第五章 万有引力与航天(A)(解析版)

合集下载

高中物理选题之万有引力与航天及答案解析概论

高中物理选题之万有引力与航天及答案解析概论

万有引力与航天一、万有引力定律及其应用1. 为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”.假设探测器在离火星表面高度分别为h1和h2的圆轨道上运动时,周期分别为T1和T2.火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G.仅利用以上数据,可以计算出()A.火星的密度和火星表面的重力加速度B.火星的质量和火星对“萤火一号”的引力C.火星的半径和“萤火一号”的质量D.火星表面的重力加速度和火星对“萤火一号”的引力二、人造地球卫星1. 如图所示,同步卫星离地心距离为r,运行速率为v1,加速度为a1,地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球的半径R,则下列比值正确的是()A. B. C. D.2. 美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗类似地球的、可适合居住的行星——“开普勒-226”,其直径约为地球的2.4倍.至今其确切质量和表面成分仍不清楚,假设该行星的密度和地球相当,根据以上信息,估算该行星的第一宇宙速度等于()A.3.3×103 m/s B.7.9×103 m/sC.1.2×104 m/s D.1.9×104 m/s突破训练1. 一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能减小为原来的1:4 ,不考虑卫星质量的变化,则变轨前后卫星的()A.向心加速度大小之比为4:1B.角速度大小之比为2:1C.周期之比为1:8D.轨道半径之比为1:22. 2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图,关于航天飞机的运动,下列说法中正确的有[ ]A.在轨道Ⅱ上经过A的速度小于经过B的速度B.在轨道Ⅱ上经过A的速度小于在轨道Ⅰ上经过A的速度C.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度D.在轨道Ⅱ上运动时处超重状态,在轨道Ⅰ上运动时处失重状态3. 冥王星与其附近的另一星体卡戎可视为双星系统.质量比约为7:1,同时绕它们连线上某点O做匀速圆周运动.由此可知,冥王星绕O点运动的()A.轨道半径约为卡戎的1/7B.角速度大小约为卡戎的1/7C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍课后训练[第56页第10题](2011浙江理综, 19,6分) (多选) 为了探测X星球, 载着登陆舱的探测飞船在以该星球中心为圆心, 半径为r1的圆轨道上运动, 周期为T1, 总质量为m1。

专题05 万有引力与航天—备战2023年高考物理母题题源解密(全国通用)(解析版)

专题05    万有引力与航天—备战2023年高考物理母题题源解密(全国通用)(解析版)
4.(2022·山东济南市高三下学期一模)2021年10月14日,我国成功发射首颗太阳探测科学技术试验卫星“羲和号”,实现我国太阳探测零的突破,这标志着我国正式步人“探日”时代。“羲和号”卫星运行于离地高度 公里的太阳同步轨道,该轨道是经过地球南北极上空且圆心在地心的圆周。“羲和号”卫星与离地高度 公里的地球静止轨道同步卫星相比,下列说法正确的是( )
A.火星的公转周期大约是地球的 倍
B.在冲日处,地球上的观测者观测到火星的运动为顺行
C.在冲日处,地球上的观测者观测到火星的运动为逆行
D.在冲日处,火星相对于地球的速度最小
【答案】CD
【解析】A.由题意根据开普勒第三定律可知
火星轨道半径大约是地球轨道半径的1.5倍,则可得
故A错误;
BC.根据
可得
由于火星轨道半径大于地球轨道半径,故火星运行线速度小于地球运行线速度,所以在冲日处火星相对于地球由东向西运动,为逆行,故B错误,C正确;D.由于火星和地球运动的线速度大小不变,在冲日处火星和地球速度方向相同,故相对速度最小,故D正确。故选CD。
A. B.
C. D.
【答案】C
【解析】地球表面的重力加速度为g,根据牛顿第二定律得
解得
根据题意可知,卫星的运行周期为
根据牛顿第二定律,万有引力提供卫星运动的向心力,则有
联立解得 ,故选C。
【母题来源六】2022年高考浙江卷
【母题题文】(2022·浙江6月卷·T6)神州十三号飞船采用“快速返回技术”,在近地轨道上,返回舱脱离天和核心舱,在圆轨道环绕并择机返回地面。则( )
A.天和核心舱所处的圆轨道距地面高度越高,环绕速度越大
B.返回舱中的宇航员处于失重状态,不受地球的引力
C.质量不同的返回舱与天和核心舱可以在同一轨道运行

万有引力与航天(解析版)--五年(2019-2023)高考物理真题分项汇编(全国通用)

万有引力与航天(解析版)--五年(2019-2023)高考物理真题分项汇编(全国通用)

专题05万有引力与航天一、单选题1(2023·山东·统考高考真题)牛顿认为物体落地是由于地球对物体的吸引,这种吸引力可能与天体间(如地球与月球)的引力具有相同的性质、且都满足F∝Mmr2。

已知地月之间的距离r大约是地球半径的60倍,地球表面的重力加速度为g,根据牛顿的猜想,月球绕地球公转的周期为()A.30πr gB.30πgr C.120πrg D.120πgr【答案】C【详解】设地球半径为R,由题知,地球表面的重力加速度为g,则有mg=G M地m R2月球绕地球公转有G M地m月r2=m月4π2T2r r=60R联立有T=120πr g故选C。

