∵四边形BCFE 的面积为16, ∴12(EF+BC )•AB=12×43BC•AB=16, ∴BC•AB=14, ∴四边形ABCD 的面积为14, 故答案为:14.【点睛】本题考查了相似三角形的判定和性质,矩形的判定和性质,图形面积的计算,全等三角形的判定和性质,证得△GFE ∽△GBC 是解题的关键.27.(1)150,222PA PC PB +=(1)证明见解析(3)22224sin2PA PC PB α+= 【解析】【分析】(1)根据旋转变换的性质得到△PAP′为等边三角形,得到∠P′PC =90°,根据勾股定理解答即可;(1)如图1,作将△ABP 绕点A 逆时针旋转110°得到△ACP′,连接PP′,作AD ⊥PP′于D ,根据余弦的定义得到PP′=3PA ,根据勾股定理解答即可;(3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可.试题解析:【详解】解:(1)∵△ABP ≌△ACP′,∴AP =AP′,由旋转变换的性质可知,∠PAP′=60°,P′C =PB ,∴△PAP′为等边三角形,∴∠APP′=60°,∵∠PAC +∠PCA =12×60° =30°, ∴∠APC =150°,∴∠P′PC =90°,∴PP′1+PC 1=P′C 1,∴PA 1+PC 1=PB 1,故答案为150,PA 1+PC 1=PB 1;(1)如图,作120PAP =∠'°,使AP AP '=,连接PP ',CP '.过点A 作AD ⊥PP '于D 点. ∵120BAC PAP '∠∠==°, 即BAP PAC PAC CAP ∠∠∠∠'+=+,∴BAP CAP =∠∠'.∵AB =AC ,AP AP '=,∴BAP CAP 'V V ≌.∴P C PB '=,180302PAP APD AP D -∠∠''∠o ===°. ∵AD ⊥PP ',∴90ADP ∠=°.∴在Rt APD △中,cos PD AP APD AP ⋅∠=.∴2PP PD '=.∵60PAC PCA ∠∠+=°, ∴180120APC PAC PCA ∠-∠-∠o ==°. ∴90P PC APC APD ==∠∠-∠'°. ∴在Rt P PC V '中,222P P PC P C ''+=.∴2223PA PC PB +=;(3)如图1,与(1)的方法类似,作将△ABP 绕点A 逆时针旋转α得到△ACP′,连接PP′,作AD ⊥PP′于D ,由旋转变换的性质可知,∠PAP′=α,P′C =PB , ∴∠APP′=90°-2α, ∵∠PAC +∠PCA =2α, ∴∠APC =180°-2α, ∴∠P′PC =(180°-2α)-(90°-2α)=90°, ∴PP′1+PC 1=P′C 1,∵∠APP′=90°-2α, ∴PD =PA•cos (90°-2α)=PA•sin 2α, ∴PP′=1PA•sin 2α, ∴4PA 1sin 12α+PC 1=PB 1, 故答案为4PA 1sin 12α+PC 1=PB 1. 【点睛】本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键.。
安徽省滁州市2019-2020学年中考第二次大联考数学试卷含解析
安徽省滁州市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.左下图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A.B.C.D.2.下列运算正确的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3•x=x43.如图,在平面直角坐标系中,P是反比例函数kyx=的图像上一点,过点P做PQ x⊥轴于点Q,若OPQ△的面积为2,则k的值是( )A.-2 B.2 C.-4 D.4 4.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为()A.12B.13C.23D.345.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A.y1B.y2C.y3D.y46.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为A .B .C .D .7.如图,在⊙O 中,直径AB ⊥弦CD ,垂足为M ,则下列结论一定正确的是( )A .AC=CDB .OM=BMC .∠A=12∠ACD D .∠A=12∠BOD 8.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ).A .2(1)2y x =-++B .2(1)4y x =--+C .2(1)2y x =--+D .2(1)4y x =-++9.cos30°的相反数是( ) A .33-B .12-C .3-D .22-10.如图所示的四张扑克牌背面完全相同,洗匀后背面朝上,则从中任意翻开一张,牌面数字是 3 的倍数的概率为( )A .14B .13C .12D .3411.二次函数2y ax bx c =++(a≠0)的图象如图所示,则下列命题中正确的是( )A .a >b >cB .一次函数y=ax +c 的图象不经第四象限C .m (am+b )+b <a (m 是任意实数)D .3b+2c >012.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为( )A .7B .8C .9D .10二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A ,B ,C 在⊙O 上,四边形OABC 是平行四边形,OD ⊥AB 于点E ,交⊙O 于点D ,则∠BAD=_______°.14.直线y =﹣x+1分别交x 轴,y 轴于A 、B 两点,则△AOB 的面积等于___.15.如图,□ABCD 中,E 是BA 的中点,连接DE ,将△DAE 沿DE 折叠,使点A 落在□ABCD 内部的点F 处.若∠CBF =25°,则∠FDA 的度数为_________.16.比较大小:554(填“<“,“=“,“>“)17.有一组数据:3,a ,4,6,7,它们的平均数是5,则a =_____,这组数据的方差是_____.18.