14.1.3 函数的图象(一)教学设计
14.1.3 函数图像(第2课时)
14.1.3 函数图像(第二课时)一、学习目标:1、会用描点法画出函数的图像。
2、画函数图像的步骤:(1)列表;(2)描点;(3)连线。
二、自学检查:(一)自学课本102页例3---103页中,回答下列问题1、描点法画函数图像的一般步骤是 。
2、用描点法画出函数y= x+0.5的图像3、判断: 1、函数图像上任意一点的横坐标、纵坐标均满足函数的关系式。
( )2、满足函数解析式的任意一对值所对应的点一定在函数的图像上。
( )三、学习过程例1 画出函数y =21x 2的图象. 自变量x 的取值范围是解:(1)取x 的自变量一些值,例如x=-3,-2,-1,0,1,2,3,。
,由此,我们得到一系列的有序实数对:。
,( ),( ),( ),( ),( ),( ),( ),。
(2)在直角坐标系中描出这些有序实数对的对应点(3)描完点之后,用光滑的曲线依次把这些点连起来,便可得到这个函数的图象。
这里画函数图象的方法我们称为描点法,步骤为:列表、描点、连线。
三、巩固练习1、在所给的直角坐标系中画出函数y =21-x 的图象(先填写下表,再描点、连线).2、长方形的周长是8cm ,设一边长为xcm ,另一边长为y cm.(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)在给出的坐标系中,作出函数图像。
四、课外作业1、把函数关系用图像表达出来是数学中 思想的体现。
A 数形结合B 分类讨论C 代入法D 建模2、下列各点中在函数y=3x-1的图像上的是( )A (1,-2)B (-1,-4)C (2,0)D (0,1)3、如图所示,记录了甲、乙两名运动员在一次赛跑中路程s (米)与时间t (秒)的关系,那么可以知道:①这是一次 米赛跑。
②甲乙两人先到达终点的是 。
③这次赛跑中甲的速度为 ,乙的速度为4、画出下列函数的图像(1)5.0+-=x y (2))0(6>=x x y(第1题)。
人教版八年级上册14.1.3积的乘方教学设计
(5)拓展应用:结合生活实例,让学生运用积的乘方知识解决问题。
(6)总结反思:对本节课的学习内容进行总结,强调积的乘方在实际生活中的应用。
3.教学策略:
(1)关注学生个体差异,实施分层教学,提高教学效果。
(2)注重启发引导,激发学生主动学习的兴趣,培养学生的自主学习能力。
(3)实施小组合作学习,让学生在交流与讨论中,共同解决难点问题,提高合作能力。
(4)设计生活情境,让学生在实际问题中运用积的乘方知识,提高数学应用能力。
2.教学步骤:
(1)导入新课:通过复习乘方的定义和性质,为新课的学习做好铺垫。
(2)新课探究:以长方体体积计算为例,引导学生发现积的乘方运算法则。
(3)讲解与示范:详细讲解积的乘方运算法则,并进行典型例题的演示。
(二)过程与方法
1.通过实例引导学生发现积的乘方运算法则,培养学生的观察、概括能力。
2.以小组合作形式,让学生互相讨论、交流,提高学生的合作意识和解决问题的能力。
3.通过典型例题的讲解和练习,让学生掌握积的乘方运算法则,培养学生的逻辑思维能力。
4.利用实际生活问题,引导学生运用积的乘方知识解决问题,提高学生的数学应用能力。
1.设计练习题:设计不同难度的练习题,让学生独立完成。题目包括基本题、提高题和应用题,以检验学生对积的乘方知识的掌握情况。
2.学生练习:学生在课堂上独立完成练习题,教师巡回指导,解答学生的疑问。
3.作业批改:教师批改学生的练习,了解学生的学习效果,为下一步教学提供依据。
(五)总结归纳
1.知识梳理:对本节课的学习内容进行梳理,强调积的乘方的运算法则及其在实际生活中的应用。
人教版八年级上册14.1.3积的乘方教学设计
人教版八年级上册14.1.3积的乘方教学设计一、教学背景本教学设计是针对人教版八年级数学教材第14章第1节“积的乘方”中的14.1.3节进行的设计,是该章节中的核心知识点。
学生在初学的时候可能会比较抵触,因此需要巧妙的设计,使学生能够理解和掌握这个知识点。
我们可以通过合理安排教学步骤、选择合适的教学方法、考虑学生的心理、增强学生的兴趣,来达到教学的目的。
二、教学目标1.知识目标了解积的乘方的概念,掌握积的乘方的运算法则及其性质。
2.能力目标通过类比、归纳等方法,培养学生的抽象思维能力和逻辑推理能力。
3.情感目标通过教学,激发学生学习数学的兴趣,提高学生的自信心和学习兴趣,增强学生对数学的喜爱。
三、教学重难点1.重点掌握积的乘方的运算法则及其性质,掌握乘方的基本计算方法。
2.难点让学生理解和掌握抽象的概念,使学生能够在实际问题中应用乘方的基本运算法则。
四、教学步骤1.导入(5分钟)教师通过提问的方式,引导学生回忆乘方的基本运算法则,并简单介绍一下积的乘方的概念。
2.讲解(20分钟)教师向学生详细讲解积的乘方的定义和运算法则,通过示例等方式让学生更好地理解和掌握概念。
3.练习(25分钟)教师出示一些例题,让学生通过计算获得对问题的认识和理解。
通过针对性的练习,加强学生对概念的掌握,巩固所学知识点。
4.归纳总结(10分钟)让学生在展示他们的解题方法后,归纳总结积的乘方的基本规律和性质,加深对概念的理解。
5.实际应用(15分钟)根据教师的引导,学生进行实际应用练习,解决实际问题,以便掌握积的乘方在实际问题中的应用。
6.小结与反思(5分钟)教师进行思考,总结今天的教学,让学生对所学知识点和教学方法进行总结,反馈意见和建议,以便在以后的教学中做出改进。
五、教学评价与反思教学评价是教学活动的重要组成部分,这样可以让我们了解学生的学习情况、教学效果和教学方法是否合理有效。
在教学中、教师可以对学生的计算能力、抽象思维能力等进行评价。
高中数学函数图像教案
高中数学函数图像教案目标:通过本课,学生将能够理解并绘制各种函数的图像,同时掌握如何根据函数的公式来分析图像。