2(2023·北京·统考高考真题)2022年10月9日,我国综合性太阳探测卫星“夸父一号”成功发射,实现了对太阳探测的跨越式突破。

“夸父一号”卫星绕地球做匀速圆周运动,距地面高度约为720km,运行一圈所用时间约为100分钟。

如图所示,为了随时跟踪和观测太阳的活动,“夸父一号”在随地球绕太阳公转的过程中,需要其轨道平面始终与太阳保持固定的取向,使太阳光能照射到“夸父一号”,下列说法正确的是()A.“夸父一号”的运行轨道平面平均每天转动的角度约为1°B.“夸父一号”绕地球做圆周运动的速度大于7.9km/sC.“夸父一号”绕地球做圆周运动的向心加速度大于地球表面的重力加速度D.由题干信息,根据开普勒第三定律,可求出日地间平均距离【答案】A【详解】A.因为“夸父一号”轨道要始终保持要太阳光照射到,则在一年之内转动360°角,即轨道平面平均每天约转动1°,故A正确;B.第一宇宙速度是所有绕地球做圆周运动的卫星的最大环绕速度,则“夸父一号”的速度小于7.9km/s,故B错误;C.根据=maG Mmr2可知“夸父一号”绕地球做圆周运动的向心加速度小于地球表面的重力加速度,故C错误;D.“夸父一号”绕地球转动,地球绕太阳转动,中心天体不同,则根据题中信息不能求解地球与太阳的距离,故D错误。

高一物理万有引力与航天试题答案及解析

高一物理万有引力与航天试题答案及解析

高一物理万有引力与航天试题答案及解析1.把太阳系各行星的运动近似看做匀速圆周运动,则离太阳越远的行星A.周期越大B.线速度越小C.角速度越大D.加速度越小【答案】A【解析】设太阳的质量为M,行星的质量为m,轨道半径为r.行星绕太阳做圆周运动,万有引力提供向心力,则由牛顿第二定律得:G=m,G=mω2r,G=ma,解得:v=,ω=,a=,周期T==2π,可知,行星离太远越近,轨道半径r越小,则周期T越小,线速度、角速度、向心加速度越大,故BCD错误;故选:A.2.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示。

则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的角速度小于在轨道1上的角速度C.卫星在轨道1上运动一周的时间小于于它在轨道2上运动一周的时间D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度【答案】BCD【解析】根据公式,解得,即轨道半径越大,线速度越小,A错误;根据公式可得,即轨道半径越大,角速度越小,故B正确;根据开普勒第三定律可得轨道半径或半长轴越大,运动周期越大,故卫星在轨道1上运动一周的时间小于它在轨道2上运动一周的时间,故C正确;在轨道2和3上经过P点时卫星到地球的距离相等,根据,可得,半径相同,即加速度相等,D正确。

3.关于第一宇宙速度,下列说法正确的是A.它是人造地球卫星绕地球飞行的最小速度B.它是同步卫星的运行速度C.它是使卫星进入近地圆轨道的最大发射速度D.它是人造卫星在圆形轨道的最大运行速度【答案】D【解析】第一宇宙速度又称为环绕速度,是指在地球上发射的物体绕地球飞行作圆周运动所需的最小发射速度,为环绕地球运动的卫星的最大速度,即近地卫星的环绕速度,同步卫星轨道要比近地卫星的大,所以运行速度小于该速度,故D正确。

2021年高考物理考点模拟题(必修二)专题5.8 双星问题(解析版)

2021年高考物理考点模拟题(必修二)专题5.8 双星问题(解析版)

2021年高考物理100考点最新模拟题千题精练第五部分 万有引力定律和航天专题5.8双星问题一.选择题1. (2020河南顶级名校4月联考)如图所示,双星系统由质量不相等的两颗恒星组成,质量分别是M 、m(M> m).他们围绕共同的圆心O 做匀速圆周运动。

从地球A 看过去,双星运动的平面与AO 垂直,AO 距离恒为L.观测发现质量较大的恒星M 做圆周运动的周期为T ,运动范围的最大张角为θ∆(单位是弧度)。

已知引力常量为G , θ∆很小,可认为sin tan θθθ∆=∆=∆,忽略其他星体对双星系统的作用力。

则A.恒星mB.恒星m 的轨道半径大小为2ML m θ∆ C.恒星m 的线速度大小为ML mTπθ∆D.两颗恒星的质量m 和M 满足关系式32322()()2m L m M GTπθ∆=+ 【参考答案】BCD【名师解析】质量较大的恒星M 做圆周运动的周期为T ,其角速度ω=2π/T ,双星系统中其角速度相等,所以恒星m 的角速度大小为ω=2T π,选项A 错误;由图中几何关系可得M 的轨道半径R=L·tan (2θ∆)≈L △θ/2,双星系统运动,万有引力提供向心力,()2GMmR r +=MRω2=m rω2,解得恒星m 的轨道半径大小为r=MR/m =ML △θ/2m ,选项B 正确;恒星m 的线速度大小为v=rω=ML mTπθ∆,选项C 正确;由()2GMmR r +=MRω2=m rω2,解得m=()22R R r G ω+,M=()22r R r G ω+,所以两颗恒星的质量m 和M 满足关系式32322()()2m L m M GT πθ∆=+,选项D 正确。

