光功能高分子材料的研究发展及应用
高分子材料性能研究与应用
高分子材料性能研究与应用高分子材料是一种重要的工程材料,广泛应用于机械、汽车、电子、建筑、医疗等领域。
高分子材料具有轻质、高强、高韧、耐腐蚀、绝缘等特点,成为各种工业领域不可或缺的材料。
本文将着重介绍高分子材料的性能研究和应用。
一、高分子材料的物理性质高分子材料是由许多分子聚合而成的,具有非晶态或半晶态的结构。
主要有以下几种物理性质:1.力学性能:高分子材料具有轻质、高强的特点,可以实现高效的能量转换和储存。
2.电学性能:高分子材料的电学性能可以通过改变分子结构和加工工艺来调节。
3.热学性能:高分子材料可进行热塑性加工,易于成型。
同时,高分子材料也具有较高的绝缘性和热稳定性。
4.光学性能:高分子材料具有光学吸收、透明度、颜色等特性。
通常用于制造光学器件和光学材料。
二、高分子材料的化学性质高分子材料的化学性质主要包括以下几个方面:1.物理状态:高分子材料通常以固体状态出现,但也可在适当的温度和溶剂下形成流体。
2.水解性:部分高分子材料的酯基与水反应后会发生水解,导致其结构的变化和物理性质的改变。
3.氧化降解:高分子材料会受到氧化物、酸、硷等因素的影响,导致其分子结构的破坏和硬度的降低。
4.耐化学品性:高分子材料具有耐酸、耐碱、抗溶解性等特性,在化学工业上被广泛使用。
三、高分子材料的应用高分子材料广泛应用于农业、建筑、医疗、能源、物流等众多领域。
主要包括以下几个方面:1.工程领域:高分子材料在机械加工、建筑材料、汽车工业、电子器材等领域得到广泛应用。
2.医疗领域:高分子材料作为医用材料和功能性医用材料,广泛用于外科、整形、骨科等医疗领域。
3.环保领域:高分子材料作为环保材料得到广泛应用,例如油泄漏清理材料、环保装饰材料等。
4.能源领域:高分子材料的应用在能源领域的广泛,如太阳能电池、锂离子电池、超级电容器等。
四、高分子材料的未来发展高分子材料的未来发展趋势是制备高性能材料、发展低成本加工技术和提高生物可降解性等方面。
高分子材料的光学性能与应用研究
高分子材料的光学性能与应用研究高分子材料是一类应用广泛的材料,其独特的结构和性质使其在光学领域有着广泛的应用。
本文将探讨高分子材料的光学性能以及其在光学应用中的研究进展。
首先,高分子材料的光学性能是指其对光的吸收、透射和散射等特性。
光的吸收是高分子材料的重要性能之一,它取决于材料的能带结构和分子间的作用力。
一些高分子材料具有宽带隙结构,可以吸收紫外光,因此在紫外光谱仪器中有广泛的应用。
另外,在太阳能电池中,高分子材料也可以吸收可见光,并将其转化为电能。
此外,高分子材料的透射性能也非常重要,它决定了材料在光学器件中的传输效率。
一些高分子材料具有较高的透明度和低的透射损失,因此被广泛应用于光学器件,如光纤通信和液晶显示器。
其次,高分子材料的光学性能还与其分子结构和排列方式密切相关。
例如,聚合物链的取向和排布会影响材料的散射性能。
一些高分子材料拥有有序的分子结构和排列方式,可以实现光的定向传输,因此在光学波导器件中得到了广泛应用。
此外,高分子材料还可以通过控制其分子结构和排列方式,调节其光学性能。
例如,通过添加不同的功能化基团或共聚物,可以改变材料的吸收峰和透射范围,从而满足不同应用的需求。
目前,高分子材料的光学应用研究取得了许多重要的进展。
一个研究方向是开发新型的光学器件和传感器。
例如,一些高分子材料被用作光传感器,可以检测环境中的温度、湿度和压力等参数。
另外,高分子材料还被应用于光子晶体领域,用于制备具有特殊光学性能的人工结构。
此外,高分子材料在光催化、光致变色和光疗等领域的研究也取得了重要的突破。
然而,高分子材料的光学性能和应用仍然面临着一些挑战。
首先,一些高分子材料的光学性能较差,如吸收率低、透射损失大等,限制了其在光学领域的应用。
此外,高分子材料的稳定性和寿命也是一个问题,特别是在高温、高湿等恶劣条件下。
因此,未来的研究应该集中在开发具有优异光学性能和稳定性的高分子材料,以满足不同领域的需求。
功能性高分子材料研究及应用前景
功能性高分子材料研究及应用前景功能性高分子材料是指具有一定功能的高分子化合物,它们广泛应用于制药、食品、电子、水处理、海洋、建筑、航空、航天、汽车和医用等领域。
这些材料近年来在科技发展和工业应用中的重要性越来越突出,因此,对功能性高分子材料研究和应用前景的探讨和讨论就变得尤为重要了。
第一部分:功能性高分子材料研究功能性高分子材料是最近几年高分子材料科学中的热点领域之一。
它们的研究旨在探索高分子材料的新型化学结构和新型性能,通过改变分子结构和化学性质以达到一定的功能和应用。
在功能性高分子材料的研制中,通过设计制备能够实现新型材料的性能和特点的高分子材料,创造出更好的行业。
目前,研究者采用多种多样的制备方法,以获得不同分子结构和材料性能的高分子材料。
如聚合法、溶液法、相转移催化、放射化学、模板法、自组装等技术手段。
这些技术手段使得高分子的结构、功能和性能等都得到了很大的拓展。
近来,随着环保意识的不断提高,功能性高分子材料的研究也开始逐渐向可持续性方向发展。
可持续性高分子材料主要应用于环境保护、能源和食品等领域。
通过改变高分子材料的结构,可以实现可持续性环境材料的可重复使用。
第二部分:功能性高分子材料应用前景针对近些年功能性高分子材料研制的发展,可以预见其在各个领域中都将逐渐得到应用和发展。
1.医药领域高分子材料广泛应用于医药领域,如药物控释、医学诊断等。
由于高分子材料易于加工、可调性强,可以修改高分子材料的表面性质和化学性质,从而实现对体内的药物控制释放和生物相容性。
2.电子领域高分子材料可以应用于电子领域,例如生物传感器、能源储存器、发光材料等。
这些应用都是建立在独特的电子性质而基础的。
因此,高分子材料可以作为一种有前景的电子材料来应用。
3.食品领域在食品行业中,高分子材料可应用作为保险剂、增稠剂、乳化剂、口感调节剂等。
“材料功能设计师”可以通过改变高分子材料的化学组成来控制行为,设计出符合市场需求的食品领域。
功能高分子材料的研究进展