教学目标:1. 理解函数的概念和特点。
2. 掌握绘制常见函数的图像方法。
3. 掌握如何根据函数的公式来分析图像。
教学内容:1. 函数的概念和特点。
2. 一次函数、二次函数、指数函数、对数函数、三角函数等的图像。
教学步骤:1. 引入(5分钟)教师简要介绍函数的概念和特点,并说明函数图像在数学中的重要性。
引导学生思考函数与图像之间的关系。
2. 理论讲解(15分钟)教师结合幻灯片或板书,依次介绍一次函数、二次函数、指数函数、对数函数、三角函数等的基本特点和图像形状,并讲解如何根据函数的公式来绘制图像。
3. 实例分析(20分钟)教师以具体的函数公式为例,引导学生一起分析函数图像的形状和特点,同时让学生尝试使用工具绘制函数图像。
4. 练习与讨论(15分钟)学生进行课堂练习,绘制不同函数的图像,并在小组讨论中互相交流分析。
教师鼓励学生积极思考和提问,引导他们深入理解函数图像的形成过程。
5. 总结(5分钟)教师对本课进行总结,强调函数图像的重要性和应用,并鼓励学生在以后的学习中继续深入探索函数图像的相关知识。
扩展活动:1. 给学生布置相关练习或作业,提醒他们在课后进行巩固和复习。
2. 鼓励学生利用在线数学工具或软件,进一步绘制和分析函数图像。
3. 组织相关竞赛或活动,鼓励学生展示自己的绘图技巧和分析能力。
评估方法:1. 课堂讨论及作业表现。
2. 学生绘制的函数图像准确度和完整程度。
3. 学生对函数图像理解和分析的能力。
反馈与调整:根据学生的学习表现和反馈情况,及时调整教学方法和内容,以达到更好的教学效果。
同时鼓励学生积极参与,提出问题和建议,共同促进教学质量的提升。
数学上课
(三)探索分析,解决问题
引导学生先读 题,分析,小 2 组讨论;如果 学生在分析过 1.1 程中出现碰壁 的情况,我则 o 15 25 37 55 80 利用这样的动 x/分 解:由图象的横纵坐标来看: (1)菜地离小明家 有多远,小明从家到菜地用了多少时间?; 画加以说明. 1.1千米,小明从家到菜地用了15分;
y/千米 25-15=10 (2)小明给菜地浇水用了 多少时间?分;
2-1.1=0.9 千米,小明从菜地到玉米地用了 37-15=12 分; (3)菜地离玉米地 多远,小明从菜地到玉米地用了 多少时间?
55-37=18 (4)小明给玉米地锄草用了 多少时间?分; 2千米;小明从玉米地走回家用了 80—55=25 分,平均速度 (5)玉米地离小明家 多远;小明从玉米地走回家用了 多少时间?平均速度
y/升
320 200 320 200 3 8
y/升
O
A.
x/分
O
3
11
B.
x/分
y/升 y/升
320 200 200 3 11
O
C.
x/分
O
3
11
D.
x/分
(四)自主尝试,应用新知
4 .李华和弟弟进行百米赛跑,李华比弟弟跑得快,如果
两人同时起跑,李华肯定赢.现在李华让弟弟先跑若干米,图 中,分别表示两人的路程与李华追赶弟弟的时间的关系,由图 中信息可知,下列结论中正确的是( B ) . A.李华先到达终点 B.弟弟的速度是8米/秒 C.弟弟先跑了10米 D.弟弟的速度是10米/秒
T/℃ 如图是自动测温仪记 录的图象,它反映了北京 的春季某天气温T如何随 时间 t变化而变化,你从 图中得到了哪些信息?
高中数学函数的图像教案
高中数学函数的图像教案教学目标:1.了解数学函数的概念和性质2.掌握如何绘制常见函数的图像3.通过图像分析,掌握函数的特点和规律教学过程:一、导入环节(5分钟):1.引入函数概念:什么是函数?函数的自变量和因变量分别代表什么意义?2.回顾基本函数:线性函数、二次函数、指数函数、对数函数等常见函数的表达式和特点。
二、拓展练习(15分钟):1.让学生通过计算绘制简单函数的图像,如y=x,y=x^2,y=2^x等。
2.引导学生观察图像特征,比较不同函数之间的差异和规律。
三、探究与讨论(20分钟):1.通过交流讨论,探索函数图像的对称性、单调性、最值、零点等特点。
2.引导学生思考函数图像与函数表达式之间的关系,如何通过图像分析函数性质。
四、综合应用(10分钟):1.设计探究问题:给出一个函数的图像,要求学生根据图像特征写出函数表达式并分析函数性质。
2.让学生在小组内合作讨论,提高分析和解决问题的能力。
五、总结反思(5分钟):1.总结本节课学习到的函数图像特点和分析方法。
2.帮助学生提出自己的疑惑和思考,引导他们如何进一步深入学习和应用函数知识。
教学反馈:1.检查学生课堂互动情况,了解学生对函数图像的理解和掌握程度。
2.根据学生表现和反馈情况,调整教学策略,针对性地进行知识巩固和强化训练。
拓展延伸:1.引导学生自主探索更多函数的图像,挖掘数学函数的更多奥秘和规律。
2.鼓励学生开展实际问题求解,提高数学应用能力和创新意识。
注:以上教案仅为范本,具体实施时可根据教学实际情况和学生特点进行调整和改进。
14.1.3函数的图象(1)
“龟兔赛跑”是人们熟悉的寓言故事,下面表示 的是“龟兔赛跑”时路程 s 与时间 t 之间的关系, 那么可以知道: (1)赛跑中,兔子共睡了多少分钟? (2)乌龟在这次赛跑中的平均速度是多少米/分钟?
s(米) 500
200
O 10 20 30 40 50 60 t(分钟)
小明的父亲饭后去散步,从家中走20分钟到 离家1000米的报亭看了10分钟报纸后,用15分钟 返回家里,下列各图中表示小明父亲离家的时 C 间与距离之间关系的是( )
下面的图象反映的过程是:张强从家跑步去体育场, 在那里锻炼了一阵后走到文具店去买笔,然后散步回 家。其中x表示时间,y表示张强离家的距离 根据图象回答下列问题:
y/千米
2.5
1.5
0 15 30 45 65
100 x/分
(1)体育场离张强家多远?张强从家到体育场用了多少时间? (2)体育场离文具店多远? (3)张强在文具店停留了多少时间? (4)张强从文具店回家的平均速度是多少?