2.(2020北京平谷一模) 2019年的诺贝尔物理学奖于10月8日公布,有一半的奖金归属了一对师徒——瑞士的天文学家Michel Mayor 和Didier Queloz ,以表彰他们“发现了一颗围绕类太阳恒星运行的系外行星”。

高中物理必修二第五章万有引力与航天知识点题型

高中物理必修二第五章万有引力与航天知识点题型

第五章 万有引力与航天第一节 行星的运动一.地心说、日心说1. 地心说 托勒密 错误2. 日心说 哥白尼 不完全二.开普勒三定律 (被称为天体运动的“宪法”)1. 轨道定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。

2. 面积定律:对每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等。

当离太阳较近时,行星运行速度比较大。

在近日点速度最大,远日点速度最小。

3. 周期定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。

即:k Tr 32 (k 由“中心天体”质量决定,与行星无关) 例如:哥哥行星绕太阳转动的k 值相同,但月球绕地球转动的k 值与地球绕太阳转动的k 值不同。

中学阶段,把天体运动的椭圆轨道当做圆轨道对待,公式中的r就是圆的半径。

【例】火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知:( )A. 太阳位于木星运行轨道的中心B. 火星和木星绕太阳运行速度的大小始终相等C. 火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D. 相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积【例】木星和地球都绕太阳公转,木星的公转周期约12年,地球与太阳的距离为1天文单位,则木星与太阳的距离约为( )A . 2天文单位B . 4天文单位C . 5.2天文单位D . 12天文单位【例】某人造地球卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球运转半径的,设月球绕地球运动的周期为27天,则此卫星的运转周期大约是( )A .天B .天C . 1天D . 9天★★★【例】如图所示,飞船沿半径为R 的圆周绕地球运动,其周期为T ,地球半径为R 0,若飞船要返回地面,可在轨道上某点A 处将速率降到适当的数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在B 点相切,求飞船由A 点到B 点所需要的时间.第二节 万有引力定律一、太阳对行星的引力① r T4m ma F F 22π===向引 ② k Tr 23= 则22r m k 4F π=引,即2r m F ∝引二、行星对太阳的引力22'r m k 4F 太引π=,即2'r m F 太引∝综上一二:根据牛顿第三定律,则有2rMm G F =引三、万有引力定律1. 内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r 的二次方成反比2. 公式:221rm m G F =引(G=6.67×10-11 N ·m 2/Kg 2)3. 使用条件 (1)严格地讲,221rm m G F =引只适用于可看做质点的两个物体之间万有引力的计算。

第05专题 万有引力和航天(解析版)

第05专题 万有引力和航天(解析版)

海南高考物理试题分类汇编解析 第05专题 万有引力和航天(解析版)一、十年真题解析1. (2020年第7题)2020年5月5日,长征五号B 运载火箭在中国文昌航天发射场成功首飞,将新一代载人飞船试验船送入太空,若试验船绕地球做匀速圆周运动,周期为T ,离地高度为h ,已知地球半径为R ,万有引力常量为G ,则( ) A. 试验船的运行速度为2RTπB. C. 地球的质量为()322R h GT π+D. 地球表面的重力加速度为()2224R h RT π+ 【答案】B【解析】A .试验船的运行速度为Th R T r v )(22+==ππ,故A 错误; B .近地轨道卫星的速度等于第一宇宙速度,根据万有引力提供向心力有R v m RMm G 22= 根据试验船受到的万有引力提供向心力有)4)(222h R Tm h R Mm G +=+(船船π 联立两式解得第一宇宙速度Rh R T v 3)(2+=π,故B 正确;C .根据试验船受到的万有引力提供向心力有)4)(222h R Tm h R Mm G+=+(船船π 解得322)4h R GT M +=(π,故C 错误; D .地球重力加速度等于近地轨道卫星向心加速度,根据万有引力提供向心力有mg R v m RMm G ==22根据试验船受到的万有引力提供向心力有)4)(222h R Tm h R Mm G+=+(船船π联立两式解得重力加速度2232)4TR h R g +=(π,故D 错误。

故选B 。

2.(2019年第4题)2019年5月,我国第45颗北斗卫星发射成功。

已知该卫星轨道距地面的高度约为36000km ,是“天宫二号”空间实验室轨道高度的90倍左右,则() A. 该卫星的速率比“天宫二号”的大 B. 该卫星的周期比“天宫二号”的大 C. 该卫星的角速度比“天宫二号”的大 D. 该卫星的向心加速度比“天宫二号”的大 【答案】B3.(2018年海南物理卷第2题)土星与太阳的距离是火星与太阳距离的6倍多。

万有引力与航天专题(2024高考真题及解析)

万有引力与航天专题(2024高考真题及解析)