已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且直线经过第一、三、四象限,当x1<x2时,y1与y2的大小关系为______________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=kx(x>0)的图象经过AO的中点C,交AB于点D,且AD=1.设点A的坐标为(4,4)则点C 的坐标为;若点D的坐标为(4,n).①求反比例函数y=kx的表达式;②求经过C,D两点的直线所对应的函数解析式;在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.20.(6分)如今,旅游度假成为了中国人庆祝传统春节的一项的“新年俗”,山西省旅发委发布的《2018年“春节”假日旅游市场总结分析报告》中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:(1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,2018年首次突破了“千万”大关,达到万人次,比2017年春节假日增加万人次.(2)2018年2月15日﹣20日期间,山西省35个重点景区每日接待游客数量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二)2月18日(初三)2月19日(初四)2月20日(初五)日接待游客数量(万人次)7.56 82.83 119.51 84.38 103.2 151.55这组数据的中位数是万人次.(3)根据图2中的信息预估:2019年春节假日山西旅游总收入比2018年同期增长的百分率约为,理由是.(4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A,B,C,D四枚书签(除图案外完全相同).正面分别印有“剪纸艺术”、“国粹京剧”、“陶瓷艺术”、“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率.21.(6分)小明和小刚玩“石头、剪刀、布”的游戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局.(1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?(2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家.用树形图或列表法求只进行两局游戏便能确定赢家的概率.22.(8分)如图,AB是⊙O的直径,弧CD⊥AB,垂足为H,P为弧AD上一点,连接PA、PB,PB交CD于E.(1)如图(1)连接PC、CB,求证:∠BCP=∠PED;(2)如图(2)过点P作⊙O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:∠APG=12∠F;(3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=25,求⊙O的直径AB.23.(8分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.将三角形、正方形、五边形都整齐的由左到右填在所示表格里:三角形数 1 3 6 10 15 21 a …正方形数 1 4 9 16 25 b 49 …五边形数 1 5 12 22 C 51 70 …(1)按照规律,表格中a=___,b=___,c=___.(2)观察表中规律,第n个“正方形数”是________;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是___________.24.(10分)在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A-国学诵读”、“B-演讲”、“C-课本剧”、“D-书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:(1)根据题中信息补全条形统计图.(2)所抽取的学生参加其中一项活动的众数是.(3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?25.(10分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:排球10 9.5 9.5 10 8 9 9.5 97 10 4 5.5 10 9.5 9.5 10篮球9.5 9 8.5 8.5 10 9.5 10 86 9.5 10 9.5 9 8.5 9.5 6整理、描述数据:按如下分数段整理、描述这两组样本数据:(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格) 分析数据:两组样本数据的平均数、中位数、众数如下表所示: 项目 平均数 中位数 众数 排球 8.75 9.5 10 篮球 8.819.259.5得出结论:(1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)26.(12分)如图,在ABC V 中,AB AC =,AE 是角平分线,BM 平分ABC ∠交AE 于点M ,经过B M ,两点的O e 交BC 于点G ,交AB 于点F ,FB 恰为O e 的直径.求证:AE 与O e 相切;当14cos 3BC C ==,时,求O e 的半径. 27.(12分) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A 型号的空调比1台B 型号的空调少200元,购买2台A 型号的空调与3台B 型号的空调共需11200元,求A 、B 两种型号的空调的购买价各是多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A【解析】试题分析:根据几何体的主视图可判断C 不合题意;根据左视图可得B 、D 不合题意,因此选项A 正确,故选A .考点:几何体的三视图 2.D【解析】A. x 4+x 4=2x 4 ,故错误;B. (x 2)3=x 6 ,故错误;C. (x ﹣y )2=x 2﹣2xy+y 2 ,故错误; D. x 3•x=x 4 ,正确,故选D. 3.C 【解析】 【分析】根据反比例函数k 的几何意义,求出k 的值即可解决问题 【详解】解:∵过点P 作PQ ⊥x 轴于点Q ,△OPQ 的面积为2, ∴|2k|=2, ∵k <0, ∴k=-1. 