3、高分子催化剂与高分子试剂:在化学合成领域,科研人员正在研究新型的 高分子催化剂与高分子试剂,以提高反应效率,减少副反应,降低环境污染。 其中,负载型高分子催化剂以其高效、可回收的优点引起了科研工作者的广泛。
4、医用高分子:医用高分子材料与人类的健康和生命质量密切相关。近年来, 科研人员对医用高分子的研究主要集中在生物相容性、降解性以及功能性上。 例如,聚乳酸(PLA)和聚己内酯(PCL)等生物降解材料已经被广泛应用于 药物载体和生物医学工程中。同时,科研人员也在开发具有药物控释、靶向治 疗等功能的医用高分子药物。
功能高分子材料的研究进展
目录
01 一、功能高分子材料 的分类
03 三、未来展望
02
二、功能高分子材料 的研究进展
04 参考内容
功能高分子材料是一种具有特殊物理、化学或生物性质的材料,其价值在于能 够进行精确的分子设计,以适应特定的应用需求。这种材料在众多领域中都有 着广泛的应用,如能源、医疗、环保等。近年来,随着科技的飞速发展,功能 高分子材料的研究取得了显著的进步。
1、高分子膜:高分子膜在分离、过滤、渗透等过程中有着广泛的应用。近年 来,科研人员在高分子膜的制备技术、性能优化以及应用研究等方面取得了重 要的突破。例如,通过纳米纤维构筑的多孔高分子膜在海水淡化、燃料电池等 领域展示出优异的性能。
2、高分子纤维:高分子纤维具有强度高、重量轻、耐腐蚀等优点,被广泛应 用于航空航天、汽车制造、环保等领域。一种新型的高分子纤维——碳纤维, 因其具有超高的强度和模量,被视为“黑金”。科研人员正在致力于提高碳纤 维的生产效率,降低成本,料主要分为物理功能高分子材料、化学功能高分子材料和生物功 能高分子材料。物理功能高分子材料主要涉及高分子膜、高分子纤维等;化学 功能高分子材料则包括高分子催化剂、高分子试剂等;生物功能高分子材料则 涉及医用高分子、生物降解高分子等。
光功能高分子材料的发展及应用
光功能高分子材料的发展及应用光功能高分子材料的发展可以追溯到20世纪60年代,当时科学家们开始研究光功能高分子材料的合成方法和基本性质。
随着技术的发展,人们相继开发出了许多具有特殊光学功能的高分子材料,如光导高分子、光哈组合聚合物、光敏高分子等。
这些材料具有各种各样的光学性质,如透明度、强度、导光性能等,可以广泛应用于显示器件、光传感器、光通信器件等领域。
在显示器件领域,光功能高分子材料可以用于制备灵活显示器、折叠显示器等新型显示器件。
与传统的刚性材料相比,光功能高分子材料具有低成本、高可靠性和高可调性等优点。
此外,光功能高分子材料还可以用于制备透明触摸屏,其高透明度和可调性使其成为理想的替代品。
因此,光功能高分子材料在显示器件领域具有广阔的应用前景。
在光传感器领域,光功能高分子材料可以用于制备高灵敏度和高选择性的光传感器。
由于其特殊的光学性质,光功能高分子材料可以对光信号进行高效的检测和转换。
例如,一些光功能高分子材料可以在受到光照后产生电流,从而实现光电转换。
这些材料可以广泛应用于光电子设备、生物传感器和环境监测等领域。
此外,光功能高分子材料还可以应用于光通信器件领域。
由于其优异的导光性能和可调性,光功能高分子材料可以用于制备高效的光纤和光波导。
这些材料具有低损耗率、高纯度和高速率等特点,可以大大提高光通信器件的传输效率和速度。
因此,光功能高分子材料在光通信器件领域具有重要的应用潜力。
总之,光功能高分子材料的发展和应用在科学、工程和技术领域中具有重要的意义。
随着技术的不断进步,人们相信光功能高分子材料将发挥越来越重要的作用。
未来,光功能高分子材料还将出现更多新型材料,并在更广泛的领域中得到应用。
功能高分子材料的研究与开发
功能高分子材料的研究与开发随着科技的不断进步,各行各业对材料的需求也越来越高。
而功能高分子材料作为一种重要的材料类别,在各个领域都有着广泛的应用前景。
功能高分子材料具有独特的性能和功能,其研究与开发成为材料科学领域的热点和挑战。
功能高分子材料是指具有特定功能的聚合物材料,其性能和功能可以通过合成方法和材料结构的调控来实现。
功能高分子材料可以包括但不限于聚合物凝胶、电子器件材料、光学功能材料等。
这些材料具有多样化的功能,例如电导性、光学透明性、尺寸稳定性等。
功能高分子材料的研究与开发不仅仅关乎科学技术的推进,还直接关系到社会经济的发展和人类生活的进步。
高分子材料的研究与开发,首先需要对其结构和性能进行深入的理解。
通过理论模型和实验手段,科学家可以研究材料的分子排列、组装形态以及物理化学性质等方面的信息,这对于进一步设计和优化材料具有重要意义。
例如,研究聚合物链的排布方式和交联度可以预测和调控材料的机械性能和热稳定性,从而在应用中提升材料的可靠性和耐用性。
功能高分子材料的研究与开发需要紧跟科技发展的步伐,并不断创新。
传统的聚合物合成方法面临一些限制,例如产率低、反应条件苛刻等。
因此,研究人员一直在寻找新的合成方法和工艺。
一种常用的方法是采用原子转移自由基聚合(ATRP)技术,通过控制共聚物链的长度和分子量,可以实现材料的调控和工艺的优化。
另外,高分子材料的纳米化和微结构的控制也是一个重要的研究方向。
通过纳米材料的引入和改性,可以提高材料的比表面积和机械性能,从而实现更多的应用。
功能高分子材料的研究与开发也离不开应用需求的驱动。
不同领域对材料的要求各不相同,因此研究人员需要根据具体应用需求来设计和合成材料。
例如,在能源领域,高分子材料被广泛应用于太阳能电池、锂离子电池等器件的制备。
为了提高器件的能量转化效率和循环稳定性,研究人员不断优化和改良材料的结构和性能。
同时,在生物医学领域,高分子材料也有着重要的应用。
功能高分子材料的应用及发展前景
功能高分子材料的应用及发展前景摘要:功能高分子材料因其重量轻、种类多、特异性强等特点,在生物医用、化学工业、信息技术以及电子领域得到了广泛的应用。
目前,功能高分子材料正在飞速发展,为了适应新技术在各行业的发展需要,功能高分子材料正逐步发展成为如电子材料、光热材料等具备多功能化的材料。
从本质上讲,功能高分子材料是以高分子物理、化学等相关学科为基础的,并且将物理学以及生物学等学科紧密联系的一门学科。