函数图象
一般来说,对于一个函数,如果把自变量和函 数的每一对对应值分别作为点的横坐标和纵坐 标,那么在坐标平面内由这些点组成的图形,叫 做这个函数的图象。
思考 如图,是自动测温仪记录的图像,它
反映了北京的春季某天气温T如何随时间t的 变化而变化。你从图像中得到了哪些信息?
正常人的体温一般在37℃左右,但一天中的不同时刻不尽 相同,如图,反映了一天24h内小明体温的变化情况。 (1)这个图象反映了哪两个变量之间的关系? (2)这一天小明在什么时候体温最高,什么时候体温最低?
S(千米) S(千米)
0
A S(千米)
t(时)
0
B S(千米)
t(时)
0
14.1.3函数的图像1
70
四、中考实战
甲,乙两同学骑自行车从A地沿同一条路到B地,已知 乙两同学骑自行车从A地沿同一条路到B 乙比甲先出发.他们离出发地的距离s km和骑行时间 乙比甲先出发.他们离出发地的距离s/km和骑行时间 t/h之间的函数关系如图所示 给出下列说法: 之间的函数关系如图所示, t/h之间的函数关系如图所示,给出下列说法: √ a.他们都骑了20km 他们都骑了20km; a.他们都骑了20km; √ b.乙在途中停留了 乙在途中停留了0 b.乙在途中停留了0.5h; × c.甲和乙两人同时到达目的地 甲和乙两人同时到达目的地; c.甲和乙两人同时到达目的地; d.甲乙两人途中没有相遇过 甲乙两人途中没有相遇过. d.甲乙两人途中没有相遇过. × 根据图象信息, 根据图象信息,以上说法正确的是 (B )
20 s/km
甲
乙
A.1个 个 C.3个 3
B.2个 2 D.4个 4
O
0.5
1
2
2.5 t/h
?
对于这节课的知识你 还有什么疑问吗
1.主要是通过图象获得信息,解决有关问题。 主要是通过图象获得信息,解决有关问题。 主要是通过图象获得信息 2.观察函数的图象要注意事项呢: 观察函数的图象要注意事项呢: 观察函数的图象要注意事项呢 (1)弄清横、纵坐标表示的意义。 弄清横、纵坐标表示的意义。 弄清横 (2)自变量的取值范围 自变量的取值范围。 自变量的取值范围 (3)图象中函数随着自变量变化的规律。 图象中函数随着自变量变化的规律。 图象中函数随着自变量变化的规律 3.数形结合的数学思想在数学解题中的应用。 3.数形结合的数学思想在数学解题中的应用。 数形结合的数学思想在数学解题中的应用
s=x
2
(x>0)的图象. > 的图象 的图象.
14.1.3函数的图像(1)
11.1.3 函数的图象
小 结
小结
1、函数的图象的定义。 2、画函数图象的步骤:
(1)列表;(2)描点;(3)连线。
3、图象的变化趋势。
人教版八年级数学第十四章
八年级 数学
第十四章 函数
11.1.3 函数的图象
观察思考
下图是自动测温仪记录的图象,它反映了 北京的春季某天气温T如何随时间t的变化而变 化。你从图象中得到了哪些信息?
O
4
-3
14
24 t/时
八年级 数学
第十四章 函数
11.1.3 函数的图象
观察思考
T/℃
8
-3
0
4
14 时间
24
t/时
横坐标表示 时间,纵坐标表示 温度 温度T 随 时间t 的变化而变化?
八年级 数学
第十四章 函数
11.1.3 函数的图象
观察思考
T/℃
8
0
-3
4
14
24
t/时
从4时至14时气温呈上升状态,即温度随时间的增加而上 5.曲线与x轴的交点表示什么? 1.哪个时间温度最高?是多少度? 从0时至4时, 14时至24时气温呈下降状态,即温度随时间的 这天中凌晨4时气温最低,为一3℃. ℃ . 曲线与x轴的交点表示此时的气温为0 这天中14时气温最高,为8℃. 4. 什么时间段温度在上升? 2.哪个时间温度最低?是多少度? 3.什么时间段温度在下降? 升. 增加而下降.
