学习开关电源你必须知道的电路详解

合集下载

开关电源各种经典电路图详细讲解

开关电源各种经典电路图详细讲解

开关电源电路图讲解。

图片:图片:图片:开关电源电路图一、主电路从交流电网输入、直流输出的全过程,包括:1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反应到公共电网。

2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。

3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心局部,频率越高,体积、重量与输出功率之比越小。

4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。

二、控制电路一方面从输出端取样,经与设定标准进展比拟,然后去控制逆变器,改变其频率或脉宽,到达输出稳定,另一方面,根据测试电路提供的资料,经保护电路鉴别,提供控制电路对整机进展各种保护措施。

三、检测电路除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表资料。

四、辅助电源提供所有单一电路的不同要求电源。

开关控制稳压原理开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供应负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。

可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。

图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。

电感L用以储存能量,在开关断开时,储存在电感L 中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。

在AB间的电压平均值EAB可用下式表示:EAB=TON/T*E式中TON为开关每次接通的时间,T为开关通断的工作周期〔即开关接通时间TON和关断时间TOFF之和〕。

.由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载与输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。

开关电源电路组成及常见各模块电路分析

开关电源电路组成及常见各模块电路分析

开关电源电路组成及常见各模块电路分析开关电源电路是一种将输入电流转换为高频脉冲的电路,通过变压器进行变换和滤波,最终将电源提供给负载。

它由多个模块组成,包括输入滤波器、整流器、功率变换器、输出滤波器和反馈控制器等。

下面我将对这些模块进行详细分析。

1.输入滤波器:开关电源电路的输入端通常会接入输入电源,因此需要一个输入滤波器来滤除输入电源中的高频噪声和电磁干扰。

输入滤波器通常由电容和电感构成,能够将输入电压平滑成纯直流信号,并提供稳定的电压给后续电路。

2.整流器:整流器的作用是将交流信号转换为直流信号,并提供稳定的电压给功率变换器。

常见的整流器有全波整流和半波整流两种方式。

全波整流使用四个二极管,能够将输入电压的正半周期和负半周期都转换为直流信号,效率更高。

而半波整流只使用两个二极管,仅将输入电压的正半周期转换为直流信号。

3.功率变换器:功率变换器是开关电源电路的核心部分,主要负责将直流信号转换为高频脉冲信号,通过变压器变换和带宽控制,将电源提供给负载。

常见的功率变换器有多种类型,包括单端交错式、反激式、降压升压式等。

这些变换器均具有高效率、可靠性和短路保护等特点。

4.输出滤波器:输出滤波器用于平滑功率变换器输出的高频脉冲信号,并将其转换为稳定的直流电压。

通常由电感和电容构成,能够滤除高频噪声和纹波,提供稳定的输出电压给负载。

5.反馈控制器:反馈控制器用于监测输出电压,并通过控制开关管的开关状态来实现自动调整电路的输出电压。

当输出电压低于设定值时,反馈控制器会调整开关管的开关状态,使电路输出电压回到设定值。

常见的控制方式有PID控制、PWM控制等。

以上是开关电源电路的常见模块。

这些模块通过相互协作,能够将输入电源转换为稳定的高频输出电压,并提供给负载。

开关电源电路具有高效率、小体积、轻量化等优点,在电子设备中得到广泛应用。

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4 为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

开关电源电路详细讲解图

开关电源电路详细讲解图

开关电源电路详解图一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。

② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③ 整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理:① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4 为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

开关电源各功能电路详解

开关电源各功能电路详解

UC3842开关电源各功能电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM 控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。

② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对 C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③ 整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、 DC 输入滤波电路原理:① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4 为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于 C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使 Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM 控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4 为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

开关电源各模块原理实图讲解

开关电源各模块原理实图讲解

开关电源原理一、开关电源的电路组成:开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWMFDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

三、 功率变换电路:1、MOS 管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET (MOS 管),是利用半导体表面的电声效应进行工作的。

也称为表面场效应器件。

由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS 管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。

2、常见的原理图:3、工作原理:R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS 管并接,使开关管电压应力减少,EMI 减少,不发生二次击穿。