本文系统的研究了功能高分子材料的现状、性能和应用趋势,并对其应用前景进行了分析和展望。
1功能高分子材料概述功能高分子材料是是个新兴的领域,自20世纪60年代开始发展。
它是由分子量大的长链分子组成的具有特殊功能的聚合物和复合材料,具有特殊的力学、电学、光学和磁学的某一种性能。
近些年,高分子材料的研究与应用迅速发展,在越来越多的领域中产生了巨大的影响。
高分子材料的发展,提供了更多实用性高的新型材料和新产品,应用于农业生产、工业生产和人类生活的方方面面,与此同时,也提供了更多具有功能性的材料和高性能材料用以推进科学技术的新发展。
目前功能高分子材料的研究主要在以下几个方面:光功能高分子材料、液晶高分子材料、电子功能高分子材料和医用功能高分子材料、环境可降解高分子材料、吸附和分离功能材料等。
最常用的功能高分子材料有光学功能高分子材料、液晶高分子材料以及吸附分离功能高分子材料等。
2功能高分子材料具体应用的研究高分子材料具有广泛的应用性,在很多领域都得到了充分的利用,主要包括:功能高分子材料,液晶高分子材料以及吸附分离功能高分子材料等,具体分析如下:2.1光功能高分子材料一般来说,光功能高分子材料受到光的作用,会引起物理变化,比如光导致的变色,并且还会出现一些化学变化,包括光分解的高分子材料。
光功能高分子材料中光的特性,会通过化学和物理的双重作用反映出来。
目前,光功能高分子材料主要用于太阳能和电子工业的开发和利用。
2.液晶高分子材料目前,液晶高分子材料是一种新型的功能性高分子材料。
光功能高分子的性能特点及应用
3.光氧化降解 聚合物在吸收光能后分子链是否断裂取决于吸收波长的能 量,与聚合物的键能,一般照射到地面的日光波长在 300nm上,所以聚合物分子多数场合下不解离,只呈激发 态,激发态分子可以发生反应。 聚合物的光降解过程中常伴随有氧的存在,因而,高分子 在空气中的光照射断裂是按光氧化降解机理进行的,其过 程为:高分子吸光后激发为单线态(S1)单线态再转变为 S1 寿命较长的三线态(T1),它与空气中的氧分子反应,生 T1 成高分子过氧化氢,后者很不稳定,在光的作用下很容易 分解为自由基。
(2)光致变色材料的应用 • 光致变色材料作为光敏性材料用于信息记录介质等方面具 有以下优点:操作简单,不用湿法显影和定影,分辨力非 常高,成像后可消像、能多次重复使用,响应速度快,缺 点,灵敏度低,像的保留时间
应用可归纳为以下几个方面: • ①光的调控和调变:用这种材料制成光色玻璃可以自动控 制建筑物和汽车内光线,做成护眼镜,以防止原子弹爆炸 产生的射线和强光对人眼的损害,还可做成照相机自动滤 光的滤光片,军用机械的伪装。 • ②全息记录介质。 • ③计算机记忆元件:光色材料的显色和消色的循环变化可 用来建立计算机随机记录元件,能记录相当大量信息。 • ④信号显示系统:光色材料用作宇航指挥控制的动态显示 屏,计算机末端输出的大屏幕显示,有广阔的前景,同时 也是军事指挥中心的一项重要设备。 • ⑤辐射计量仪:光色材料用作强光的幅射计量仪,可以测 量电离辐射紫外线、X射线和γ射线等; • ⑥感光材料:光色材料感光度较低,而且有些化合物只对 紫外线敏感,但已用于印刷方面,如制版。 • ⑦利用光色反应来模拟生物过程,生物反应是一种很好的 途径。 • ⑧防伪材料、防伪油墨、防伪印刷、防伪标签。
功能高分子材料的研究与应用
功能高分子材料的研究与应用随着工业化进程的不断发展,对新材料的需求也日趋增多,特别是对于具有特殊性能和功能的高分子材料。
高分子材料是指由大量分子单元经过化学或物理方法连接而成的宏观材料,广泛应用于人类生活的各个领域。
这些高分子材料不仅可以保护环境和人类健康,同时还可以带来更高的社会价值和经济效益。
因此,研究和应用功能高分子材料已成为学术界和工业界的重要研究领域。
一、功能高分子材料的研究进展在过去的几十年里,科学家们已经开发出了各种各样的高分子材料,具有特殊的物理、化学或生物学性质,如超分子材料、生物材料、纳米材料等。
其中,超分子材料已经成为研究热点,它是指由两种或多种分子物种之间的非共价相互作用所形成的远大于原子和分子之间的尺寸的自组装结构。
它们的应用领域广泛,包括能源储存、光催化、生物医疗、传感和环境保护等领域。
生物材料是另一个发展迅速的领域。
这些材料具有良好的生物相容性、可生物降解性和可控性,已被广泛用于组织工程、药物缓释和再生医学等领域。
纳米材料的应用场景也越来越广泛,如用于制造高强度材料、高压水处理、制药和生物医学等领域。
除了这些功能高分子材料,研究人员还发现了许多其他的高分子材料,例如,有机半导体、发光材料、催化剂等等。
这些材料不仅具有多种物理和化学性质,而且也具有多种不同的应用领域。
二、功能高分子材料的应用前景近年来,在高分子材料的研究和应用方面都取得了一些突破性进展,使得高分子材料在现实生活中的应用更加广泛。
以下是功能高分子材料在不同领域中的应用前景。
1. 生物医疗领域:高分子材料在生物医疗领域中有着广泛的应用。
例如,高分子材料可以用于组织工程,即通过培养细胞或组织并将其种植到患部来治疗替代损伤组织。
高分子材料还可以用于制作生物医学芯片、药物缓释系统和仿生器官等。
2. 新能源领域:高分子材料在新能源领域中也有着广泛的应用。
例如,一些新型高分子太阳能电池和燃料电池已经被开发出来并投入使用。
功能高分子材料的发展现状与展望
浅谈功能高分子材料的发展现状与展望功能高分子材料是利用高分子材料的物理、化学、生物等特性,开发出能够实现特定功能的材料。
其应用范围包括能源领域、生物医学领域、信息技术领域等。
随着科技的不断发展,人们对功能高分子材料的需求正在不断增加,其发展也越来越受到关注。
一、功能高分子材料的发展现状1.能源领域。
在能源领域,功能高分子材料主要应用于新能源的开发,包括光伏电池、燃料电池、锂离子电池等领域。
其中,锂离子电池是最常见的一种能源储备装置,其可靠性、耐用性和容量等方面对材料的要求也越来越高。
目前,已经开发出了一些具有高比能量、高比功率和长寿命的高分子材料,如聚合物阳离子与聚合物阴离子、聚合物/无机复合材料等。
2.生物医学领域。