A (3,9)
对于一些函数,我们通过 列表、描点、连线画出它们的 图象。
八年级 数学
第十一章 函数
11.1.3 函数的图象
课堂练习
6 1、作出函数y= (x>0) 的图象。 x
14.1.3 函数图像(第1课时)
第 1页 共 2 页图y/千米14.1.3 函数图像(第一课时)一、学习目标:学会观察函数图象,从函数图像中获取信息,解决问题。
二、学习过程:(一)自学课本99页---100页上,完成下列问题若正方形的边长为x ,面积为S 。
1、S 与x 之间的函数关系式为 。
23的取值范围是 。
4、根据以上问题的回答,你认为:①函数的表示方法有 种,分别是 。
②函数的图像是指 。
(二)学以致用1、如图一,是北京春季某一天的气温T随时间t 变化的图象,看图回答:(1)气温最高是___℃,在___时,气温最低是___℃,在______时;(2)12时的气温是_____℃,20时的气温是_____℃;(3)气温为-2℃的是在_______时;(4)气温不断下降的时间是在______________; (5)气温持续不变的时间是在______________。
2、小明的 爷爷吃过晚饭后,出门散步,再报亭看了一会儿报纸才回家,小明绘制了爷爷离家的路程s (米)与外出的时间t (分)之间的关系图(1)报亭离爷爷家________米;(2)爷爷在报亭看了________分钟报纸;(3)爷爷走去报亭的平均速度是________米∕分。
3、图三反映的过程是:小明从家去菜地浇水,又去玉米地锄地,然后回家,。
其中x 表示时间,y 表示小明离他家的距离,小明家、菜地、玉米地在同一条直线上。
第 2 页 共 2 页根据图像回答下列问题:1)菜地离小明家?小明家到菜地用了多少时间?到菜地的平均速度是多少?2)小明给菜地浇水用了多少时间?3)菜地离玉米地多远?小明从菜地到玉米地用了多少时间?4)小明给玉米地除草用了多少时间?5)玉米地离小明家多远?小明从玉米地回家的平均速度是多少?三、巩固练习4、一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列3幅图象中能大致刻画出这枝蜡烛点燃后剩下的长度h (厘米)与点燃时间t 之间的函数关系的是( ).5、图中的折线表示一骑车人离家的距离y 与时间x 的关系。
徐闻县和安中学数学教研组 14.1.3 函数的图象(第1课时)
徐闻县和安中学数学教研组◆八年级数学导学案◆◆我们的约定:我的课堂我作主!课题:14.1.3函数的图象(第1课时)学习目标1.了解函数图象的意义,掌握画函数图象的方法,会函数图象的简单应用.2.结合实例培养读图能力和体会数形结合的思想.突破的难点:从函数图象中分析和获取信息.学习过程一、课前准备☆导学复习----思考新问题1.函数的概念:一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个值,都有唯一确定的值与其对应,那么我们就说,是自变量,是的函数.2.新思考:对于很难用式子表示的函数关系,我们可以用图来直观地反映(如课件呈现P96的心电图等).即使能用式子表示的函数关系,如也能用画图表示,则会使函数关系更为直观二、新课导学☆学习探索探索任务:描点法画函数图象我们知道:正方形边长x与面积S的函数关系为S = x2,其中x的取值范围是x>0;根据函数的概念我们还知道:自变量x的一个确定的值与它所对应的唯一的函数值S 。
计算并填写下表:如果我们在直角坐标系中,将你所填表格中的自变量x及对应的函数值S当作一个点的横坐标与纵坐标,即可在坐标系中得到一些点。
我们在下面的平面直角坐标系中描出表中各点。
我们注意到:1.表示x与s的对应关系的点有无数个2.但实际上我们描出的点只能是有限多个3.同时根据描出的点想象出其他点的位置这样我们就得到了一幅表示S与x关系图.图中每个点都代表x的值与S的值的一种对应关系。
(见P100)如点A(2,4)表示x= 时S= ;点B( , )表示x=4时S=16。
☆☆归纳函数的图象的概念:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的、坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。
(P100)画图时我们经历了1. 2. 3 (用平滑的曲线连接)的过程。
这一过程我们将在下节课深层次体会。
2011年上学期◆八年级()班级设计时间2011年10月25日两人的速度相同某人早上进行登山活动,从山脚到山顶休息3.小芳今天到学校参加初中毕业会考,从家里出发走10分到离家500米的地方吃早餐,吃早餐用了20分;再用10分赶到离家1000米的学校参加考试.下列图象中,能反映这一过程的是()A.x/分y/米O150010 20 30 40B.x/分y/米O150010 20 30 401500C.x/分y/米O10 20 30 40D.y/米O10 20 30 401500徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主!☆☆☆☆.小明从家里出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家.下面的图描述了小明在散步过程中离家的距离s (米)与散步所用时间之间的函数关系.请你由图具体说明小明散步的情况.课本P107。
人教版八年级数学上册14.1.3幂的乘方优秀教学案例
1.生活情境:通过引入生活中的实际问题,如计算利息、人口增长等,创设情境,引发学生对幂的乘方的兴趣和好奇心。
2.数学情境:通过展示数学问题或数学现象,如数列的求和、几何图形的面积计算等,引发学生对幂的乘方的思考和探究。
3.故事情境:通过讲述与幂的乘方相关的故事或数学家的成就,激发学生的学习兴趣和积极性。
4.反思与评价的亮点:通过引导学生进行自我反思和同伴评价,让学生能够及时发现自己的不足和错误,从他人的反馈中学习和改进。反思与评价的方式培养了学生的自我监控和调整能力,提高了学生的学习效果。
5.教学策略的亮点:运用情景创设、问题导向、小组合作和反思与评价等多种教学策略,形成了一个系统化的教学模式。这种教学模式既注重了学生的知识与技能的培养,又注重了学生过程与方法、情感态度与价值观的培养。通过这种教学策略,能够全面提高学生的学习能力、思维能力和应用能力,促进学生的全面发展。
2.问题导向的亮点:通过设计一系列由浅入深、富有思考性的问题,引导学生逐步深入理解幂的乘方的概念和运算方法。问题导向的方式培养了学生的独立思考能力,让学生在解决问题的过程中巩固知识,提高思维能力。
3.小组合作的亮点:通过组织学生进行小组讨论和合作解决问题,培养了学生的团队合作精神和交流能力。小组合作的方式让学生能够相互学习、相互帮助,提高了学生的解决问题的能力,同时也增加了学生的学习兴趣。
针对八年级学生的认知特点和知识水平,我制定了以下教学目标:通过探究幂的乘方,使学生理解幂的乘方的概念,掌握幂的乘方的运算方法,并能够应用于解决实际问题;培养学生独立思考、合作交流的能力,提高学生的数学素养。
二、教学目标
(一)知识与技能
1.理解幂的乘方的概念,掌握幂的乘方的运算方法。
2.能够正确地进行幂的乘方运算,并能应用于解决实际问题。
高中数学《函数的图像》教案设计