故选:C . 【点睛】本题考查反比例函数k 的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型. 4.D 【解析】 【分析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解. 【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是34, 故选:D. 【点睛】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.5.A【解析】【分析】由图象的点的坐标,根据待定系数法求得解析式即可判定.【详解】由图象可知:抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=34(x+2)2-2;抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;抛物线y3的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y3=(x-1)2+1;抛物线y4的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y4=2(x-1)2-3;综上,解析式中的二次项系数一定小于1的是y1故选A.【点睛】本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键.6.B【解析】分析:分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:∵等边三角形ABC的边长为3,N为AC的三等分点,∴AN=1。
2019年中考安徽名校大联考试卷(二)语文试题(答案)
2019年中考名校大联考试卷(二)语文试题温馨提示:1.你拿到的试卷满分为150分(其中卷面书写占5分),你要在150分钟答完所有的题目。
2.试卷包括“试题卷”和“答题卷”两部分。
请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
3.答题过程中,你可以随时使用你所带的《新华字典》。
4.考试结束后,请将“试题卷”和“答题卷”一并交回。
一、语文积累与综合运用(35分)1.默写古诗文中的名句名篇。
(10分)(1)请在下列横线上填写出古诗文名句。
①野马也,尘埃也, 。
(庄子《北冥有鱼》)②,独怆然而涕下!(子昂《登幽州台歌》)③,随君直到夜郎西。
(白《闻王昌龄左迁龙标遥有此寄》)④正蓬出汉塞, 。
(王维《使至塞上》)⑤睛川历历汉阳树, 。
(颢《黄鹤楼》)⑥,西北望,射天狼。
(轼《江城子·密州出猎》)(2)根据提示写出相应的名句。
①孟子《鱼我所欲也》中描绘贤者能够保持羞恶之心的句子是“”。
②马致远《天净沙·秋思》中点明主旨的句子是“”。
2.阅读下面的文字,完成(1)-(4)题。
(9分)心有明灯,便不会迷路,便可拒绝黑暗、胆怯,拥有一份明郎的心情,一份必胜的信念;心有小窗,便有亮丽的进来,小酌一些温暖的故事,让自由清风邀约一些花香和白云常驻;心有琴弦,纵然客去茶凉,仍有小曲缓缓响起,仍有满树桂花化为酒香;心有栅栏,然后青藤爬过那些小秘密点zhuì其中,像叶片下小憩的蝴蝶,做梦一般……(1)根据拼音写出相应的汉字,给加点字注音。
胆怯.( ) 栅.栏( ) 点zhuì( )(2)文中有错别字的一个词是“”,这个词的正确写法是“”。
(3)“小酌”在文中的意思是,“小憩”中“憩”的意思是。
(4)选段运用了等修辞,把心灵之美写得摇曳多姿。
3.运用课外阅读积累的知识,完成(1)-(2)题。
(4分)(1)下列地点不是简·爱生活过的一项是( )。
A.盖茨黑德庄园B.洛伍德学校C.桑菲尔德庄园D.别托夫卡镇(2)在《朝花夕拾》中,鲁迅先生提到了自己的老师,在“三味书屋”中教对对子的塾师是,在日本仙台医专教解剖学的老师是。
安徽省六安市2019-2020学年中考第一次大联考物理试卷含解析
安徽省六安市2019-2020学年中考第一次大联考物理试卷一、单选题(本大题共10小题,共30分)1.如图所示,滑动变阻器的滑片P处于中间位置,闭合开关S,两个灯泡均能发光(假设灯丝电阻不变),此时,将滑动变阻器的滑片P向右移动,则A.L1和L2都变亮B.L1变暗,L2变亮C.L1变亮,L2变暗D.L1和L2都变暗B【解析】【分析】【详解】由电路图可知,灯泡L2与滑动变阻器R并联后再与灯泡L1串联,将滑动变阻器的滑片P向右移动,滑动变阻器接入电路中的电阻变大,并联部分的电阻变大,电路的总电阻变大,由I=U/R可知,干路中的电流变小,由U=IR可知,L1两端的电压变小,因灯泡的亮暗取决于实际功率的大小,所以,由P=UI可知,灯泡L1的实际功率变小,L1的亮度变暗,故AC错误;因串联电路中总电压等于各分电压之和,所以,并联部分的电压变大,因并联电路中各支路两端的电压相等,所以,灯泡L2两端的电压变大,由题知灯丝电阻不变,根据,L2的实际功率变大,亮度变亮,故B正确,D错误.答案为B.2.下列有关声现象和电磁波的说法正确的是A.光在光导纤维中不断折射,把信息传递出去B.3G或4G手机主要是使用电磁波传递数字信号的C.吹笛子时按压不同位置的气孔,主要改变声音的响度D.超声波比次声波在空气中的传播速度大B【解析】【分析】【详解】A.光在光导纤维中发生的是全反射而没有折射,故A错误;B.手机发送与接收信号,是通过电磁波传递的,故B正确;C.吹笛子时按压不同位置的气孔,主要改变空气柱的长短,进而改变音调,故C错误;D.速度只与传播介质有关,与频率无关,故D错误.3.已知甲、乙两种机械在做功过程中,甲的机械效率比乙的机械效率大,这表明A.甲做功比乙做功快B.甲做的有用功比乙做的有用功多C.甲做的额外功比乙做的额外功少D.甲做的有用功,与总功的比值比乙大D【解析】【详解】A.在物理学中,我们用功率表示物体做功的快慢,功率大的机械做功快.而机械效率大的功率不一定大,它们之间没有必然的关系,所以选项A不正确;B.如果甲、乙两种机械做的总功相同,则甲的机械效率高,甲做的有用功就比乙做的有用功多.如果不指明甲、乙两种机械做的总功多少情况下,只凭机械效率高低无法判断谁做的有用功多(做功多少主要看力和距离),所以选项B不正确;C.