在生物医学领域,功能高分子材料主要应用于人工血管、医学敷料、医用高分子材料在骨骼重建中的应用等领域。
对于人工血管的研发,高分子材料的血液相容性、生物相容性、耐久性等性能要求较高,已经发展出了许多类型的人工血管;血管成型术后使用的敷料,需要具有优异的止血、缓解疼痛和促进组织修复的作用,已经研制出了许多种高分子材料敷料。
3.信息技术领域。
在信息技术领域,功能高分子材料主要应用于显示屏、光导纤维等。
固体聚合物电解质材料(SPE)已经广泛应用于固体电解液锂离子电池和固态电容电池等信息技术方面。
光子晶体作为一种高分子材料,与光学无关的物理性能也得到了广泛的关注,被广泛应用于光波导器件、电子光学器件、传感器、波长分离器等领域。
二、功能高分子材料的发展趋势1.环保。
随着全球环保意识的提高,环保型功能高分子材料的需求正在不断增加。
一方面,绿色环保从原始材料、合成方法、制备工艺、应用和废弃物处理等多个环节来实现;另一方面,环保材料也推动了整个材料领域的研究和创新。
2.多功能性。
未来的功能高分子材料将具有更多的多功能性,在不同领域都有广泛的应用。
例如,在生物医学领域,多功能生物医用高分子材料可以不仅实现创面修补、药物控释,还可以同时实现磁共振成像、荧光探针等多种功能。
高分子材料在光电领域中的应用与研究
高分子材料在光电领域中的应用与研究随着科技的不断发展和进步,高分子材料的应用越来越广泛,其中在光电领域中的应用也越来越受到人们关注。
本文将介绍高分子材料在光电领域中的应用和研究现状。
一、高分子材料在光电器件中的应用1. OLED(有机发光二极管)OLED是一种将有机材料置于电极间的器件,利用其自身的发光原理来制造出可视化的屏幕。
OLED相比于LCD等传统显示器材料,有着自发光、自发色、响应速度快、视角广等优点。
而其中的核心是发光材料,常用的有高分子材料。
高分子材料的特点是具有较高的发光亮度、较长的寿命、较宽的发光光谱范围。
近年来,OLED经过不断的改进和研究,发展迅速,已经广泛应用于智能手机、电视、灯具等领域。
2. PLED(聚合物发光器件)PLED是将聚合物薄膜作为发光材料,制成LED的器件。
与OLED相比,PLED的优点是制造简单、成本低,且在柔性显示领域具有得天独厚的优势。
而其中,高分子材料的稳定性、发光效率以及加工性等方面是制造高性能PLED的关键因素。
近年来,PLED技术不断地发展和完善,已广泛应用于柔性屏幕、照明等领域。
3. 光电传感器光电传感器是一种将光信号与电信号相互转换的器件。
其核心是光敏元件,其中像是PD(光电二极管)和PSD(位置感应光敏电池)等成熟产品中,高分子绝缘材料的应用占了很大的比例。
高分子绝缘材料因其性能稳定、耐腐蚀、成本低廉等特点,被广泛应用于PD和PSD等器件的包装中,保证器件的环境稳定性和电性能,提高器件的性能和寿命。
二、高分子材料在光电器件中的研究现状1. 发光聚合物的研究发光聚合物是一种具有光电功能的新型高分子材料,其具有发光亮度高、发光效率高、寿命长、颜色鲜艳等特点。
这类材料应用于OLED、PLED和生物传感器等领域的研究已经有了一定的突破。
2. 柔性高分子材料的研究柔性高分子材料是一种具有高柔性和高韧性的高分子材料,广泛应用于折叠屏幕、可穿戴设备以及人体植入物等领域。
高分子材料的研究进展及其应用
高分子材料的研究进展及其应用随着科技的不断发展,高分子材料作为重要材料之一,其应用范围也在不断扩大。
本文将介绍高分子材料的研究进展及其应用。
一、高分子材料的研究进展高分子材料是一类以高分子化合物为基础组成的材料,具有高分子化合物相对于其他材料所不具有的特性,如质轻、抗腐蚀、可塑性强等。
高分子材料的研究发展可以追溯到20世纪初,当时的研究主要集中在天然高分子材料,如木材、橡胶等。
直到1920年代,合成高分子材料被首次合成。
1940年代至1950年代,聚合物化学开始发展,加速了合成高分子材料的研究进展。
1970年代至1990年代是高分子材料的黄金时期,随着新技术的推出与应用,高分子材料的研究也发生了很大的变化。
例如,大分子量聚合物、特殊结构的高分子材料、新型共聚物、纳米材料等。
目前,高分子材料的研究涉及到诸多领域,尤其是新型高分子材料的研究发展日新月异,不断涌现出很多新的领域。
二、高分子材料的应用高分子材料应用领域之一:航空航天高分子材料应用于航空航天领域是高分子材料应用的重要领域之一。
在航天器制造中,高分子材料具有较好的轻量化、强度高和抗疲劳能力,如复合材料,以及在热隔离和外表面保护方面,如耐高温塑料与涂料,既可以满足航天器的要求,又可以减轻重量,提高航天器性能。
高分子材料应用领域之二:新材料高分子材料作为新材料应用领域的优势体现在自身的可塑性、强度和生物可降解性上。
其中,聚合物材料可用于制备高分子电解质、有机发光材料、阻燃材料、抗氧化材料等,广泛应用于各种电子元器件、光电子器件等。
高分子材料应用领域之三:汽车高分子材料在汽车制造领域的应用更是广泛,其中重要的材料之一就是聚碳酸酯。
聚碳酸酯具有较好的加工可塑性、高强度、硬度高、优异的防冲击性和制品外观等。
在汽车制造中,可用于制作车身外壳、车灯、挡板、仪表盘等永久性部件。
另外,在橡胶轮胎的制造中,二苯乙烯-丁二烯-苯乙烯共聚物和高分子树脂材料作为橡胶的增强剂和黏合剂,广泛应用于轮胎增强、耐磨损,提高轮胎的安全性和使用寿命。
高分子材料的研究进展与应用前景
高分子材料的研究进展与应用前景随着社会的不断发展和科技的日新月异,高分子材料作为新兴材料,受到了越来越多的关注。
高分子材料具有重量轻、强度高、耐腐蚀、绝缘等优点,同时可通过改变其结构和性质,使其具备多种特殊性能。
因此,在材料科学领域,高分子材料引起了广泛的研究和应用。
一、高分子材料的研究进展1. 可控聚合技术可控聚合技术是高分子材料研究及应用的重要方向之一,主要是指通过控制聚合反应条件,使得高分子材料的分子量、分子量分布、结构和性质等方面得到精确控制。
目前可控聚合技术主要有原子转移自由基聚合、共聚合反应等。
原子转移自由基聚合(ATRP)是一种较为成熟的可控聚合技术,该技术可以合成具有精确结构和性质的高分子材料,因此被广泛应用于药物传输、催化剂、光电材料等领域。