在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。

从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。

开关电源工作原理超详细解析

开关电源工作原理超详细解析

开关电源工作原理超详细解析开关电源是一种常见的电源供应器件,它通过将输入电源的直流电转换为高频脉冲电流,再经过整流、滤波和稳压等环节,输出稳定的直流电。

本文将详细解析开关电源的工作原理,包括开关电源的基本组成部分、工作原理的流程、常见的开关电源拓扑结构以及其优点和应用。

一、开关电源的基本组成部分开关电源通常由以下几个基本组成部分构成:1. 输入电路:用于接收外部交流电源,并将其转换为适合开关电源工作的直流电压。

2. 整流电路:将输入电压转换为脉冲电流,通常采用整流桥或者整流电路来实现。

3. 滤波电路:用于平滑整流后的脉冲电流,以减小输出电压的波动。

4. 开关器件:通常采用晶体管或者功率MOSFET等开关器件,用于控制电流的开关状态。

5. 控制电路:用于控制开关器件的开关频率和占空比,以控制输出电压的稳定性。

6. 输出电路:将经过整流、滤波和稳压处理后的直流电压输出给负载。

二、开关电源的工作原理流程开关电源的工作原理可以分为以下几个流程:1. 输入电路接收交流电源:开关电源的输入电路通常采用变压器来降低输入电压,然后通过整流电路将交流电转换为直流电。

2. 整流电路将交流电转换为脉冲电流:整流电路通常采用整流桥或者整流电路来将交流电转换为脉冲电流,这样可以减小能量损耗。

3. 滤波电路平滑脉冲电流:滤波电路通常采用电容器和电感器来平滑脉冲电流,以减小输出电压的波动。

4. 控制电路控制开关器件的开关频率和占空比:控制电路通过对开关器件的控制,可以控制开关频率和占空比,从而控制输出电压的稳定性。

5. 输出电路将处理后的直流电压输出给负载:经过整流、滤波和稳压处理后的直流电压将被输出给负载,供其正常工作。

三、常见的开关电源拓扑结构开关电源有多种拓扑结构,常见的有以下几种:1. 单端开关电源:输入电源和输出电源共用一个地线,适用于低功率应用。

2. 双端开关电源:输入电源和输出电源分别有独立的地线,适用于高功率应用。

各种开关电源电路原理详细解剖

各种开关电源电路原理详细解剖

各种开关电源电路原理详细解剖开关电源电路是一种常见的电源供电电路,其采用了开关管(如MOSFET、BJT等)等元件进行开关控制,通过快速的开关过程来调整输入电源的输出电压或电流。