如果甲、乙两种机械做的总功相同,则甲的机械效率高,甲做的额外功就比乙做的额外功少.如果不指明甲、乙两种机械做的总功多少情况下,只凭机械效率高低无法判断谁做的额外功少(做功多少主要看力和距离),所以选项C不正确;D.机械效率是有用功与总功的比值.甲的机械效率比乙大,表明甲做的有用功与总功的比值比乙大,所以选项D是正确的.故选D.4.国外科研人员设计了一种“能量采集船”,如图所示.在船的两侧附着可触及水面的旋转“工作臂”,每只“工作臂”的底端装有一只手掌状的、紧贴水面的浮标.当波浪引起浮标上下浮动时,工作臂就前后移动,获得电能储存起来.下列电器设备与“能量采集船”获得能量原理相同的是A.B.C.D.B【解析】【分析】【详解】根据题意可知,波浪引起浮标上下浮动时,工作臂就前后移动,获得电能储存起来,因此该过程将机械能转化为了电能;根据选项ACD的图示可知,都有电源提供电能,因此它们都消耗了电能,故ACD不符合题意;B中线圈转动时,灯泡发光,说明产生了电能,故将机械能转化为电能,符合题意。
安徽省滁州市2019-2020学年中考第四次大联考数学试卷含解析
安徽省滁州市2019-2020学年中考第四次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,AB 是⊙O 的直径,点C ,D ,E 在⊙O 上,若∠AED =20°,则∠BCD 的度数为( )A .100°B .110°C .115°D .120°2.如图,二次函数y=ax 1+bx+c (a≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=1,且OA=OC .则下列结论:①abc >0;②9a+3b+c >0;③c >﹣1;④关于x 的方程ax 1+bx+c=0(a≠0)有一个根为﹣1a;⑤抛物线上有两点P (x 1,y 1)和Q (x 1,y 1),若x 1<1<x 1,且x 1+x 1>4,则y 1>y 1.其中正确的结论有( )A .1个B .3个C .4个D .5个3.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为( ) A .0.21×108B .21×106C .2.1×107D .2.1×1064.等腰三角形一边长等于5,一边长等于10,它的周长是( ) A .20B .25C .20或25D .155.实数﹣5.22的绝对值是( ) A .5.22 B .﹣5.22 C .±5.22D 5.226.若()292m m --=1,则符合条件的m 有( )A .1个B .2个C .3个D .4个7.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A.x(x+1)=1035 B.x(x-1)=1035 C.12x(x+1)=1035 D.12x(x-1)=10358.2014 年底,国务院召开了全国青少年校园足球工作会议,明确由教育部正式牵头负责校园足球工作.2018 年2 月 1 日,教育部第三场新春系列发布会上,王登峰司长总结前三年的工作时提到:校园足球场地,目前全国校园里面有 5 万多块,到2020 年要达到85000 块.其中85000 用科学记数法可表示为()A.0.85 ⨯ 105B.8.5 ⨯ 104C.85 ⨯ 10-3D.8.5 ⨯ 10-49.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时) 2 2.5 3 3.5 4学生人数(名) 1 2 8 6 3则关于这20名学生阅读小时数的说法正确的是()A.众数是8 B.中位数是3C.平均数是3 D.方差是0.3410.以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O上的是()A.(1,1) B.(2,2) C.(1,3) D.(1,2)11.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④当1<x<3时,x2+(b﹣1)x+c<1.其中正确的个数为A.1 B.2 C.3 D.412.近似数25.010⨯精确到()A.十分位B.个位C.十位D.百位二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为_____.14.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为__________15.如果点()14,A y -、()23,B y -是二次函数22(y x k k =+是常数)图象上的两点,那么1y ______2.(y 填“>”、“<”或“=”)16.一元二次方程x 2+mx+3=0的一个根为- 1,则另一个根为 .17.如图,△ABC 是⊙O 的内接三角形,AD 是⊙O 的直径,∠ABC=50°,则∠CAD=________ .18.如图,在Rt ABC V 中,CM 平分ACB ∠交AB 于点M ,过点M 作MN //BC 交AC 于点N ,且MN 平分AMC ∠,若AN 1=,则BC 的长为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)解不等式313212x x +->-,并把解集在数轴上表示出来.20.(6分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元? 21.(6分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球), 第一次变化:从左边小桶中拿出两个小球放入中间小桶中; 第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍. (1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的____倍;(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有_____个小球(用a表示);(3)求第三次变化后中间小桶中有多少个小球?22.(8分)(1)计算:|﹣2|﹣(π﹣2015)0+(12)﹣2﹣2sin60°+12;(2)先化简,再求值:221aa a--÷(2+21aa+),其中a=2.23.