万有引力与航天专题1.[2024·安徽卷] 2024年3月20日,我国探月工程四期鹊桥二号中继星成功发射升空.当抵达距离月球表面某高度时,鹊桥二号开始进行近月制动,并顺利进入捕获轨道运行,如图所示,轨道的半长轴约为51 900 km.后经多次轨道调整,进入冻结轨道运行,轨道的半长轴约为9900 km,周期约为24 h.则鹊桥二号在捕获轨道运行时()A.周期约为144 hB.近月点的速度大于远月点的速度C.近月点的速度小于在冻结轨道运行时近月点的速度D.近月点的加速度大于在冻结轨道运行时近月点的加速度1.B[解析] 冻结轨道和捕获轨道的中心天体是月球,根据开普勒第三定律得T12R13=T22R23,整理得T2=T1√R23R13≈288 h,A错误;根据开普勒第二定律得,鹊桥二号在捕获轨道运行时在近月点的速度大于在远月点的速度,B正确;在近月点从捕获轨道到冻结轨道变轨时,鹊桥二号需要减速进行近月制动,故鹊桥二号在捕获轨道近月点的速度大于在冻结轨道运行时近月点的速度,C错误;在两轨道的近月点所受的万有引力相同,根据牛顿第二定律可知,在捕获轨道运行时近月点的加速度等于在冻结轨道运行时近月点的加速度,D错误.2.[2024·北京卷] 科学家根据天文观测提出宇宙膨胀模型:在宇宙大尺度上,所有的宇宙物质(星体等)在做彼此远离运动,且质量始终均匀分布,在宇宙中所有位置观测的结果都一样.以某一点O为观测点,以质量为m的小星体(记为P)为观测对象.当前P到O点的距离为r0,宇宙的密度为ρ0.(1)求小星体P远离到2r0处时宇宙的密度ρ;(2)以O点为球心,以小星体P到O点的距离为半径建立球面.P受到的万有引力相当于球内质量集中于O点对P的引力.已知质量为m1和m2、距离为R的两个质点间的引力势能E p=-G m1m2R,G为引力常量.仅考虑万有引力和P远离O点的径向运动.①求小星体P从r0处远离到2r0处的过程中动能的变化量ΔE k;②宇宙中各星体远离观测点的速率v满足哈勃定律v=Hr,其中r为星体到观测点的距离,H为哈勃系数.H与时间t有关但与r无关,分析说明H随t增大还是减小.2.(1)18ρ0 (2)①-23G πρ0m r 02 ②H 随t 增大而减小[解析] (1)在宇宙中所有位置观测的结果都一样,则小星体P 运动前后距离O 点半径为r 0和2r 0的球内质量相同,即ρ0·43πr 03=ρ·43π(2r 0)3解得小星体P 远离到2r 0处时宇宙的密度ρ=18ρ0(2)①此球内的质量M =ρ0·43πr 03 P 从r 0处远离到2r 0处,由能量守恒定律得 动能的变化量ΔE k =-G Mmr 0-(-GMm 2r 0)=-23G πρ0m r 02 ②由①知星体的速度随r 0增大而减小,星体到观测点距离越大运动时间t 越长,由v =Hr知,H 减小,故H 随t 增大而减小3.[2024·甘肃卷] 小杰想在离地表一定高度的天宫实验室内,通过测量以下物理量得到天宫实验室轨道处的重力加速度,可行的是 ( ) A .用弹簧测力计测出已知质量的砝码所受的重力 B .测量单摆摆线长度、摆球半径以及摆动周期 C .从高处释放一个重物,测量其下落高度和时间D .测量天宫实验室绕地球做匀速圆周运动的周期和轨道半径3.D [解析] 在天宫实验室内,物体处于完全失重状态,重力提供了物体绕地球做匀速圆周运动的向心力,故A 、B 、C 中的实验均无法得到天宫实验室轨道处的重力加速度;物体所受的万有引力提供物体绕地球做匀速圆周运动的向心力,有mg =G Mm r 2=m 4π2T 2r ,整理得轨道处的重力加速度为g =4π2T 2r ,故通过测量天宫实验室绕地球做匀速圆周运动的周期和轨道半径可行,D 正确.4.(多选)[2024·广东卷] 如图所示,探测器及其保护背罩通过弹性轻绳连接降落伞,在接近某行星表面时以60 m/s 的速度竖直匀速下落.此时启动“背罩分离”,探测器与背罩断开连接,背罩与降落伞保持连接.已知探测器质量为1000 kg,背罩质量为50 kg,该行星的质量和半径分别为地球的110和12.地球表面重力加速度大小g 取10 m/s 2.忽略大气对探测器和背罩的阻力.下列说法正确的有 ( )A .该行星表面的重力加速度大小为4 m/s 2B .该行星的第一宇宙速度为7.9 km/sC .“背罩分离”后瞬间,背罩的加速度大小为80 m/s 2D .“背罩分离”后瞬间,探测器所受重力对其做功的功率为30 kW4.AC [解析] 设地球的质量为M ,半径为R ,行星的质量为M',半径为R',在星球表面可近似认为物体所受重力等于其所受万有引力,有GMm R2=mg ,可得GM =gR 2,同理,在该行星表面有GM'=g'R'2,联立得该星球表面的重力加速度g'=M 'R 2MR '2g =110×22×10 m/s 2=4 m/s 2,A 正确;地球的第一宇宙速度v =√GMR=7.9 km/s,则该行星的第一宇宙速度v'=√GM 'R '=√15×GM R =√15×7.9 km/s,B 错误;探测器及其保护背罩通过弹性轻绳连接降落伞,在接近某行星表面时以v =60 m/s 的速度竖直匀速下落,此时背罩受到降落伞的拉力F =(m 探+m 背)g'=4200 N,“背罩分离”后瞬间,由牛顿第二定律有F -m 背g'=m 背a ,解得背罩的加速度大小为a =80 m/s 2,C 正确;“背罩分离”后瞬间,探测器所受重力对其做功的功率为P =m 探g'v =1000×4×60 W=2.4×105 W=240 kW,D 错误.5.[2024·广西卷] 潮汐现象出现的原因之一是在地球的不同位置海水受到月球的引力不相同.