共聚合反应是一种介于自由基聚合和离子聚合之间的聚合反应。
通过调节反应物的配比和反应条件,可以得到各种互不兼容的结构改性高分子材料。
共聚合技术被广泛应用于光学材料、生物材料以及涂料等领域。
2. 超分子化学超分子化学是高分子材料领域的一个重要分支,在该领域研究者通过设计合成各种分子间相互作用的高分子材料,使其具备特殊的结构和性能。
目前,超分子化学技术在生物材料、药物传输、光学材料等领域具有广泛的应用前景。
例如,在药物传输领域,超分子聚合物可通过靶向药物传输,提高药物传输的效率和减少副作用。
3. 功能化高分子材料功能化高分子材料是在高分子材料中引入功能单元,使其具备特殊的性质和应用功能,如光、电、磁、冷致形状记忆等。
目前,功能化高分子材料在生物医学、催化剂、传感器等领域具有广泛的应用前景。
二、高分子材料的应用前景1. 医学高分子材料在医学领域具有广泛的应用前景。
如通过改变高分子材料的结构和性质,可以将其应用于药物缓释、组织工程、医用器械等领域。
例如,聚丙烯酸羟乙酯(HPMA)聚合物可作为药物缓释载体,大幅提高药物传输效率;聚甲醛基乙二醇丙烯酸甲酯(PHEA)可用于人工骨骼的制备等方面。
高分子材料在光电领域的应用研究与开发
高分子材料在光电领域的应用研究与开发Ⅰ. 引言随着科学技术的不断发展,高分子材料在光电领域的应用研究与开发正变得愈发重要。
本文将从材料的吸光、光电转换机制、光电性能优化以及应用实例等方面综述高分子材料在光电领域的应用研究与开发。
Ⅱ. 材料的吸光特性高分子材料在光电领域应用的第一步是了解其吸光特性。
高分子材料能吸收宽范围的电磁辐射,从紫外到可见以至近红外波段均有不同程度的吸收。
通过特定的波长和强度的辐射,高分子材料能够实现吸光、激发和电子转移等过程。
Ⅲ. 光电转换机制在光电领域,高分子材料的光电转换机制至关重要。
常见的光电转换机制主要有光伏效应、光电导效应和光致发光效应。
光伏效应是指当高分子材料吸收光照射后,激发产生电子-空穴对,并通过界面形成光生载流子;光电导效应是指高分子材料在光照射下引发的电导率增大现象;光致发光效应则是高分子材料受光激发后发生的发光现象。
不同的光电转换机制决定了高分子材料在光电领域的应用方向。
Ⅳ. 光电性能优化为了使高分子材料在光电领域得到更好的应用效果,需要对其光电性能进行优化。
一方面,可以通过结构设计和合成方法的改进,调控高分子材料的能带结构、分子配位以及聚合度等方面的参数,以提高其光学吸收和转换效率。
另一方面,通过材料的界面修饰、掺杂和薄膜制备等方法,改善高分子材料的载流子输运性能、提高其光电转换效率。
同时,还可以通过添加纳米材料、离子液体等功能性组分,使高分子材料在光电领域具备更多特殊性能,如可调控的光反射、光学器件的耐久性等。
Ⅴ. 应用实例高分子材料在光电领域的应用研究与开发已经取得了众多的实例。
以光伏应用为例,高分子太阳能电池因其成本低、可塑性强等优点,正在逐渐成为新一代太阳能电池的研究热点。
此外,高分子材料在光电器件、传感器、光纤通信等领域的应用也得到了广泛的研究和开发。
Ⅵ. 发展趋势与挑战高分子材料在光电领域的应用研究与开发还面临一些挑战。
首先,高分子材料的稳定性和寿命问题需要得到解决,以提高其在长期使用过程中的耐久性。
功能高分子材料发展现状及展望
功能高分子材料发展现状及展望功能高分子材料是指具有特定功能的高分子材料,它们可以在各种领域中发挥重要作用。
随着科技的不断发展,功能高分子材料的应用范围也在不断扩大,未来的发展前景十分广阔。
功能高分子材料已经广泛应用于医疗、电子、能源、环保等领域。
在医疗领域,功能高分子材料可以用于制造人工器官、药物缓释系统、医用敷料等。
在电子领域,功能高分子材料可以用于制造柔性电子、有机发光二极管等。
在能源领域,功能高分子材料可以用于制造太阳能电池、燃料电池等。
在环保领域,功能高分子材料可以用于制造污水处理材料、环保包装材料等。
随着人们对环境保护意识的不断提高,功能高分子材料在环保领域的应用越来越受到重视。
例如,一些可降解的高分子材料可以用于制造环保包装材料,这些材料可以在自然环境中迅速分解,减少对环境的污染。
此外,一些具有吸附能力的高分子材料可以用于制造污水处理材料,可以有效地去除水中的有害物质,保护水资源。
在未来,功能高分子材料的发展前景十分广阔。
随着科技的不断进步,人们对功能高分子材料的需求也会越来越高。
未来,功能高分子材料的应用领域将会更加广泛,例如在智能材料、生物医学材料、新能源材料等领域中的应用将会越来越多。
智能材料是指具有感知、响应、控制等特性的材料,它们可以根据外部环境的变化自动调节自身的性能。
例如,一些具有形状记忆性的高分子材料可以根据温度、湿度等外部条件的变化自动改变自身的形状。
未来,随着人工智能、物联网等技术的不断发展,智能材料的应用前景将会越来越广阔。
生物医学材料是指用于医学领域的材料,它们可以用于制造人工器官、医用敷料、药物缓释系统等。
未来,随着人口老龄化的加剧,生物医学材料的需求将会越来越高。
例如,一些具有生物相容性的高分子材料可以用于制造人工心脏瓣膜、人工血管等,可以帮助患者恢复健康。
新能源材料是指用于能源领域的材料,它们可以用于制造太阳能电池、燃料电池等。
未来,随着能源危机的加剧,新能源材料的需求将会越来越高。
高分子材料的光学性质及其应用研究
高分子材料的光学性质及其应用研究高分子材料是一类具有广泛应用前景的材料,其独特的物理和化学特性使其成为现代工业生产中不可或缺的一部分。
其中,高分子材料的光学性质引起了人们的广泛关注和研究。
本文将从高分子材料的光学性质出发,探讨其在各种应用中的研究与应用现状。
1. 高分子材料的光学性质高分子材料具有独特的光学性质,其主要表现在如下几个方面:(1) 折射率和反射率高分子材料的折射率是其光学性质中最基本和最重要的参数之一,它影响着材料的透光性和反光性。
一般来说,高分子材料的折射率随波长的变化而变化,这种变化被称为色散现象。
例如,聚碳酸酯的折射率在可见光的波长范围内呈现出正向色散,而聚苯乙烯则呈现出负向色散。