(8分)已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF24.(10分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.孔明同学调查的这组学生共有_______人;这组数据的众数是_____元,中位数是_____元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?25.(10分)为迎接“全民阅读日“系列活动,某校围绕学生日人均阅读时间这一问题,对八年级学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次共抽查了八年级学生多少人;(2)请直接将条形统计图补充完整;(3)在扇形统计图中,1〜1.5小时对应的圆心角是多少度;(4)根据本次抽样调查,估计全市50000名八年级学生日人均阅读时间状况,其中在0.5〜1.5小时的有多少人?26.(12分)某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:收集数据从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:78 86 74 81 75 76 87 70 75 90八年级75 79 81 70 74 80 86 69 83 7793 73 88 81 72 81 94 83 77 83九年级80 81 70 81 73 78 82 80 70 40整理、描述数据将成绩按如下分段整理、描述这两组样本数据:成绩(x)40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100八年级人数0 0 1 11 7 1九年级人数 1 0 0 7 10 2(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6九年级78 80.5 a 52.1(1)表格中a的值为______;请你估计该校九年级体质健康优秀的学生人数为多少?根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)27.(12分)阅读材料,解答下列问题:神奇的等式当a≠b时,一般来说会有a2+b≠a+b2,然而当a和b是特殊的分数时,这个等式却是成立的例如:(13)2+23=13+22()3,(14)2+34=14+23()4,(15)2+45=15+(45)2,…(1100)2+99100=1100+(99100)2,…(1)特例验证:请再写出一个具有上述特征的等式:;(2)猜想结论:用n(n为正整数)表示分数的分母,上述等式可表示为:;(3)证明推广:①(2)中得到的等式一定成立吗?若成立,请证明;若不成立,说明理由;②等式(mn)2+n mn-=mn+(n mn-)2(m,n为任意实数,且n≠0)成立吗?若成立,请写出一个这种形式的等式(要求m,n中至少有一个为无理数);若不成立,说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】连接AD,BD,由圆周角定理可得∠ABD=20°,∠ADB=90°,从而可求得∠BAD=70°,再由圆的内接四边形对角互补得到∠BCD=110°.【详解】如下图,连接AD,BD,∵同弧所对的圆周角相等,∴∠ABD=∠AED=20°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故选B【点睛】本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键. 2.D 【解析】 【分析】根据抛物线的图象与系数的关系即可求出答案. 【详解】解:由抛物线的开口可知:a <0,由抛物线与y 轴的交点可知:c <0,由抛物线的对称轴可知:2ba->0,∴b >0,∴abc >0,故①正确;令x=3,y >0,∴9a+3b+c >0,故②正确; ∵OA=OC <1,∴c >﹣1,故③正确; ∵对称轴为直线x=1,∴﹣2ba=1,∴b=﹣4a . ∵OA=OC=﹣c ,∴当x=﹣c 时,y=0,∴ac 1﹣bc+c=0,∴ac ﹣b+1=0,∴ac+4a+1=0,∴c=41a a+-,∴设关于x 的方程ax 1+bx+c=0(a≠0)有一个根为x ,∴x ﹣c=4,∴x=c+4=1a-,故④正确; ∵x 1<1<x 1,∴P 、Q 两点分布在对称轴的两侧, ∵1﹣x 1﹣(x 1﹣1)=1﹣x 1﹣x 1+1=4﹣(x 1+x 1)<0,即x 1到对称轴的距离小于x 1到对称轴的距离,∴y 1>y 1,故⑤正确. 故选D . 【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax 1+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.本题属于中等题型. 3.D 【解析】 2100000=2.1×106.点睛:对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.4.B【解析】【分析】题目中没有明确腰和底,故要分情况讨论,再结合三角形的三边关系分析即可.【详解】+=,此时无法构成三角形;当5为腰时,三边长为5、5、10,而5510=++=当5为底时,三边长为5、10、10,此时可以构成三角形,它的周长5101025故选B.5.A【解析】【分析】根据绝对值的性质进行解答即可.【详解】实数﹣5.1的绝对值是5.1.故选A.【点睛】本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键.6.C【解析】【分析】根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.【详解】Q()29-=12mm-∴m2-9=0或m-2= ±1即m= ±3或m=3,m=1∴m有3个值故答案选C.【点睛】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.7.B【解析】试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.