图中a 、b 和c 处单位质量的海水受月球引力大小在( )A .a 处最大B .b 处最大C .c 处最大D .a 、c 处相等,b 处最小5.A [解析] 根据万有引力公式F =G Mm R 2,可知图中a 处单位质量的海水受到月球的引力最大,故选A .6.[2024·海南卷] 神舟十七号载人飞船返回舱于2024年4月30日在东风着陆场成功着陆,在飞船返回至离地面十几公里时打开主伞飞船快速减速,返回舱速度大大减小,在减速过程中()A.返回舱处于超重状态B.返回舱处于失重状态C.主伞的拉力不做功D.重力对返回舱做负功6.A[解析] 返回舱在减速过程中,加速度竖直向上,处于超重状态,故A正确,B错误;主伞的拉力与返回舱运动方向相反,对返回舱做负功,故C错误;返回舱的重力与返回舱运动方向相同,重力对返回舱做正功,故D错误.7.[2024·海南卷] 嫦娥六号进入环月圆轨道,周期为T,轨道高度与月球半径之比为k,引力常量为G,则月球的平均密度为 ()A.3π(1+k)3GT2k3B.3πGT2C.π(1+k)3GT2k D.3πGT2(1+k)37.D[解析] 设月球半径为R,质量为M,对嫦娥六号,根据万有引力提供向心力得G Mm [(k+1)R]2=m4π2T2·(k+1)R,月球的体积V=43πR3,月球的平均密度ρ=MV,联立可得ρ=3πGT2(1+k)3,故选D.8.(多选)[2024·河北卷] 2024年3月20日,“鹊桥二号”中继星成功发射升空,为“嫦娥六号”在月球背面的探月任务提供地月间中继通讯.“鹊桥二号”采用周期为24 h的环月椭圆冻结轨道(如图所示),近月点A距月心约为2.0×103 km,远月点B距月心约为1.8×104 km,CD 为椭圆轨道的短轴,下列说法正确的是()A.“鹊桥二号”从C经B到D的运动时间为12 hB.“鹊桥二号”在A、B两点的加速度大小之比约为81∶1C.“鹊桥二号”在C、D两点的速度方向垂直于其与月心的连线D.“鹊桥二号”在地球表面附近的发射速度大于7.9 km/s且小于11.2 km/s8.BD[解析] “鹊桥二号”围绕月球沿椭圆轨道运动,根据开普勒第二定律可知,在近地点A处的速度最大,在远地点B处的速度最小,则从C→B→D的平均速率小于从D→A→C 的平均速率,所以从C→B→D的运动时间大于半个周期,即大于12 h,A错误;在A点,根据牛顿第二定律有G Mm(r OA)2=ma A,在B点,根据牛顿第二定律有G Mm(r OB)2=ma B,联立解得“鹊桥二号”在A、B两点的加速度大小之比约为a A∶a B=81∶1,B正确;物体做曲线运动时速度方向沿该点的切线方向,所以“鹊桥二号”在C、D两点的速度方向不垂直于其与月心的连线,C错误;“鹊桥二号”发射后围绕月球沿椭圆轨道运动,并未脱离地球引力束缚,所以“鹊桥二号”在地球表面附近的发射速度大于7.9 km/s且小于11.2 km/s,D正确.9.[2024·湖北卷] 太空碎片会对航天器带来危害.设空间站在地球附近沿逆时针方向做匀速圆周运动,如图中实线所示.为了避开碎片,空间站在P点向图中箭头所指径向方向极短时间喷射气体,使空间站获得一定的反冲速度,从而实现变轨.变轨后的轨道如图中虚线所示,其半长轴大于原轨道半径.则()A.空间站变轨前、后在P点的加速度相同B.空间站变轨后的运动周期比变轨前的小C.空间站变轨后在P点的速度比变轨前的小D.空间站变轨前的速度比变轨后在近地点的大9.A[解析] 空间站在P点变轨前、后所受到的万有引力不变,根据牛顿第二定律可知F 万=ma加,则空间站变轨前、后在P点的加速度相同,故A正确;空间站的圆轨道运动可以看作特殊的椭圆轨道运动,因为变轨后其轨道半长轴大于原轨道半径,根据开普勒第三定律可知a 2T2=k,则空间站变轨后的运动周期比变轨前的大,故B错误;变轨后在P点获得方向沿径向指向地球的反冲速度,与原来做圆周运动的速度合成,合速度大于原来的速度,故C错误;由于空间站变轨后在P点的速度比变轨前的大,但变轨后在P点的速度比同一轨道上在近地点的速度小,所以空间站变轨前的速度比变轨后在近地点的小,故D错误.10.(多选)[2024·湖南卷] 2024年5月3日,“嫦娥六号”探测器顺利进入地月转移轨道,正式开启月球之旅.相较于“嫦娥四号”和“嫦娥五号”,本次的主要任务是登陆月球背面进行月壤采集,并通过升空器将月壤转移至绕月运行的返回舱,返回舱再通过返回轨道返回地球.设返回舱绕月运行的轨道为圆轨道,半径近似为月球半径.已知月球表面重力加速度约为地球表面的16,月球半径约为地球半径的14.关于返回舱在该绕月轨道上的运动,下列说法正确的是( )A .其相对于月球的速度大于地球第一宇宙速度B .其相对于月球的速度小于地球第一宇宙速度C .其绕月飞行周期约为地球上近地圆轨道卫星周期的√23倍 D .其绕月飞行周期约为地球上近地圆轨道卫星周期的√32倍10.BD [解析] 返回舱绕月运行的轨道为圆轨道,半径近似为月球半径,则由万有引力提供向心力,有GM 月m r 月2=mv 月2r 月,根据在月球表面万有引力和重力的关系有GM 月m r 月2=mg 月,联立解得v 月=√g 月r 月,由于第一宇宙速度为近地卫星的环绕速度,同理可得v 地=√g 地r 地,则v 月v 地=√g 月g 地·r 月r 地=√16×14=√612,所以v 月<v 地,故A 错误,B 正确;根据线速度和周期的关系有T =2πv ·r ,则T 月T 地=r 月r 地·v 地v 月=14×√6=√32,故C 错误,D 正确.11.[2024·江西卷] “嫦娥六号”探测器于2024年5月8日进入环月轨道,后续经调整环月轨道高度和倾角,实施月球背面软着陆.