开关电源电路具有高效率、小体积和稳定性等优点,被广泛应用于各种电子设备中。

开关电源电路主要分为两个部分:输入端和输出端。

输入部分由滤波电路和整流电路组成,而输出部分则是由开关变换电路和滤波电路组成。

下面将详细介绍开关电源电路的原理。

1.输入端输入端主要包括变压器、整流电路和滤波电路。

变压器是将交流电源变换为所需的输入电压,在开关电源中通常采用高频变压器,可以有效减小体积。

整流电路使用整流二极管或整流桥,将交流电压转换为直流电压。

滤波电路用于降低输入电压的纹波,通常由电容和电感组成。

2.开关变换电路开关变换电路是开关电源电路的核心部分,主要包括开关元件、驱动电路和控制电路。

开关元件通常采用MOSFET或BJT,通过控制开关元件的导通和截止,实现输入到输出的电流或电压转换。

驱动电路负责对开关元件进行驱动,保证其正常工作。

控制电路根据输出电压或电流的变化情况,对开关元件的工作状态进行调整和控制。

3.输出端输出端主要由输出电感、输出电容和负载组成。

输出电感用于过滤开关元件产生的高频脉冲,减小输出纹波。

输出电容则用于提供稳定的直流输出电压。

负载是接在输出电容之后的电子设备,通过负载电流来消耗电源提供的电能。

开关电源电路的工作原理是:当输入交流电压通过滤波电路和整流电路转换为直流电压后,控制电路会监测输出电压或电流的变化情况,并根据需要对开关元件的工作状态进行调整。

当需要提供更大的输出电流时,开关元件导通,输入电源能量通过变压器传递到输出端;当需要较小的输出电流时,开关元件截止,变压器不再传递能量到输出端。

通过快速的开关过程,可以在较高频率下实现输入电压和输出电压的转换。

总结起来,开关电源电路通过开关元件的控制实现输入输出电压或电流的转换,具有高效率、小体积和稳定性等优点。

开关电源入门必读开关电源工作原理超详细解析

开关电源入门必读开关电源工作原理超详细解析

开关电源入门必读开关电源工作原理超详细解析开关电源是电源技术中常见的一种类型,它的工作原理相对较复杂。

本文将详细解析开关电源的工作原理,帮助读者快速入门。

开关电源的基本工作原理是将交流电源转换为高频脉冲电源,再经过变压、整流和滤波等步骤,最终获得所需的直流电压输出。

下面将分为几个方面详细解析开关电源的工作原理。

一、开关电源的基本组成部分开关电源包括输入端、控制电路、开关元件、变压器、整流滤波电路和输出端等组成部分。

1.输入端:接收外部交流电源输入,并经过保险丝和滤波电路等进行初步处理。

2.控制电路:负责控制开关元件的开关行为,控制电路由集成电路、电感和电容等组成。

3.开关元件:由开关管和二极管组成,承担着将交流信号转换为脉冲信号的关键任务。

4.变压器:通过变换输入电压和电流的比值,实现电压和电流的变换。

5.整流滤波电路:包括整流电路和滤波电路。

整流电路将脉冲电流转化为直流电流,滤波电路将直流电流进行进一步平滑处理。

6.输出端:将经过整流滤波处理后的直流电压输出给负载。

二、开关电源的工作原理开关电源的工作原理主要分为以下几个步骤:1.输入端处理:输入端首先通过保险丝保护电路,然后通过滤波电路对输入信号进行初步处理,去除杂质和干扰。

2.控制电路:控制电路根据输入端的信号控制开关元件的开关行为。

当开关元件关闭时,电源工作在储能状态,当开关元件开启时,电源进入释放能量状态。

3.开关元件:开关元件由开关管和二极管组成。

当开关管导通时,电源中的输入电流和能量通过变压器传递给负载,当开关管关断时,电源中的储能电流和能量通过二极管回流到输入端。

4.变压器:变压器将输入电压和电流进行变换,通过磁性耦合实现输出端所需的电压和电流。

5.整流滤波电路:整流电路将经过变压器变换后的输出信号转化为直流电压,滤波电路将直流电压进行平滑处理,去除残余脉冲和噪声。

6.输出端:经过整流滤波电路处理后的直流电压输出给负载,从而实现电源对负载的供电支持。

开关电源工作原理如何理解及其电路图详细解析

开关电源工作原理如何理解及其电路图详细解析

开关电源工作原理如何理解及其电路图详细解析开关模式电源(Switch Mode Power Supply,简称SMPS),又称交换式电源、开关变换器,是一种高频化电能转换装置,是电源供应器的一种。

其功能是将一个位准的电压,透过不同形式的架构转换为用户端所需求的电压或电流。

开关电源的输入多半是交流电源(例如市电)或是直流电源,而输出多半是需要直流电源的设备,例如个人电脑,而开关电源就进行两者之间电压及电流的转换。

开关模式电源(Switch Mode Power Supply,简称SMPS),又称交换式电源、开关变换器,是一种高频化电能转换装置,是电源供应器的一种。

其功能是将一个位准的电压,透过不同形式的架构转换为用户端所需求的电压或电流。

开关电源的输入多半是交流电源(例如市电)或是直流电源,而输出多半是需要直流电源的设备,例如个人电脑,而开关电源就进行两者之间电压及电流的转换。

开关电源不同于线性电源,开关电源利用的切换晶体管多半是在全开模式(饱和区)及全闭模式(截止区)之间切换,这两个模式都有低耗散的特点,切换之间的转换会有较高的耗散,但时间很短,因此比较节省能源,产生废热较少。

理想上,开关电源本身是不会消耗电能的。

电压稳压是透过调整晶体管导通及断路的时间来达到。

相反的,线性电源在产生输出电压的过程中,晶体管工作在放大区,本身也会消耗电能。

开关电源的高转换效率是其一大优点,而且因为开关电源工作频率高,可以使用小尺寸、轻重量的变压器,因此开关电源也会比线性电源的尺寸要小,重量也会比较轻。

若电源的高效率、体积及重量是考虑重点时,开关电源比线性电源要好。

不过开关电源比较复杂,内部晶体管会频繁切换,若切换电流尚加以处理,可能会产生噪声及电磁干扰影响其他设备,而且若开关电源没有特别设计,其电源功率因数可能不高。

主要用途开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防监控,LED灯带,电脑机箱,数码产品和仪器类等领域。