与折射率相对应的是反射率,它是高分子材料的表面反射光线的能力。
一般来说,高分子材料的表面反射率随表面光洁度的提高而提高。
(2) 吸收、透过和散射高分子材料对不同波长的光有不同的吸收和透过特性。
这与材料的结构、取向和化学成分等有关。
例如,聚乙烯对紫外线和蓝色光的吸收很弱,而对红色光的吸收很强,所以聚乙烯制成的透明容器会让红色物体显得更鲜艳。
高分子材料中还存在着一种称为散射的现象,它是在材料中存在不均匀性时产生的。
例如,高分子材料的肌肉纤维状分子会在光线中散射,这使得材料在外界光线的照射下会出现云状或雾状的效果。
(3) 抗衰老性和稳定性高分子材料的抗衰老性和稳定性也是影响其光学性质的重要因素。
材料在长时间的使用中,会受到外界因素(如光、热、湿气等)的影响,从而使其光学性质发生变化。
为了提高高分子材料的抗衰老性和稳定性,需要加入稳定剂等添加剂来进行改性。
例如,聚脂类材料中加入的光稳定剂可有效提高材料的抗老化性能。
2. 高分子材料的应用研究在光电子、信息技术、传感器等领域,高分子材料的应用得到了广泛的研究和应用。
以下是其中的一些代表性应用:(1) 光学薄膜高分子材料的光学薄膜是一种常见的光学元件,它广泛应用于光学传感器、光学滤波器和太阳能电池等领域。
《光功能高分子材料》课件
VS
环境监测
光功能高分子材料还可以用作环境监测的 探针和传感器,通过检测环境中特定物质 的变化来实现环境质量的实时监测和预警 。
05
光功能高分子材料的未来发
展
新材料开发
高性能光敏树脂
研究开发具有高感光度、高分辨 率和高稳定性的光敏树脂,以满 足3D打印、微纳制造等领域的需 求。
新型光聚合引发剂
探索新型光聚合引发剂,提高光 聚合反应的效率和可控性,促进 光功能高分子材料的发展。
将具有光功能的物质掺入到高分子基质中,形成光功能高分 子复合材料。例如,将荧光染料掺入聚合物中,可制备具有 荧光性能的聚合物材料。
复合制备
将两种或多种高分子材料进行复合,形成光功能高分子复合 材料。例如,将聚合物与无机纳米粒子复合,可制备具有光 催化性能的复合材料。
表面改性与涂层制备
表面改性
通过化学或物理方法对高分子材料表面进行改性,赋予其光功能特性。例如,使 用等离子体处理、紫外光照射等方法对高分子表面进行处理,可提高其光敏性。
《光功能高分子材料 》PPT课件
• 光功能高分子材料简介 • 光功能高分子材料的性质 • 光功能高分子材料的制备方法 • 光功能高分子材料的应用 • 光功能高分子材料的未来发展
目录
01
光功能高分子材料简介
定义与分类
总结词
光功能高分子材料是指具有光学功能的高分子材料,可以根据其特性进行分类 。
详细描述
环保等方向发展。
应用领域
总结词
光功能高分子材料在多个领域都有广泛的应用,如显 示、照明、生物成像等。
详细描述
光功能高分子材料因其独特的性能和广泛的应用前景 ,在多个领域都有广泛的应用。在显示领域,光功能 高分子材料可用于制造液晶显示器、有机电致发光显 示器等;在照明领域,光功能高分子材料可用于制造 高效LED灯具、荧光灯管等;在生物成像领域,光功 能高分子材料可用于荧光探针、生物成像标记物等。 此外,光功能高分子材料还可用于太阳能电池、信息 存储等领域。
光敏感高分子材料的研究及应用
光敏感高分子材料的研究及应用前言:光敏感高分子材料研究是光化学和光物理科学的重要组成部分,近年来随着现代科学技术的发展,光功能高分子材料研究在功能材料领域占有越来越重要的地位,其中光敏感高分子材料日益受到重视。
光敏感高分子材料的应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,正在快速发展之中,光敏感高分子材料研究与应用也将越来越广。
光敏感材料的分类光敏感高分子材料在光作用下能迅速发生化学和物理变化的高分子,或者通过高分子或小分子上光敏官能团所引起的光化学反应(如聚合、二聚、异构化和光解等)和相应的物理性质(如溶解度、颜色和导电性等)变化而获得的高分子材料。
目前,光敏高分子的合成已成为精细高分子合成的一个重要方面按高分子合成目的不同分类①在侧链或主链上含有光敏官能团的高分子;②由二元或多元光敏官能团构成的交联剂;③在高效光引发剂存在下单体或预聚体发生聚合和交联而生成的高分子。
按应用技术不同分类①成像体系,主要用于光加工工艺、非银盐照相、复制、信息记录和显示等方面;②非图像体系,大量用于光固化涂层、印刷油墨、粘合剂和医用材料等方面。
光敏感材料的发展史从十九世纪开始,人类开始使用改造过的天然高分子材料。
火化橡胶和硝化纤维塑料(赛璐珞)是两个典型的例子。
进入二十世纪之后,高分子材料进入了大发展阶段。
首先是在1907年,Leo Bakeland发明了酚醛塑料。
1920年Hermann Staudinger提出了高分子的概念并且创造了Macromolecular这个词。
二十世纪二十年代末,聚氯乙烯开始大规模使用。
二十世纪三十年代初,聚苯乙烯开始大规模生产。
二十世纪三十年代末,尼龙开始生产。
随着工业企业现代化的发展,设备的集群规模和自动化程度越来越高,同时针对设备的安全连续生产的要求也越来越高,传统的以金属修复方法为主的设备维护工艺技术已经远远不能满足针对更多高新设备的维护需求,对此需要研发更多针对设备预防和现场解决的新技术和材料,为此诞生了包括高分子复合材料在内的更多新的维护技术和材料,以便解决更多问题,满足新设备运行环境的维护需求。
有机光电高分子材料研究热点和前沿分析
有机光电高分子材料研究热点和前沿分析1. 本文概述有机光电高分子材料作为一类具有广泛应用前景的材料,近年来受到了科研工作者的广泛关注。
本文旨在综合分析当前有机光电高分子材料的研究热点和前沿进展,探讨其在能源转换、显示技术、传感器件以及生物医学等领域的应用潜力。
本文将介绍有机光电高分子材料的基本概念和特性,包括其独特的光电转换机制、结构多样性以及可调节的物理化学性质。
接着,将重点讨论几大研究热点,如新型高分子材料的设计与合成、纳米结构的构建、界面工程以及器件集成等方面的最新进展。