当探测器的轨道半径从r 1调整到r 2时(两轨道均可视为圆形轨道),其动能和周期从E k1、T 1分别变为E k2、T 2.下列选项正确的是 ( )A .E k1E k2=r 2r 1,T 1T 2=√r 13√r 2B .E k1E k2=r 1r 2,T 1T 2=√r 13√r 2C .E k1E k2=r 2r 1,T 1T 2=√r 23√r 1D .E k1E k2=r 1r 2,T 1T 2=√r 23√r 1311.A [解析] 探测器环月运行,由万有引力提供向心力有G Mmr 2=m v 2r ,得v 2=GMr,其中M 为月球质量,m 为“嫦娥六号”质量,动能E k =12mv 2,则E k1E k2=r2r 1,B 、D错误;同理,由G Mm r 2=m 4π2T2r得T =√4π2r 3GM ,则T 1T 2=√r 13r 23,A 正确,C 错误.12.[2024·辽宁卷] 如图甲所示,将一弹簧振子竖直悬挂,以小球的平衡位置为坐标原点O ,竖直向上为正方向,建立x 轴.若将小球从弹簧原长处由静止释放,其在地球与某球状天体表面做简谐运动的图像如图乙所示(不考虑自转影响).设地球、该天体的平均密度分别为ρ1和ρ2,地球半径是该天体半径的n 倍,ρ1ρ2的值为 ( )A .2nB .n 2C .2n D .12n12.C [解析] 设地球表面的重力加速度为g ,球状天体表面的重力加速度为g',弹簧的劲度系数为k ,根据简谐运动的对称性有k ·4A -mg =mg ,k ·2A -mg'=mg',解得gg '=2,设球状天体的半径为R ,则地球的半径为nR ,在地球表面有G ρ1·43π(nR )3·m(nR )2=mg ,在球状天体表面有G ρ2·43πR 3·mR 2=mg',联立解得ρ1ρ2=2n,故C 正确.13.[2024·全国甲卷] 2024年5月,“嫦娥六号”探测器发射成功,开启了人类首次从月球背面采样返回之旅.将采得的样品带回地球,飞行器需经过月面起飞、环月飞行、月地转移等过程.月球表面自由落体加速度约为地球表面自由落体加速度的16.下列说法正确的是 ( )A .在环月飞行时,样品所受合力为零B .若将样品放置在月球正面,它对月球表面压力等于零C .样品在不同过程中受到的引力不同,所以质量也不同D .样品放置在月球背面时对月球的压力比放置在地球表面时对地球的压力小13.D [解析] 在环月飞行时,样品所受合力提供所需的向心力,不为零,故A 错误;若将样品放置在月球正面,则它处于平衡状态,它对月球表面压力大小等于它在月球表面的重力大小,由于月球表面自由落体加速度约为地球表面自由落体加速度的16,则样品在地球表面的重力大于在月球表面的重力,所以样品放置在月球背面时对月球的压力比放置在地球表面时对地球的压力小,故B 错误,D 正确;样品在不同过程中受到的引力不同,但样品的质量不变,故C 错误.14.[2024·山东卷] “鹊桥二号”中继星环绕月球运行,其24小时椭圆轨道的半长轴为a.已知地球同步卫星的轨道半径为r ,则月球与地球质量之比可表示为 ( )A .√r 3a 3 B .√a 3r3C .r 3a3 D .a 3r314.D [解析] “鹊桥二号”中继星环绕月球运动的24小时椭圆轨道的半长轴为a ,则其24小时圆轨道的半径也为a ,由万有引力提供向心力得G M 月m 中a 2=m 中(2πT )2a ,对地球同步卫星,由万有引力提供向心力得GM 地m 同r 2=m 同(2πT )2r ,联立解得M 月M 地=a 3r 3,D 正确.15.[2024·新课标卷] 天文学家发现,在太阳系外的一颗红矮星有两颗行星绕其运行,其中行星GJ1002c 的轨道近似为圆,轨道半径约为日地距离的0.07倍,周期约为0.06年,则这颗红矮星的质量约为太阳质量的 ( ) A .0.001倍 B .0.1倍 C .10倍 D .1000倍15.B [解析] 设红矮星的质量为M 1,行星GJ1002c 的质量为m 1,轨道半径为r 1,运动周期为T 1;太阳的质量为M 2,地球的质量为m 2,日地距离为r 2,地球运动的周期为T 2;根据万有引力定律提供向心力有GM 1m 1r 12=m 14π2T 12r 1,G M 2m 2r 22=m 24π2T 22r 2,联立可得M 1M 2=(r 1r 2)3·(T 2T 1)2,由于行星GJ1002c 的轨道半径约为日地距离的0.07倍,周期约为0.06年,可得M 1M 2≈0.0730.062≈0.1,选B 正确.16.[2024·浙江6月选考] 与地球公转轨道“外切”的小行星甲和“内切”的小行星乙的公转轨道如图所示,假设这些小行星与地球的公转轨道都在同一平面内,地球的公转半径为R ,小行星甲的远日点到太阳的距离为R 1,小行星乙的近日点到太阳的距离为 R 2,则 ( )A .小行星甲在远日点的速度大于近日点的速度B .小行星乙在远日点的加速度小于地球公转加速度C .小行星甲与乙的运行周期之比T1T 2=√R 13R 23D .甲、乙两行星从远日点到近日点的时间之比t 1t 2=√(R 1+R)3(R 2+R)316.D [解析] 由开普勒第二定律知小行星甲在远日点的速度小于在近日点的速度,A 错误;小行星乙在远日点到太阳的距离与地球到太阳的距离相等,由G Mmr 2=ma 可知,小行星乙在远日点的加速度和地球公转加速度大小相等,B 错误;根据开普勒第三定律有(R 1+R 2)3T 12=(R 2+R 2)3T 22,解得T 1T 2=√(R 1+R)3(R 2+R)3,C错误;甲、乙两行星从远日点到近日点的时间之比t 1t 2=T 12T 22=√(R 1+R)3(R 2+R)3,D 正确.。