开关电源电路组成及各部分详解

开关电源电路组成及各部分详解

开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

输入电路的原理及常见电路1、AC输入整流滤波电路原理:①、防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

②、输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③、整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC输入滤波电路原理:①、输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4为安规电容,L2、L3为差模电感。

②、R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4 为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

开关电源原理详解

开关电源原理详解

开关电源原理详解
开关电源是由开关管、变压器、滤波电感、电容和稳压电路等器件组成的电源,其工作原理是将交流电转换为直流电。

下面我们来详细了解开关电源的工作原理:
1.输入变压器:开关电源的输入变压器工作于高频状态下,将低电压高电流的输入变换成高电压低电流的输出,促使开关电源的高频开关能够实现小尺寸和高效率的要求。

2.整流电路:开关电源的整流电路负责将输入电压的交流部分转换成直流电。

整流电路通常包括一个桥式整流器,它可以同时整流正、负电压的交流信号。

3.滤波电路:由于开关电源的输出具有高频脉冲特性,需要通过滤波电路将其转换成平稳的直流电。

滤波电路主要由电感和电容组成,可以过滤高频杂波,从而保持输出电压的稳定性。

4.变换电路:开关电源的变换电路主要由开关管和变压器构成。

变换电路负责将滤波后的直流电转换成需要的电压和电流,并将其输出。

5.稳压电路:开关电源的稳压电路主要由电容和稳压芯片构成,负责保持输出电压的稳定性。

稳压电路可以根据输入电压和输出电流自动调整输出电压,以确保输出电压不会因外部负载的变化而波动。

综合以上几部分,开关电源的工作原理就是将输入电压通过整流、滤波、变换和稳压等过程,最终将输出电压转换成需要的电压和电流,以满足各种电器设备的需要。

开关电源各部分功能详解

开关电源各部分功能详解

开关电源各功能电路详解来源:网络作者:佚名一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。

② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对 C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③ 整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、 DC 输入滤波电路原理:① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4 为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于 C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使 Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4 为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

开关电源电路组成及各部分详解

开关电源电路组成及各部分详解

开关电源广泛应用于电力设备中,其电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:输入电路的原理及常见电路1、AC输入整流滤波电路原理:①、防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

②、输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③、整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC输入滤波电路原理:①、输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4为安规电容,L2、L3为差模电感。

②、R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

各种开关电源电路原理详细解剖

各种开关电源电路原理详细解剖

各种开关电源电路原理详细解剖开关电源是一种通过开关器件对输入电压进行快速开关来稳定输出电压的电源。

它可以将输入电压转换成较低或较高的输出电压,并具有体积小、效率高、稳定性好等优点。

以下将详细解剖开关电源的原理。

1.输入电路:开关电源的输入电路通常有电源滤波电路和整流电路组成。

电源滤波电路用于滤除输入电压中的噪声,提供干净的电源给整流电路使用。

整流电路一般采用桥式整流器,它将交流电转换为脉冲形式的直流电。

2.开关器件:开关电源的核心部分是开关器件,一般有开关管(如MOS管、IGBT)或晶闸管等。

开关器件通过控制开关管的导通和截止状态来调节输出电压和电流。

3.控制电路:控制电路用于监测输出电压和电流,并根据需求向开关器件发送开关信号,控制开关器件的开关状态。

常见的控制电路有反馈电路和PWM控制电路。

反馈电路通过比较输出电压和参考电压的差异来调节开关器件的开关状态,以保持输出电压稳定。

PWM控制电路则通过调节开关器件的导通时间和截止时间来控制输出电压的大小。

4.输出电路:输出电路用于将开关器件产生的脉冲电压转换为稳定的直流电。

输出电路通常由输出滤波电路和稳压电路组成。

输出滤波电路用于滤除输出电压中的脉动,提供稳定的输出电压。

稳压电路则通过反馈电路来调节开关器件的开关状态,保持输出电压的稳定。

5.保护电路:开关电源还需要一些保护电路来保护开关器件和其他电路免受异常工作条件的损害。

常见的保护电路有过压保护电路、过流保护电路和短路保护电路等。

综上所述,开关电源的原理是通过控制开关器件的开关状态来调节输出电压和电流。

开关器件由控制电路根据输出电压和电流的需求发送开关信号,控制开关器件的导通和截止。

输入电路和输出电路分别用于提供稳定的输入电源和转换输出电压。

保护电路则用于保护开关器件和其他电路免受异常工作条件的损害。

通过这些环节的协同工作,开关电源可以实现高效率、稳定性好的能量转换。

开关电源电路组成及各部分详解

开关电源电路组成及各部分详解

一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC输入整流滤波电路原理:12①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净3的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4为安规电容,L2、L3为差模电感。