∵全班有x名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x(x-1)=1.故选B考点:由实际问题抽象出一元二次方程.8.B【解析】【分析】根据科学记数法的定义,科学记数法的表示形式为a×10 n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,等于这个数的整数位数减1.【详解】解:85000用科学记数法可表示为8.5×104,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.B【解析】【分析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.【详解】解:A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、平均数=122 2.5386 3.5433.3520⨯+⨯+⨯+⨯+⨯=,所以此选项不正确;D、S2=120×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]=5.6520=0.2825,所以此选项不正确;故选B.【点睛】本题考查方差;加权平均数;中位数;众数.10.B【解析】【分析】根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.【详解】A选项,(1,1)到坐标原点的距离为2<2,因此点在圆内,B选项(2,2) 到坐标原点的距离为2=2,因此点在圆上,C选项(1,3) 到坐标原点的距离为10>2,因此点在圆外D选项(1,2) 到坐标原点的距离为3<2,因此点在圆内,故选B.【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.11.B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<1;故①错误。
安徽省池州市2019-2020学年中考第三次大联考数学试卷含解析
安徽省池州市2019-2020学年中考第三次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图①是半径为2的半圆,点C 是弧AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是( )A .43πB .43π﹣3 C .23+3π D .23﹣23π 2.已知a 为整数,且3<a<5,则a 等于( ) A .1B .2C .3D .43.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:()()1212A B x x y y ⊕=+++.例如,A (-5,4),B (2,﹣3),()()A B 52432⊕=-++-=-.若互不重合的四点C ,D ,E ,F ,满足C D D E E F F D ⊕=⊕=⊕=⊕,则C ,D ,E ,F 四点【 】A .在同一条直线上B .在同一条抛物线上C .在同一反比例函数图象上D .是同一个正方形的四个顶点 4.若一个正多边形的每个内角为150°,则这个正多边形的边数是( ) A .12B .11C .10D .95.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.A .B 与CB .C 与DC .E 与FD .A 与B6.下列运算正确的是( ) A .a 3•a 2=a 6B .(a 2)3=a 5C 9=3D .557.PM2.5是指大气中直径小于或等于2.5μm (0.0000025m )的颗粒物,含有大量有毒、有害物质,也称为可入肺颗粒物,将25微米用科学记数法可表示为( )米. A .25×10﹣7 B .2.5×10﹣6 C .0.25×10﹣5 D .2.5×10﹣5 8.下列命题中错误的有( )个 (1)等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形(5)平分弦的直径垂直于弦A.1 B.2 C.3 D.49.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A.∠ACB=90°B.OE=BE C.BD=BC D.»»AD AC10.边长相等的正三角形和正六边形的面积之比为()A.1∶3 B.2∶3 C.1∶6 D.1∶611.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是()A.30厘米、45厘米;B.40厘米、80厘米;C.80厘米、120厘米;D.90厘米、120厘米12.如图,在▱ABCD中,AB=1,AC=42,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD于点F.若AC⊥AB,则FD的长为()A.2 B.3 C.4 D.6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,经过点A的双曲线y=kx(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为_______.14.如图,边长为6的菱形ABCD中,AC是其对角线,∠B=60°,点P在CD上,CP=2,点M在AD 上,点N在AC上,则△PMN的周长的最小值为_____________ .15.不等式组52130xx-≤⎧⎨+>⎩的解集是__________.16.图中是两个全等的正五边形,则∠α=______.17.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是______.18.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;20.(6分)已知P 是⊙O 外一点,PO 交⊙O 于点C ,OC=CP=2,弦AB ⊥OC ,∠AOC 的度数为60°,连接PB .求BC 的长;求证:PB 是⊙O 的切线.21.(6分)如图,已知反比例函数1ky x=和一次函数21y ax =+的图象相交于第一象限内的点A ,且点A 的横坐标为1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1.求反比例函数和一次函数的解析式.