高中物理《万有引力与航天》练习题(附答案解析)

高中物理《万有引力与航天》练习题(附答案解析)

高中物理《万有引力与航天》练习题(附答案解析)学校:___________姓名:___________班级:_________一、单选题1.如图所示,两球间的距离为r ,两球的质量分布均匀,质量大小分别为m 1、m 2,半径大小分别为r 1、r 2,则两球间的万有引力大小为( )A .122m m Gr B .2212221m m G r r r ++C .12212()m m G r r +D .12212()m m Gr r r ++2.2021年5月15日,我国首次火星探测任务天问一号探测器在火星乌托邦平原南部预选着陆区成功软着陆。

用h 表示着陆器与火星表面的距离,用F 表示它所受的火星引力大小,则在着陆器从火星上空向火星表面软着陆的过程中,能够描述F 随h 变化关系的大致图像是( )A .B .C .D .3.发现万有引力定律和测出引力常量的科学家分别是( ) A .牛顿、卡文迪许 B .开普勒、卡文迪许 C .开普勒、库仑D .牛顿、库仑4.经典力学有一定的局限性。

当物体以下列速度运动时,经典力学不再适用的是( ) A .32.910m/s -⨯ B .02.910m/s ⨯ C .42.910m/s ⨯ D .82.910m/s ⨯5.有a 、b 、c 、d 四颗地球卫星,a 还未发射,在地球赤道上随地球一起转动,b 在近地轨道做匀速圆周运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图所示。

关于这四颗卫星,下列说法正确的是( )A .a 的向心加速度等于重力加速度g B .c 在4 h 内转过的圆心角是6C .在相同时间内,这四颗卫星中b 转过的弧长最长D .d 做圆周运动的周期有可能是20小时6.2019年10月28日发生了天王星冲日现象,即太阳、地球、天王星处于同一直线,此时是观察天王星的最佳时间。

已知日地距离为0R ,天王星和地球的公转周期分别为T 和0T ,则天王星与太阳的距离为( )A 0B 0C 0D 07.如图所示,两颗人造卫星绕地球逆时针运动,卫星1、卫星2分别沿圆轨道、椭圆轨道运动,圆的半径与椭圆的半长轴相等,两轨道相交于A 、B 两点,某时刻两卫星与地球在同一直线上,如图所示,下列说法中正确的是( )A .两卫星在图示位置的速度v 1<v 2B .两卫星在A 处的加速度大小不相等C .两颗卫星可能在A 或B 点处相遇D .两卫星永远不可能相遇8.我们的银河系的恒星中大约四分之一是双星。