②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4为安规电容,L2、L3为差模电感。

②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

三、功率变换电路1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。

也称为表面场效应器件。

由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。

2、常见的原理图:3、工作原理:R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。

在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。

从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。

当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。

R1和Q1中的结电容CGS、CGD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。

R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。

Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。

Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量也就越多;当Q1截止时,变压器通过D1、D2、R5、R4、C3释放能量,同时也达到了磁场复位的目的,为变压器的下一次存储、传递能量做好了准备。

IC根据输出电压和电流时刻调整着⑥脚锯形波占空比的大小,从而稳定了整机的输出电流和电压。

C4和R6为尖峰电压吸收回路。

4、推挽式功率变换电路:Q1和Q2将轮流导通。

5、有驱动变压器的功率变换电路:T2为驱动变压器,T1为开关变压器,TR1为电流环。

四、输出整流滤波电路:1、正激式整流电路:T1为开关变压器,其初极和次极的相位同相。

D1为整流二极管,D2为续流二极管,R1、C1、R2、C2为削尖峰电路。

L1为续流电感,C4、L2、C5组成π型滤波器。

2、反激式整流电路:T1为开关变压器,其初极和次极的相位相反。

D1为整流二极管,R1、C1为削尖峰电路。

L1为续流电感,R2为假负载,C4、L2、C5组成π型滤波器。

3、同步整流电路:工作原理:当变压器次级上端为正时,电流经C2、R5、R6、R7使Q2导通,电路构成回路,Q2为整流管。

Q1栅极由于处于反偏而截止。

当变压器次级下端为正时,电流经C3、R4、R2使Q1导通,Q1为续流管。

Q2栅极由于处于反偏而截止。

L2为续流电感,C6、L1、C7组成π型滤波器。

R1、C1、R9、C4为削尖峰电路。

五、稳压环路原理1、反馈电路原理图:2、工作原理:当输出U0升高,经取样电阻R7、R8、R10、VR1分压后,U1③脚电压升高,当其超过U1②脚基准电压后U1①脚输出高电平,使Q1导通,光耦OT1发光二极管发光,光电三极管导通,UC3842①脚电位相应变低,从而改变U1⑥脚输出占空比减小,U0降低。

当输出U0降低时,U1③脚电压降低,当其低过U1②脚基准电压后U1①脚输出低电平,Q1不导通,光耦OT1发光二极管不发光,光电三极管不导通,UC3842①脚电位升高,从而改变U1⑥脚输出占空比增大,U0降低。

周而复始,从而使输出电压保持稳定。

调节VR1可改变输出电压值。

反馈环路是影响开关电源稳定性的重要电路。

如反馈电阻电容错、漏、虚焊等,会产生自激振荡,故障现象为:波形异常,空、满载振荡,输出电压不稳定等六、短路保护电路1、在输出端短路的情况下,PWM控制电路能够把输出电流限制在一个安全范围内,它可以用多种方法来实现限流电路,当功率限流在短路时不起作用时,只有另增设一部分电路。

2、短路保护电路通常有两种,下图是小功率短路保护电路,其原理简述如下:当输出电路短路,输出电压消失,光耦OT1不导通,UC3842①脚电压上升至5V左右,R1与R2的分压超过TL431基准,使之导通,UC3842⑦脚VCC电位被拉低,IC停止工作。

UC3842停止工作后①脚电位消失,TL431不导通UC3842⑦脚电位上升,UC3842重新启动,周而复始。

当短路现象消失后,电路可以自动恢复成正常工作状态。

3、下图是中功率短路保护电路,其原理简述如下:当输出短路,UC3842①脚电压上升,U1③脚电位高于②脚时,比较器翻转①脚输出高电位,给C1充电,当C1两端电压超过⑤脚基准电压时U1⑦脚输出低电位,UC3842①脚低于1V,UCC3842停止工作,输出电压为0V,周而复始,当短路消失后电路正常工作。