若一次函数21y ax =+的图象与x 轴相交于点C ,求∠ACO 的度数.结合图象直接写出:当1y >2y >0时,x 的取值范围.22.(8分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A 、B 、C 、D 四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分﹣100分;B 级:75分﹣89分;C 级:60分﹣74分;D 级:60分以下)(1)写出D 级学生的人数占全班总人数的百分比为 ,C 级学生所在的扇形圆心角的度数为 ;(2)该班学生体育测试成绩的中位数落在等级 内;(3)若该校九年级学生共有500人,请你估计这次考试中A 级和B 级的学生共有多少人?23.(8分)如图,某校数学兴趣小组要测量大楼AB 的高度,他们在点C 处测得楼顶B 的仰角为32°,再往大楼AB 方向前进至点D 处测得楼顶B 的仰角为48°,CD =96m ,其中点A 、D 、C 在同一直线上.求AD 的长和大楼AB 的高度(结果精确到2m )参考数据:sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,3≈2.7324.(10分)如图,AB 是半圆O 的直径,D 为弦BC 的中点,延长OD 交弧BC 于点E ,点F 为OD 的延长线上一点且满足∠OBC =∠OFC ,求证:CF 为⊙O 的切线;若四边形ACFD 是平行四边形,求sin ∠BAD 的值.25.(10分)如图,已知一次函数y=kx+b 的图象与x 轴交于点A ,与反比例函数my x=(x <0)的图象交于点B (﹣2,n ),过点B 作BC ⊥x 轴于点C ,点D (3﹣3n ,1)是该反比例函数图象上一点.求m 的值;若∠DBC=∠ABC ,求一次函数y=kx+b 的表达式.26.(12分)计算: (1)2162)12(8)3- (2)221cos60cos 45tan 603+-o oo 27.(12分)为了提高中学生身体素质,学校开设了A :篮球、B :足球、C :跳绳、D :羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).这次调查中,一共调查了________名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】连接OC交MN于点P,连接OM、ON,根据折叠的性质得到OP=12OM,得到∠POM=60°,根据勾股定理求出MN,结合图形计算即可.【详解】解:连接OC交MN于点P,连接OM、ON,由题意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵OM=2,OP=1,∴cos∠POM=OPOM=12,22OM OP3∴∠POM=60°,3∴∠AOB=2∠AOC=120°,=12×π×22-2×(21202360π⨯-12××1)23π, 故选D. 【点睛】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键. 2.B 【解析】 【分析】1,进而得出答案. 【详解】∵a ∴a=1. 故选:B . 【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键. 3.A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年中考安徽名校大联考试卷D.4. 台儿庄战役历史到今天已过去了70周年,下面关于此次战役评述不准确...的是 A .战役总指挥是李宗仁B .国民党军的抗日将士也是中华民族的英雄C .充分体现了国共两党的合作D .是抗战爆发后国民政府取得的首次重大胜利5. 有学者认为中国的社会主义建设始于毛泽东,成于邓小平。
“成于邓小平”主要是因为 A .中华民族实现了独立B.邓小平同志强调坚持四项基本原则C.提出改革开放D.邓小平时代有着良好的国际环境6.右图中的纪念币是为纪念哪一历史时刻而发行的A .澳门回归B .十一届三中全会C .APEC 会议在上海召开D .香港回归 7.穆罕默德是下列哪一宗教的创始人A 、佛教B 、伊斯兰教C 、犹太教D 、基督教8. 1776年初,在北美大地流行一本小册子《常识》,其中有一句话“现在是分手的时候了”,这句话的意思是A .北美人民强烈要求英属殖民地独立 B.北美人民与印第安人矛盾很深C.北美人民要与南方黑人奴隶制度“分手”D. 北美人民已经摆脱了英国殖民者的殖民统治 ①第二次世界大战 ②新中国成立 ③联合国成立 ④苏联的强大 A 、①②③④ B 、①②③ C 、①②④ D 、②③④11.如果某机构准备进行一次主题为“翱翔九天”的航空发展历程图片展,假如你是主要负责人,下列图片,你会选哪个嫦娥一号模拟图A 克隆羊B核爆炸C计算机D二、判断改错(共6分)12..某校同学平时有一个历史错题本,记录他平时学习是出现的错误。
下面有列举了四句话,请你判断正误,并改正。
(在括号内用“√”或“×”判断,如有错误请加以改正)(1) ( )包世臣是马克思在《资本论》中唯一提到的中国人。
改正:(2) ( )新中国成立标志着中国进入社会主义初级阶段。
改正:(3) ( )《马可·波罗行纪》在欧洲广为传播,对后来新航路的开辟起到了强烈的刺激作用。
改正(4) ( )章西女王是19世纪中期印度民族起义中的杰出女英雄。
改正:三、识图填空(8分)13.北京2008年奥运会火炬正在如火如荼传递之中,请阅读下面图片,并回答问题。
图一 伯利克里图二 遵义会议旧址图三第23届奥运会金牌图四 北京奥运会火炬“祥云”⑴现代奥运会源于古希腊奥运会,图一人物当政时期使古希腊城邦( )的奴隶主民主政治发展到古代世界的最高峰。
⑵奥运火炬在境内传递一站是遵义,这是因为图二的意义是____________________________。
⑶图三是我国获得的首枚奥运,这是由安徽运动员( )在第23届奥运会上取得的。
⑷“祥云”火炬设计成卷轴,是因为( )是我国的四大发明之一。
四、材料解析题(第17题10分,第18题10分,共20分)14.大型电视政论片《复兴之路》是央视第一部全面、系统地梳理中国近现代历史的系列节目。
《复兴之路》是站在新的历史起点上,回首过去,展望未来,解密中华民族伟大复兴的艰辛之路。
第一集“千年局变”时间跨度:1840—1911年。