高中数学《函数的图像》教案设计[最新考纲] 1.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.2.会运用基本初等函数的图像分析函数的性质,并运用函数的图像解简单的方程(不等式)问题.1.利用描点法作函数的图像方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、最值等);(4)描点连线.2.利用图像变换法作函数的图像(1)平移变换(2)对称变换关于x轴对称y=-f(x)的图像;①y=f(x)的图像―――――――→②y =f (x )的图像―――――――→关于y 轴对称y =f (-x )的图像; ③y =f (x )的图像―――――――→关于原点对称y =-f (-x )的图像;④y =a x (a >0且a ≠1)的图像――――――――→关于直线y =x 对称y =log a x (a >0且a ≠1)的图像.(3)伸缩变换 ①y =f (x )的图像―――――――――――――――――――――――→a >1,横坐标缩短为原来的1a,纵坐标不变0<a <1,横坐标伸长为原来的1a倍,纵坐标不变y =f (ax )的图像;②y =f (x )的图像――――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x )的图像.(4)翻转变换 ①y =f (x )的图像――――――――――――→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图像;②y =f (x )的图像――――――――――――――→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图像.[常用结论]1.关于对称的三个重要结论(1)函数y =f (x )与y =f (2a -x )的图像关于直线x =a 对称. (2)函数y =f (x )与y =2b -f (2a -x )的图像关于点(a ,b )中心对称.(3)若函数y =f (x )的定义域内任意自变量x 满足:f (a +x )=f (a -x ),则函数y=f(x)的图像关于直线x=a对称.2.函数图像平移变换八字方针(1)“左加右减”,要注意加减指的是自变量.(2)“上加下减”,要注意加减指的是函数值.一、思考辨析(正确的打“√”,错误的打“×”)(1)函数y=f(1-x)的图像,可由y=f(-x)的图像向左平移1个单位得到.( )(2)函数y=f(x)的图像关于y轴对称即函数y=f(x)与y=f(-x)的图像关于y轴对称.( )(3)当x∈(0,+∞)时,函数y=f(|x|)的图像与y=|f(x)|的图像相同.( )(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图像关于直线x=1对称.( )[答案](1)×(2)×(3)×(4)√二、教材改编1.函数f(x)=1x-x的图像关于( )A.y轴对称B.直线y=-x对称C.坐标原点对称D.直线y=x对称C[∵f(x)=1x-x是奇函数,∴图像关于原点对称.]2.李明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.则与以上事件吻合最好的图像是( )A BC DC[距学校的距离应逐渐减小,由于李明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,后段比前段下降得快.]3.如图,函数f(x)的图像为折线ACB,则不等式f(x)≥log2(x+1)的解集是________.(-1,1][在同一坐标系内作出y=f(x)和y=log2(x+1)的图像(如图).由图像知不等式的解集是(-1,1].]考点1 作函数的图像函数图像的常用画法(1)直接法:当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图像的关键点,进而直接作出图像.(2)转化法:含有绝对值符号的函数,可脱掉绝对值符号,转化为分段函数来画图像.(3)图像变换法:若函数图像可由某个基本函数的图像经过平移、伸缩、翻折、对称得到,则可利用图像变换作出.作出下列函数的图像: (1)y =⎝ ⎛⎭⎪⎪⎫12|x |;(2)y =|log 2(x +1)|;(3)y =2x -1x -1;(4)y =x 2-2|x |-1.[解] (1)先作出y =⎝ ⎛⎭⎪⎪⎫12x 的图像,保留y =⎝ ⎛⎭⎪⎪⎫12x 图像中x ≥0的部分,再作出y=⎝ ⎛⎭⎪⎪⎫12x 的图像中x >0部分关于y 轴的对称部分,即得y =⎝ ⎛⎭⎪⎪⎫12|x |的图像,如图①实线部分.① ②(2)将函数y =log 2x 的图像向左平移一个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图像,如图②.(3)∵y =2x -1x -1=2+1x -1,故函数图像可由y =1x 图像向右平移1个单位,再向上平移2个单位得到,如图③.③ ④(4)∵y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0,且函数为偶函数,先用描点法作出[0,+∞)上的图像,再根据对称性作出(-∞,0)上的图像,得图像如图④.(1)画函数的图像一定要注意定义域.(2)利用图像变换法时要注意变换顺序,对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.考点2 函数图像的辨识辨析函数图像的入手点(1)从函数的定义域,判断图像的左右位置;从函数的值域,判断图像的上下位置.(2)从函数的单调性,判断图像的变化趋势. (3)从函数的奇偶性,判断图像的对称性.(4)从函数的周期性,判断图像的循环往复.(5)从函数的特征点,排除不合要求的图像.(1)(2019·全国卷Ⅰ)函数f(x)=sin x+xcos x+x2在[-π,π]的图像大致为( )A BC D(2)已知定义在区间[0,2]上的函数y=f(x)的图像如图所示,则y=-f(2-x)的图像为( )A BC D(3)如图所示,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,点P以1 cm/s的速度沿A→B→C的路径向C移动,点Q以2cm/s的速度沿B→C→A的路径向A移动,当点Q到达A点时,P,Q两点同时停止移动.记△PCQ的面积关于移动时间t的函数为S=f(t),则f(t)的图像大致为( )A B C D(1)D(2)B(3)A[(1)∵f(-x)=sin-x-xcos-x+-x2=-sin x+xcos x+x2=-f(x),∴f(x)是奇函数.又∵f(π)=sin π+πcos π+π2=π-1+π2>0,∴选D.(2)当x=0时,-f(2-x)=-f(2)=-1;当x=1时,-f(2-x)=-f(1)=-1.观察各选项可知,应选B.(3)当0≤t≤4时,点P在AB上,点Q在BC上,此时PB=6-t,CQ=8-2t,则S=f(t)=12QC×BP=12(8-2t)×(6-t)=t2-10t+24;当4<t≤6时,点P在AB上,点Q在CA上,此时AP=t,P到AC的距离为45t,CQ=2t-8,则S=f(t)=1 2QC×45t=12(2t-8)×45t=45(t2-4t);当6<t≤9时,点P在BC上,点Q在CA上,此时CP=14-t,QC=2t-8,则S=f(t)=12QC×CP sin∠ACB=12(2t-8)(14-t)×35=35(t -4)(14-t ).综上,函数f (t )对应的图像是三段抛物线,依据开口方向得图像是A ,故选A.]由实际情景探究函数图像,关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.1.