R2、C1是充放电时间常数,阻值不对时短路保护不起作用。

4、下图是常见的限流、短路保护电路。

其工作原理简述如下:当输出电路短路或过流,变压器原边电流增大,R3两端电压降增大,③脚电压升高,UC3842⑥脚输出占空比逐渐增大,③脚电压超过1V时,UC3842关闭无输出。

5、下图是用电流互感器取样电流的保护电路,有着功耗小,但成本高和电路较为复杂,其工作原理简述如下:输出电路短路或电流过大,TR1次级线圈感应的电压就越高,当UC3842③脚超过1伏,UC3842停止工作,周而复始,当短路或过载消失,电路自行恢复。

七、输出端限流保护上图是常见的输出端限流保护电路,其工作原理简述如上图:当输出电流过大时,RS (锰铜丝)两端电压上升,U1③脚电压高于②脚基准电压,U1①脚输出高电压,Q1导通,光耦发生光电效应,UC3842①脚电压降低,输出电压降低,从而达到输出过载限流的目的。

八、输出过压保护电路的原理输出过压保护电路的作用是:当输出电压超过设计值时,把输出电压限定在一安全值的范围内。

当开关电源内部稳压环路出现故障或者由于用户操作不当引起输出过压现象时,过压保护电路进行保护以防止损坏后级用电设备。

应用最为普遍的过压保护电路有如下几种:1、可控硅触发保护电路:如上图,当Uo1输出升高,稳压管(Z3)击穿导通,可控硅(SCR1)的控制端得到触发电压,因此可控硅导通。

Uo2电压对地短路,过流保护电路或短路保护电路就会工作,停止整个电源电路的工作。

当输出过压现象排除,可控硅的控制端触发电压通过R对地泄放,可控硅恢复断开状态。

2、光电耦合保护电路:如上图,当Uo有过压现象时,稳压管击穿导通,经光耦(OT2)R6到地产生电流流过,光电耦合器的发光二极管发光,从而使光电耦合器的光敏三极管导通。

Q1基极得电导通,3842的③脚电降低,使IC关闭,停止整个电源的工作,Uo为零,周而复始,。

3、输出限压保护电路:输出限压保护电路如下图,当输出电压升高,稳压管导通光耦导通,Q1基极有驱动电压而道通,UC3842③电压升高,输出降低,稳压管不导通,UC3842③电压降低,输出电压升高。

周而复始,输出电压将稳定在一范围内(取决于稳压管的稳压值)。

4、输出过压锁死电路:图A的工作原理是,当输出电压Uo升高,稳压管导通,光耦导通,Q2基极得电导通,由于Q2的导通Q1基极电压降低也导通,Vcc电压经R1、Q1、R2使Q2始终导通,UC3842③脚始终是高电平而停止工作。

在图B中,UO升高U1③脚电压升高,①脚输出高电平,由于D1、R1的存在,U1①脚始终输出高电平Q1始终导通,UC3842①脚始终是低电平而停止工作。

正反馈?九、功率因数校正电路(PFC)1、原理示意图:2、工作原理:输入电压经L1、L2、L3等组成的EMI滤波器,BRG1整流一路送PFC电感,另一路经R1、R2分压后送入PFC控制器作为输入电压的取样,用以调整控制信号的占空比,即改变Q1的导通和关断时间,稳定PFC输出电压。

L4是PFC电感,它在Q1导通时储存能量,在Q1关断时施放能量。

D1是启动二极管。

D2是PFC整流二极管,C6、C7滤波。

PFC电压一路送后级电路,另一路经R3、R4分压后送入PFC控制器作为PFC输出电压的取样,用以调整控制信号的占空比,稳定PFC输出电压。

十、输入过欠压保护1、原理图:2、工作原理:AC输入和DC输入的开关电源的输入过欠压保护原理大致相同。

保护电路的取样电压均来自输入滤波后的电压。

取样电压分为两路,一路经R1、R2、R3、R4分压后输入比较器3脚,如取样电压高于2脚基准电压,比较器1脚输出高电平去控制主控制器使其关断,电源无输出。

另一路经R7、R8、R9、R10分压后输入比较器6脚,如取样电压低于5脚基准电压,比较器7脚输出高电平去控制主控制器使其关断,电源无输出。

相关文档
最新文档