本文还将关注有机光电高分子材料在实际应用中面临的挑战和问题,例如稳定性、效率、成本等因素,并提出可能的解决方案和未来发展方向。
通过全面而深入的分析,本文期望为相关领域的研究者和工程师提供有价值的信息和启示,推动有机光电高分子材料科学与技术的进一步发展。
这个概述段落是基于假设的文章主题和结构编写的,实际的文章可能会有不同的内容和侧重点。
2. 有机光电高分子材料的基本概念有机光电高分子材料是一类特殊的高分子化合物,它们不仅具备高分子的基本特性,如良好的可加工性、机械强度、稳定性等,还具备独特的光电性能。
这类材料在受到光照射时,能够产生电流或者电压,或者能够改变其光学性质,如吸收、反射、透射等,从而被广泛应用于光电器件、太阳能电池、发光二极管、光传感器等领域。
有机光电高分子材料主要由有机小分子或者高分子链构成,其中包含共轭双键或者芳香环等结构,使得材料在光的作用下能够发生电子跃迁,从而产生光电效应。
这些材料的光电性能还可以通过化学修饰、物理掺杂等手段进行调控,以满足不同应用的需求。
近年来,随着人们对可再生能源和环保技术的需求日益增长,有机光电高分子材料的研究和应用也受到了广泛的关注。
通过深入研究这类材料的基本概念和性能特点,可以为新型光电器件的研发提供理论支持和实验指导,进一步推动有机光电技术的发展和应用。
3. 有机光电高分子材料的合成方法有机光电高分子材料的合成是材料科学和化学工程领域的一个重要研究方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光功能高分子材料的研究发展及应用吴俊杰化工081班前言:光功能高分子材料研究是光化学和光物理科学的重要组成部分,近年来随着现代科学技术的进展,光功能高分子材料研究在功能材料领域占有越来越重要的地位,光功能高分子材料日益受到重视。
光功能高分子材料的应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,正在快速进展之中,光功能高分子材料研究与应用也将越来越广。
1光功能高分子材料及分类光功能高分子材料是指能够对光进行传输、吸取、储存、转换的一类高分子材料。
表1 光功能高分子材料的分类剂等构成。
光致抗蚀剂:要紧包括正性光致抗蚀剂和负性光致抗蚀剂等。
高分子光稳固剂:要紧包括光屏蔽剂、激发态狙灭剂抗氧剂和聚合型光稳固剂等。
光致变色高分子材料:要紧包括含硫卡巴腙络合物的光致变色聚合物、含偶氮苯的光致变色高分子和含螺苯并吡喃结构的光致变色高分子等。
光导电高分子材料:由光导电聚合物材料构成。
2光功能高分子材料的类别和应用表2 光功能高分子材料的类别和应用3光功能高分子材料的进展概况1954年,美国柯达公司的Minsk等人开发出光功能高分子聚乙烯醇肉桂酸酯,并成功应用于印刷制版。
而现在光功能高分子材料应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,进展之势方兴未艾。
光功能高分子材料能够对光能进行传输、吸取、储存、转换.塑料光导纤维是利用高分子的光曲线传播性而制成的非线性光学元件。
塑料光纤一样以有机玻璃为芯材,以含氟透亮树脂为皮层,用柔软的有机硅树脂进行一次包覆,然后用硬质高分子材料进行二次包覆。
有机玻璃、含氟透亮树脂、有机硅树脂差不多上高分子材料,芯材有高折光率,皮层为低折光率材料。
光纤的直径范畴为几十到约1000微米,光纤在光纤芯内通过反复反射而向前传输,由于塑料光纤在目前传输损耗仍较高,要紧应用于飞机、舰船和汽车内部的短距离光通信系统。
此外,还应用于光纤显示器、图像的缩小和放大、火焰及高温监视器、光开关、巨点折象器、阅读穿孔卡片、道路标志和装饰照明等。
近来,对有机玻璃采纳重氢化技术,已使塑料光纤的传输损耗有所降低,为较长距离应用制造了条件。
以高性能有机玻璃或聚碳酸酯透亮塑料的高分子材料为基材制成的光盘,是80年代新开发成功的先进信息、记录、储存元件,适应了激光技术的进展和对大容量、高信息密度记录储存材料的需求既可记录文字数据.又可记录声音和图象。
光盘是利用激光的单色性、相干性进行记录再现的。
光盘的信息储存密度大,是磁带的4000倍、磁盘的250倍、盒式录像带的55倍。
现在光导电光导电高分子材料的应用越来越广泛,用光导电材料制作的静电复印设备越来越受到人们的欢迎,人们使用的也越来越多。
而现在防止工业烟尘污染是环保的重要任务之一.为了排除工业烟尘污染,第一要明白烟尘排放量,因此必须对烟尘源进行监测,自动显示和超标报警.烟道里的烟尘浊度是用通过光在烟道里传输过程中的变化大小来检测的.假如烟道浊度增加,光源发出的光被烟尘颗粒的吸取和折射增加,到达光检测器的光减少,因而光检测器输出信号的强弱便可反映烟道浊度的变化.把光敏电阻连接到外电路中,在外加电压的作用下,用光照耀就能改变电路中电流的大小.灵敏度高,光谱特性好,光谱响应可从紫外区到红外区范畴内,体积小,重量轻,性能稳固,价格廉价,因此应用比较广泛.。
而现在越来越多的人都在使用自显影全息记录照相。
它是在透亮胶片等支持体上涂一层专门薄的光致变色物质( 如螺吡喃,俘精酸酐等) ,其对可见光不感光,只对紫外光感光,从而形成有色影像.辨论率高,可不能发生操作误差,影像能够反正录制和排除。
它使用方便快捷,越来越多的人都喜爱它。
另外在国防方面,由于光致变色高分子材料对强光专门敏锐,能够制作强光辐射剂.能测量电离辐射,探测紫外线,x射线,γ射线等的剂量.如将其涂在飞船的外部,能快速精确地计量高辐射的剂量.还能够制成多层滤光器,操纵辐射光的强度,防止紫外线对人眼及躯体的损害.假如把高灵敏度的光致变色体系指示屏用于武器上,可记录飞机,军舰的行踪,形成可褪色的临时痕迹。
光致变色高分子材料在国防方面应用越来越广。
在防伪技术方面:防伪技术有两种方法,一是通过直截了当观看获得,另一种是通过对防伪标示的检查而验证产品的真实性.水印, 全息照片,显微印刷属于第一种,而有机光致变色材料用于防伪系统,属于第二种.其颜色角度效应无法用高清晰度的扫描仪,彩色复印机及其它设备复制,印刷特点用任何其他油墨和印刷方式都无法效仿。
因此光致变色材料在防伪技术方面也得到了广泛的应用。