(2019·全国卷Ⅲ)函数y =2x 32x +2-x在[-6,6]的图像大致为( )A B C DB [设f (x )=2x 32x +2-x (x ∈[-6,6]),则f (-x )=2-x32-x +2x=-f (x ),∴f (x )为奇函数,排除选项C ;当x =-1时,f (-1)=-45<0,排除选项D ;当x =4时,f (4)=12816+116≈7.97,排除选项A.故选B.]2.如图,圆与两坐标轴分别切于A ,B 两点,圆上一动点P 从A 开始沿圆周按逆时针方向匀速旋转回到A 点,则与△OBP 的面积随时间变化的图像相符合的是( )A B C DA [当P 从A 运动到B 的过程中,△OBP 的面积逐渐减小,在点B 处,△OBP 的面积为零,当P 从B 运动到圆的最高点的过程中,△OBP 的面积又逐渐增大,且当P 位于圆的最高点时,△OBP 的面积达到最大值,当P 从最高点运动到A 点的过程中,△OBP 的面积又逐渐减小,故选A.]考点3 函数图像的应用利用函数图像的直观性求解相关问题,关键在于准确作出函数图像,根据函数解析式的特征和图像的直观性确定函数的相关性质,特别是函数图像的对称性等,然后解决相关问题.研究函数的性质(1)已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0) (2)对a ,b ∈R ,记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,函数f (x )=max{|x +1|,|x -2|}(x ∈R )的最小值是________.(1)C (2)32[(1)将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧ x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图像,如图,观察图像可知,函数f (x )的图像关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.(2)函数f (x )=max{|x +1|,|x -2|}(x ∈R )的图像如图所示,由图像可得,其最小值为32. ]利用函数的图像研究函数的性质,一定要注意其对应关系.如:图像的左右范围对应定义域,上下范围对应值域,上升、下降趋势对应单调性,对称性对应奇偶性.解不等式设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f x -f -xx <0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)D [因为f (x )为奇函数,所以不等式f x -f -xx <0可化为f xx <0,即xf (x )<0,f (x )的大致图像如图所示.所以xf (x )<0的解集为(-1,0)∪(0,1).]当不等式问题不能用代数法求解,但其对应函数的图像可作出时,常将不等式问题转化为两函数图像的上、下关系问题,从而利用数形结合求解. 求参数的取值范围(1)已知函数f (x )=⎩⎪⎨⎪⎧ log 12x ,x >0,2x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是________.(2)设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________.(1)(0,1] (2)[-1,+∞) [(1)作出函数y =f (x )与y =k 的图像,如图所示,由图可知k ∈(0,1].(2)如图作出函数f (x )=|x +a |与g (x )=x -1的图像,观察图像可知,当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).]当参数的不等关系不易找出时,可将函数(或方程)等价转化为方便作图的两个函数,再根据题设条件和图像的变化确定参数的取值范围.1.(2019·贵阳市监测考试)已知函数f(x)=2xx-1,则下列结论正确的是( )A.函数f(x)的图像关于点(1,2)中心对称B.函数f(x)在(-∞,1)上是增函数C.函数f(x)的图像上至少存在两点A,B,使得直线AB∥x轴D.函数f(x)的图像关于直线x=1对称A[因为y=2xx-1=2x-1+2x-1=2x-1+2,所以该函数图像可以由y=2x的图像向右平移1个单位长度,向上平移2个单位长度得到,所以函数f(x)的图像关于点(1,2)中心对称,A正确,D错误;易知函数f(x)在(-∞,1)上单调递减,故B错误;易知函数f(x)的图像是由y=2x的图像平移得到的,所以不存在两点A,B使得直线AB∥x轴,C错误.故选A.]2.已知函数y=f(x)的图像是圆x2+y2=2上的两段弧,如图所示,则不等式f(x)>f(-x)-2x的解集是________.(-1,0)∪(1,2][由图像可知,函数f(x)为奇函数,故原不等式可等价转化为f(x)>-x.在同一直角坐标系中分别画出y=f(x)与y=-x的图像,由图像可知不等式的解集为(-1,0)∪(1,2].]3.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是________.⎝ ⎛⎭⎪⎪⎫12,1 [先作出函数f (x )=|x -2|+1的图像,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的取值范围为⎝ ⎛⎭⎪⎪⎫12,1.]。
函数的图像的教案
函数的图像教案一、教学目标1. 了解什么是函数的图像。
2. 学习如何绘制函数的图像。
3. 掌握函数图像在数轴上的显示。
4. 理解函数图像与函数的关系。
二、教学准备1. 黑板、白板或投影仪2. 教学笔、粉笔或白板笔3. 教学用纸、尺子和画笔4. 函数图像的练习题三、教学步骤1. 引入函数图像的概念(5分钟)教师可以通过例子来引入函数图像的概念。
例如,让学生想象一个简单的函数,比如y = x,然后通过替换x的值来绘制对应的点。
这样学生就可以理解函数图像是由多个点构成的。
2. 解释如何绘制函数图像(10分钟)教师可以从绘制简单函数图像开始,如y = x、y = x^2等。
解释每个点的坐标表示函数的值。
教师可以使用数轴来帮助学生理解函数图像在数轴上的显示。
3. 学生实践绘制函数图像(20分钟)让学生用纸和铅笔练习绘制函数图像。
教师可以在黑板上展示一个函数,然后让学生在纸上模仿绘制。
教师要定期检查学生的进展,并提供指导和帮助。
4. 讨论函数图像与函数的关系(10分钟)教师可以与学生讨论函数图像与函数的关系。
例如,学生可以观察到函数图像的形状如何随着函数的不同而变化。
教师可以向学生提供一些函数曲线的例子,并让学生观察它们的特点和规律。
5. 练习题和作业(15分钟)教师可以提供一些练习题,让学生在课堂上完成。
这些练习题可以包括绘制函数图像、写出函数图像的方程等。
教师可以选取一些具有挑战性的问题,以鼓励学生思考和探索。
6. 总结与反馈(10分钟)教师可以对课堂内容进行总结,并回顾学生所学的知识和技能。
同时,教师可以向学生征求反馈,了解课堂教学的效果和学生的进展。
四、教学评估教师可以通过学生的练习题和作业来评估学生对函数图像的理解和掌握程度。
此外,教师也可以通过课堂表现和参与度来评估学生对相关概念的理解和运用能力。
五、拓展延伸教师可以引导学生进一步学习函数图像的概念和绘制技巧。
学生可以自主选择更复杂的函数,如三次函数、指数函数等,并学习如何绘制它们的图像。
14.1.3函数的图象(第一课时)
D
1.1
E O0
15 25 37 55 80
x/分
14.1.3 函数的图象(1)
应用举例
问题3:菜地离玉米地多远?小明从菜地走 到玉米地用了多少时间?