本集以向西方学习,探索救国图强之路为主题。
请结合下列图片回答:图一开平矿务局图二严复《天演论》译稿图三南京临时政府成立⑴“千年局变”反映的是以哪两个历史事件为跨度?三幅图片所反映的历史事件是怎样体现“向西方学习,探索救国图强之路”这一主题的?第二集“峥嵘岁月”时间跨度:1912—1949年。
本集以辛亥革命后各种政治力量探索中国道路为线索,重点表现中国共产党从诞生、挫折、探索、到壮大并赢得胜利的历史。
结合所学知识回答问题。
15. 阅读下列材料材料一图一珍妮纺纱机图二 19世纪后期英国海外贸易示意图材料二 19世纪后期,英国有钱人以坐轮船游览伦敦泰晤士河为时尚。
河中有许多巨大的轮船,正喷发出呛人的浓烟。
岸边工厂排放的污水,已经使河水变得浑浊不堪。
材料三党的十七大报告强调:“坚持节约资源和保护环境的基本国策,关系人民群众切身利益和中华民族生存发展。
必须把建设资源节约型、环境友好型社会放在工业化、现代化发展战略的突出位置,落实到每个单位、每个家庭。
”日前,省经委、省委宣传部等21个部门联合制定《安徽省节能减排全民行动实施方案》,动员全社会积极参与节能减排工作。
请回答:⑴材料一中珍妮纺纱机发明有什么意义?海外贸易示意图反映英国海外贸易如何?形成这一现象的原因是什么?⑵材料二中轮船主要使用什么能源?材料反映的现象与工业革命有何关系?⑶结合材料二和材料三,分析为什么我国要强调“节能减排”?五、分析与探究(本题12分)16.史料研习、理论指导、问题研讨和社会调查是学习历史的重要方法。
请运用这些方法分析近现代中国民主政治建设的发展进程。
(一)史料研究:1912年3月,孙中山颁布了参议院制定的《中华民国临时宪法》。
约法按照立法、行法、司法三权分立的原则构建政治体制。
……它规定国务员“辅佐临时大总统,负其责任”,即实行责任内阁制。
《中华民国临时宪法》是中国第一部资产阶级宪法,是近代中国民主化进程的一座丰碑。
请回答:⑴文中属于史料解释的内容是什么?⑵文中属于历史评价的内容是什么?(二)理论指导:建立和完善民主政治是社会主义制度健康发展的重要制度,请回答新中国成立到20世纪50年代中期中共是如何开创人民民主政治新局面的?⑴国家根本大法:_____________________;⑵国家根本制度:_____________________;⑶国家基本政治制度之一:多党合作和政治协商制度;⑷促进民族团结的基本政治制度:_________________。
(三)问题研讨:“文化大革命”使国家的民主和法制被肆意践踏,全国陷入严重的内乱之中。
请结合相关内容谈谈你对民主政治建设的看法。
(四)社会调查:调查见证人,了解、感受改革开放后我国社会主义民主政治建设的新成就。
请自拟一个主题并说明调查的目的。
⑴调查题目:______________________⑵调查目的:_______________________历史(二)参考答案一、选择题1.C【解释】兵马俑是陶器,不是瓷器,选A错;秦始皇称号适于秦朝而不是秦国。
选B错;兵马俑确实是暴政体现,但客观上反映了清朝的社会文明;选D错;兵马俑大量消耗社会财富,正是反映秦的中央集权统治的力量。
故选C。
2.A【解释】B、C、D都是对外交往或是斗争,唯独A是反映少数民族封建化改革,有利于民族融合。
3.A【解释】1727年,设立驻藏大臣,作为中央政府代表同达赖、班禅共同管理西藏事务,加强了对西藏的管辖。
4.C【解释】台儿庄战役是国民政府独立组织的重大战役,并未体现国共间的合作。
5.C【解释】A已经在毛泽东时代完成;B、D是次要原因。
中国社会主义建设成于邓小平主要是科学分析了国情,将马克思主义和中国实际相结合,探索出中国特色社会主义建设道路。
6.D【解释】根据纪念币中有香港区旗“紫荆花”旗,可以得知是由于纪念香港回归。
7.B【解释】7世纪穆罕默德创立了伊斯兰教。
8.A【解释】从关键词可以判断初是北美独立战争中北美人民要求打败英国殖民者、争取独立的最直接体现。
故选A。
9.A【解释】A是《共产党宣言》内容的摘录,而《共产党宣言》的发表标志着马克思主义的诞生。
10.C【解释】二战削弱了帝国主义势力,使得民族解放力量河社会主义力量发展壮大,特别是苏联的国际地位大大提高,成为世界上最强大的国家之一,故①④正确。
新中国的成立,壮大了世界和平、民主和社会主义力量。
故②正确。
联合国的成立是国际政治格局发生变化的表现,而不是原因。
故排除③。
11.A【解释】“嫦娥一号”绕月卫星是依赖航空技术来实现的。
故选A。
二、判断改错(第13、15小题各3分,第14、16小题各4分,共14分)12、⑴×,改正:包世臣改为王茂荫。
⑵×,改正:新中国成立改为三大改造基本完成。
⑶√;⑷√三、识图填空(8分)13.⑴雅典⑵确立毛泽东的正确领导⑶许海峰⑷造纸术四、材料解析题(第17题11分,第18题10分,共21分)14. (1)鸦片战争到辛亥革命(2分);图一学习外国先进技术,建立近代工业(1分);图二用进化论的观点宣传维新变法(1分);图三学习西方政治制度,建立资产阶级共和国。
(1分)(2)1921年中共一大召开(1分);从而形成了以农村包围城市,最后夺取全国政权的正确革命道路。
(1分)抗日战争(1分);建立新中国。
(1分)(3)以天下为己任,不屈不挠,与时俱进,实事求是,开拓创新。
(本题只要言之有理且答出两点即可)(2分)15. (1)揭开了工业革命的序幕(1分);反映了英国海外贸易范围广(1分)。
因为英国较早开展工业革命,最先成为工业国,是当时最发达的资本主义国家,为了不断满足发展的需要,英国要在世界各地掠夺原材料、抢占市场,扩大海外贸易。
(3分)(2)煤(1分);只重视生产创造,不顾环境的结果。
(1分)(3)因为要吸取工业革命弊端的教训。
生产力的发展不能以牺牲能源环境为代价,发展经济应与环境保护同步进行,要走“可持续发展”的道路。
(3分)五、分析与探究(本题13分)16.(一)⑴即实行责任内阁制(1分)⑵《中华民国临时约法》是中国第一部资产阶级宪法,是近代中国民主化进程的一座丰碑。
(1分)(二)⑴制定《中华人民共和国宪法》(2分)⑵在全国范围内建立人民代表大会制度(2分)⑶确立民族区域自治制度。
(2分)(三)民主建设是一个漫长、艰巨的过程;要健全社会主义民主与法制;要充分发扬党内民主;要反对个人崇拜等。
(若有其它合理答案也可,3分))(四)⑴符合题意即可。
⑵符合题意即可. (2分)如:主题是《未成年保护法》;目的:了解国家对如何在法律上保护未成年权益的。