此外,光致变色高分子材料受不同强度和波长光照耀时可反复循环变色的特点,能够制成运算机的经历储备元件,实现信息的经历与排除过程,其记录信息的密度大得难以想象,抗疲劳性能好,能快速写入和擦除信息,得到广泛应用。
它还可用作指甲漆,漆雕艺品,T恤衫,墙壁纸等装饰品.还可将光致变色化合物加入到一样油墨或涂料中制成丝网印刷油墨或涂料;还可制成包装膜,建筑物的调光玻璃窗,汽车及飞机的屏风玻璃等,防护日光照耀,保证安全.做成护目镜,防止阳光,激光,电焊光的损害。
光功能高分子材料能够对光能进行传输、吸取、储存、转换,光弹材料利用某些高分子材料的折光率随机械应力而变化的特性,用于研究受力结构材料内部的应力分布。
4光功能高分子材料的研究进展光功能高分子材料还包括感光性树脂、光降解材料等。
感光性树脂是在光的作用下能迅速发生光化学反应 ,引起物理和化学变化的高分子。
这类树脂在吸取光能量后使分子内或分子间产生化学的或结构的变化。
吸取光的过程可由具有感光基团的高分子本身来完成 ,也可由加入感光材料中的感光性化合物(光敏剂)吸取光能后引发光化学反应来完成。
感光性树脂在印刷布线、孔板制造、集成电路和电子器件加工、周密机械加工及复印、照相等方面的应用愈来愈广泛。
含有光色基团的化合物受一定波长的光照耀时发生颜色变化 ,而在另一波长的光或热的作用下又复原到原先的颜色 ,这种可逆的变色现象称为光色互变或光致变色。
差不多明白 ,硫代缩胺基脲衍生物与汞(Hg)能生成有色络合物 ,是化学分析上应用的灵敏显色剂。
在聚丙烯酸类高分子侧链上引入这种硫代缩胺基脲汞的基团 ,则在光照时由于发生了氢原子转移的互变异构 ,发生变色现象。
迄今为止 ,光致变色高分子的应用开发工作尚处在起步时期 ,但其应用前景是十分诱人的。
光致变色材料在全息记录介质、运算机经历元件、信号显示系统、感光材料等方面有广泛的应用。
例如 ,可作为窗玻璃或窗帘的涂层 ,从而调剂室内光线;可作为护目镜从而防止阳光、激光以及电焊闪光等的损害;在军事上 ,可作为假装隐藏色或密写信息材料;还可作为高密度信息储备的可逆储备介质等。
我国已把光致变色材料列入 863 高科技打算 ,国内一些单位已相继开展这方面的工作并已取得可喜的成果。
为了解决高分子废弃物所造成的公害 ,研究了用时稳固 ,不用时在阳光暴晒下能发生降解的光降解高分子。
要实现这种光降解 ,一是直截了当合成能被光降解的高分子;另一种方法是加入能促进降解的试剂。
在聚乙烯、聚丙烯、聚苯乙烯中加入 0105 %的光降解剂(如乙醛基水杨酸的铁、锰、铜盐) ,约经100h ,这些聚合物就发生降解。
又如将塑料浸入5 %~10 %的三氯丙酮或六氯丙酮的丙酮溶液中 ,浸30s后 ,再在室外暴晒 2~3 天 ,即失去强度 ,一碰就碎。
而光降解材料要紧可应用于两个方面 ,一是包装材料 ,二是农业应用薄膜。
5展望21世纪人类社会将进入高度信息化的社会,光与半导体相融台的高技术将引人注目。
高分子材料的光功能特性引起科学界和工业界的爱好。
高分子材料的功能特性要紧有:①化学变换功能(感光树脂、光学粘接剂、光硬化剂等)。
②物理变换功能(塑料光纤、光盘、非球面透镜、非线性光学聚合物、超导聚合物等)。
②医学化学功能(抗血栓性聚合物、人工畦器等)。
④分离选择功能(微多L膜、逆透过膜等) 由此可见,具有光功能的高分子材料占居多数,它们的产品在市塌占有的份额专门大。
像非线性高分子材料如此的尚未达到有用化的高分子材料更是为数众多该材料的通光功能与光的化学、物理变化功能是有专门大差别的。
前者的典型代表是光纤和各种透镜。
对这些材料不殴要求透亮性强。
如要求光纤材料从可见光到近红外光范畴内的透亮性极其严格。
标准的塑料光纤(POF)是由PMMA制成的,具c—H基,故不能幸免红外吸取。
为了提高透亮性而研制羝化物光纤。
用于制作透镜的材料必须具南高范畴的折射率和分散特性这一点,有机高分子材料与无机玻璃类材料相此,前者处于劣势。
塑料材料具有优良的成形性,宜用来生产诸如形状复杂的非球面透镜等高性能透镜。
CD用的透镜,要紧是用PMMA材料制作。
制作透镜用的PMMA工业材料市塌规模看好要求它具有优良的耐热性和低的吸水性其中具有脂环式结构的塑料市埸将有扩大趋势。
产品的薄型化要求具有高折射率的材料。
获得优良的成像性需要采纳低双折射率材料。
对光盘基板材料的功能也应十分重视,正在积极开发不产生双折射的各向同性塑料材料。
同时致力于开发具有优良光学特性和折射率分布特性的塑料。
塑料光纤与石英光纤相比.它的传输距离和带宽特性专门差。
由于POF是用高折射率的PMMA作芯t用低折射率的氟塑料作包层,这种两层结构会引起模分散它的最大传输速度为lOMbit/秒,与石英光纤的10Ghit/秒传输速度相比,实在是太小了。
上述第①种功能是基于光照耀后的高分子材料的重合硬化。
开展利用紫外线下瞬时重台的涂料、粘接剂等研究不容忽视。
要求光学粘接剂能把尺寸为数m的石英光纾周密固定。
要求它具有低收缩性和折射率特性。
DRAM将向大容量化进展,由4Mbit进展到64Mbit、256Mbit 2l世纪初将达到1Gbit,需要重视光源和短渡长的光,为此要大力开发高性能感光聚合物。
而现有包装材料大约80%是聚烯烃,农膜也要紧是聚乙烯,用以作地膜和设施农业用膜——温室大棚、小棚等。
用以提高土壤温度抑制杂草生长,但使用后专门难从地里清除,专门是地膜、太薄,无法回收。
假如用光降解材料作农膜和包装材料,废弃后即可被光分解成碎片,当聚合物分子量降到500以下时,就容易受微生物破坏,继而进入自然界的生物循环。
西方发达国家光降解塑料技术比较成熟,已广泛应用,我国从80年代开始进行研究。
目前所谓的降解材料大都只是关,达不到要求,只是部分降解,从爱护环境角度动身,光降解材料的研究和应用有重大现实意义和宽敞前景。
光功能高分子材料在整个社会材料对光的透射,能够制成品种繁多的线性光学材料,像一般的安全玻璃、各种透镜、棱镜等。
利用高分子材料的光化学反应,能够开发出在电子工业和印刷工业上得到广泛使用的感光树脂、光固化涂料及粘合剂;利用高分子材料的能量转换特性,可制成光导电材料和光致变色材料。