y/千米
解:∵2-1.1=0.9 ∴菜地离玉米地0.9千米, ∵37 - 25=12 D ∴小明从菜地到玉米地用了12分钟。
2
C A B
1.1
E O
小明从家到菜地用了15分钟。
2
C A B
D
1.1
E O0
15 25 37 55 80
x/分
14.1.3 函数的图象(1)
应用举例
(2)由横坐标看 ? 出,小明给菜地浇 水用了10分。 (25-10)
问题2:小明给菜地浇水用了多少时间
y/千米
解:∵25-15=10 ∴小明给菜地浇水用了10分钟。
2
C A B
挑战中考
1.小颖从家出发,直走了20分钟,到一个离家1000米的图书室,看了40
分钟的书后,用20分钟返回到家,下图中表示小颖离家时间与距离之间的 关系的是( D )
y(米)
y(米)
y(米)
y(米)
1000
1000
1000
1000
x(分) O 20 60 75 O 20 75
x(分) O 60 75
14.1.3 函数的图象
如图,是自动测温仪记录的图像,它反映了北京的春季某天气 温T如何随时间t的变化而变化。
(1)温度T是时间 t的函数吗?哪个是自变量?哪个是函数?
(2) 你从图像中得到了哪些信息?
物体的抛射曲线图
h/米
3
2 1
0 1 2 3 4 5 6
14.1.3 函数的图象
八年级上学期第十四章《函数的图象》教案盘龙区嵩明三中张秀玲14.1.3 函数的图象教学目标(一)教学知识点1、学会用列表、描点、连线画函数图象.2、学会观察、分析函数图象信息.(二)能力训练要求1、提高识图能力、分析函数图象信息能力.2、体会数形结合思想,并利用它解决问题,提高解决问题的能力.(三)情感与价值观要求1、体会数学方法的多样性,提高学习兴趣.2、认识数学在解决问题中的重要作用,从而加深对数学的认识.教学重点1、用描点法画函数图象.2、观察分析图象信息.教学难点分析、概括图象中的信息.教学方法自主探究、归纳总结.教具准备多媒体演示.教学过程Ⅰ.提出问题,创设情境我们在前面学习了函数意义,并掌握了函数关系式的确立.但有些函数问题很难用函数关系式表示出来,然而可以通过图来直观反映.例如用心电图表示心脏生物电流与时间的关系.即使对于能列式表示的函数关系,如果也能画图表示,则会使函数关系更清晰.我们这节课就来解决解读函数图象信息及如何画函数图象的问题.Ⅱ.新课讲授[活动一]内容设计:下图是自动测温仪记录的图象,•它反映了北京的春季某天气温T如何随时间t 的变化而变化.你从图象中得到了哪些信息?设计意图:1、通过图象进一步认识和理解函数的意义.2、体会图象的直观性、优越性.3、提高对图象的观察、分析能力、认识水平.4、掌握函数变化规律.教师活动:引导学生从两个变量的对应关系上认识函数,体会函数意义;可以指导学生找出一天内最高、最低气温及时间;在某些时间段的变化趋势;认识图象的直观性及优缺点;总结变化规律…….学生活动:在教师引导下,积极探寻,合作探究,归纳总结.活动结论:1、一天中每时刻t都有唯一的气温T与之对应.可以认为,气温T是时间t 的函数.2、这天中凌晨4时气温最低为-3℃,14时气温最高为8℃.3、从0时至4时气温呈下降状态,即温度随时间的增加而下降.从4时至14•时气温呈上升状态,从14时至24时气温又呈下降状态.4、我们可以从图象中直观看出一天中气温变化情况及任一时刻的气温大约5、如果长期观察这样的气温图象,我们就能得到更多信息,掌握更多气温变化规律.[活动二]下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.•其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:1、菜地离小明家多远?小明走到菜地用了多少时间?2、小明给菜地浇水用了多少时间?3、菜地离玉米地多远?小明从菜地到玉米地用了多少时间?4、小明给玉米地锄草用了多长时间?5、玉米地离小明家多远?小明从玉米地走回家平均速度是多少?设计意图:1、进一步提高识图能力.2、按要求从图象中挖掘所需信息。
函数的图像教案初中
教案:函数的图像教学目标:1. 理解函数的概念,掌握函数的表示方法。
2. 学会绘制简单的函数图像,并能分析图像的性质。
3. 能够运用函数图像解决实际问题。
教学重点:1. 函数的概念和表示方法。
2. 函数图像的绘制和分析。
教学难点:1. 函数图像的绘制和分析。
教学准备:1. 教学课件或黑板。
2. 函数图像的示例。
教学过程:一、导入(5分钟)1. 引入函数的概念,引导学生思考生活中的函数例子,如温度随时间的变化等。
2. 介绍函数的表示方法,如函数表格、解析式等。
二、新课(20分钟)1. 讲解函数图像的概念,引导学生理解函数图像是对函数值与自变量之间关系的直观表示。
2. 演示如何绘制一些简单的函数图像,如线性函数、二次函数等。
3. 引导学生通过观察函数图像,分析函数的性质,如单调性、奇偶性等。
三、练习(15分钟)1. 让学生独立完成一些函数图像的绘制,并分析其性质。
2. 引导学生运用函数图像解决实际问题,如找出函数的零点、最大值等。
四、总结(5分钟)1. 回顾本节课所学的内容,让学生总结函数图像的概念和性质。
2. 强调函数图像在实际问题中的应用价值。
教学延伸:1. 引导学生进一步学习复杂函数的图像,如三角函数、指数函数等。
2. 让学生尝试运用计算机软件绘制函数图像,提高作图能力。
教学反思:本节课通过讲解和练习,让学生掌握了函数的概念和表示方法,学会了绘制和分析函数图像。
在教学过程中,要注意引导学生观察和思考函数图像的性质,培养学生的空间想象能力。
同时,结合实际问题,让学生体验函数图像在解决问题中的作用,提高学生的数学应用能力。
5函数图像(14.1.3 )
当堂检测
1、倾斜木板,将小车置于木板顶端,观察小车下滑过程.
小车沿斜坡下滑,下滑速度与其下滑时间的关系如上图所示.
(1).填写下表:
(2).写出V与t之间的关系式.
2、一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度。
(1)由记录表推出这5小时中水位高度y(单位:米)岁时间t(单位:时)变化的函数解析式,并画出函数图像;(2)据估计按这种上涨规律还会持续上涨2小时,预测再过2小时水位高度将达到多少米?
当堂检测
1、倾斜木板,将小车置于木板顶端,观察小车下滑过程.
小车沿斜坡下滑,下滑速度与其下滑时间的关系如上图所示.
(1).填写下表:
(2).写出V与t之间的关系式.
2、一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度。
(3)由记录表推出这5小时中水位高度y(单位:米)岁时间t(单位:时)变化的函数解析式,并画出函数图像;(4)据估计按这种上涨规律还会持续上涨2小时,预测再过2小时水位高度将达到多少米?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.1.3 函数的图象(一)
教学目标
1.知识与技能
了解函数的三种表示方法,领会它们的联系和区别.
2.过程与方法
经过探索函数图象的过程,会应用数形结合的思想分析问题.
3.情感、态度与价值观
培养变化与对应的思想方法,体会函数模型的建构在实际生活中的应用价值.
重、难点与关键
1.重点:函数的三种表示法.
2.难点:函数图象的认识.
3.关键:从情境中抽象出函数的概念,认清自变量与函数的关系,•通过画函数图象直
观地认识函数的内涵.
教学方法
采用“操作──感悟”的教学法,让学生在画图中认识函数,从而提高识图能力.
教学过程
一、回顾交流,情境导入
1、一种豆子每千克2元,写出买豆子的总金额y(元)与所买豆子的数量x(千克)之
间的函数关系,回答下列问题:
(1)上面函数式中,哪个是自变量?哪个是函数?自变量取值范围是什么?
(2
【教师活动】观察学生的思维表现,提问学生.
【学生活动】独立思考,解答问题,上讲台演示.
【师生共识】y=2x,(1)x是自变量,y是x的函数,x取值范围是x取大于等于0的
数;(2)0,1,2,3,4,5,6.Array 2、问题探究:如图,正方形边长为x,面积为S,探究下列问题:
(1)写出S关于x的函数关系式,并求出x的取值范围.
(2)计算并填写下表:
(3)在直角坐标系中,将上面表格中各对数值所对应的点描出来,•然后用光滑的曲线
连接这些点.
【形成概念】一般地,对于一个函数,如果把自变量与函数的
每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些组成
的图形,就是这个函数的图象.
二、观察思考,实际应用
情境思索:课本图是自动测温仪记录的图象,它反映了北京的
春季某天气温T 如何随时间t 的变化而变化,你从图象中得到了哪些信息?
三、范例点击,提高认识
【例2】下面的图象(课本图)反映的过程是:小明从家去菜地浇水,•又去玉米地锄草,然后回家,其中x 表示时间,y 表示小明离他家的距离.
根据图象回答下列问题:
(1)菜地离小明家多远?小明走到菜地用了多少时
间?
(2)小明给菜地浇水用了多少时间?
(3)菜地离玉米地多远?小明从菜地到玉米地用了多
少时间?
(4)小明给玉米地锄草用了多少时间?
(5)玉米地离小明家多远?小明从玉米地走回家的平均速度是多少?
【例3】在下列式子中,对于x 的每一个确定的值,y 有唯一的对应值,即y•是x 的函数,画出这些函数的图象:
(1)y=x+0.5; (2)y=
6x
(x>0). 【探索方法】描点法画函数图象的一般步骤如下:
第一步:列表(表中给出一些自变量的值及其对应的函数值);
第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);
第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来).
【情境思考】课本P103思考题(1)、(2).
四、随堂练习,巩固深化
课本P104练习第1、2、3题.
【探研时空】
如图所示,分析右面反映变量之间关系的图,想象一个适合它的实际情境.•
五、课堂总结,发展潜能
1.我们可以由一个函数的表达式,列出这个函数的函数对应值表,•并把这些对应值(有序的)看成点坐标,在坐标平面内描点,进而画出函数的图象.
2.如果已知一个变量与另一个变量之间存在函数关系,•根据这两个变量的对应值,可以列表或画图表示这个函数.到此为止,我们共学习了函数的三种表示法:(1)表达式法(解析式法);(2)列表法;(3)图象法.
六、布置作业,专题突破
课本P106习题14.1第5,6,7,8题.
板书设计。