高考物理:专题5-万附引力与航天(附答案)

高考物理:专题5-万附引力与航天(附答案)

专题5 万有引力与航天1 (2019全国新课标理综1第2018-2019年6曰18日,神州九号飞船与天宫一号目标飞行器在离地面343km 的近圆轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的空气,下面说法正确的是A.为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B.如不加干预,在运行一段时间后,天宫一号的动能可能会增加C. 如不加干预,天宫一号的轨道高度将缓慢降低D.航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用答案:BC解析:为实现对接,两者运行速度的大小都小于第一宇宙速度,选项A错误.如不加干预,在运行一段时间后,天宫一号的机械能减小,天宫一号的轨道高度将缓慢降低,重力做功,动能可能会增加,选项BC正确.航天员在天宫一号中处于失重状态,但是航天员仍受地球引力作用,选项D错误.2. (2013高考江苏物理第1题)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知(A)太阳位于木星运行轨道的中心(B)火星和木星绕太阳运行速度的大小始终相等(C)火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方(D)相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积答案:C解析:太阳位于木星运行椭圆轨道的一个焦点上,选项A错误.由于火星和木星沿各自的椭圆轨道绕太阳运行,火星和木星绕太阳运行速度的大小变化,选项B错误.根据开普勒行星运动定律可知,火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方,选项C正确.相同时间内,火星与太阳连线扫过的面积不等于木星与太阳连线扫过的面积,选项D错误.3.(2013高考上海物理第9题)小行星绕恒星运动,恒星均匀地向四周辐射能量,质量缓慢减小,可认为小行星在绕恒星运动一周的过程中近似做圆周运动.则经过足够长的时间后,小行星运动的(A)半径变大 (B)速率变大(C)角速度变大(D)加速度变大答案:A解析:恒星均匀地向四周辐射能量,根据爱因斯坦的质能方程关系式,恒星质量缓慢减小,二者之间万有引力减小,小行星运动的半径增大,速率减小,角速度减小,加速度减小,选项A正确BCD错误.4. (2013高考广东理综第14题)如图3,甲、乙两颗卫星以相同的轨道半径分别绕质量为M和2M的行星做匀速圆周运动,下列说法正确的是A. 甲的向心加速度比乙的小B. 甲的运行周期比乙的小C. 甲的角速度比乙大D. 甲的线速度比乙大 答案:A解析:由万有引力提供向心力得:2r Mm G=ma ,解得2r GMa =,甲的向心加速度比乙的小,选项A 正确.由r v m r Mm G 22= 解得:r GM v =,甲的线速度比乙小,选项D 错误.由2r MmG =r m 2ω解得:3r GM =ω,甲的角速度比乙小.选项C 错误.由2rMmG =mr 224T π解得:T=2πGMr 3,甲的运行周期比乙的大,选项B 错误.5.(2013高考上海物理第22B 题)若两颗人造地球卫星的周期之比为T 1∶T 2=2∶1,则它们的轨道半径之比R 1∶R 2=____,向心加速度之比a 1∶a 2=____.∶1 1∶解析:由开普勒定律,R 1∶R 2 1.由牛顿第二定律,G2MmR=ma ,向心加速度之比a 1∶a 2=R 22∶R 12=1∶.6.(2013高考天津理综物理第9题)(1)“嫦娥一号”和“嫦娥二号”卫星相继完成了对月球的环月飞行,标志着我国探月工程的第一阶段己经完成.设“嫦娥二号”卫星环绕月球的运动为匀速圆周运动,它距月球表面的高度为h ,己知月球的质量为M 、半径为R ,引力常量为G ,则卫星绕月球运动的向心加速度a = ,线速度v= .答案:(1)()2GMR h +解析:万有引力提供卫星运动的向心力,有:G()2MmR h +=m a ,解得a=()2GMR h +.由G()2MmR h +=m 2v R h+解得7. (2013高考福建理综第13题)设太阳质量为M ,某行星绕太阳公转周期为T ,轨道可视为r 的圆.已知万有引力常量为G ,则描述该行星运动的上述物理量满足A .2324r GM T π= B .2224r GM T π= C .2234r GM Tπ= D .324r GM T π= 答案:A解析:由G 2Mm r=mr(2T π)2,,可得描述该行星运动的上述物理量满足2324r GM T π=,选项A 正确.8.(2013全国高考大纲版理综第18题)“嫦娥一号”是我国首次发射的探月卫星,它在距月球表面高度为200 km 的圆形轨道上运行,运行周期为127分钟.已知引力常量G =6.67×10–11N•m 2/kg 2,月球的半径为1.74×103km.利用以上数据估算月球的质量约为( ) A .8.1×1010kg B .7.4×1013kg C .5.4×1019kg D .7.4×1022kg 答案:D 解析:由G()2MmR h +=m(R+h)(2Tπ)2 ,解得月球的质量M=4π2(R+h)3/GT 2, 代入数据得:M=7.4×1022kg,,选项D 正确.9. (2013高考山东理综第20题)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为A B TC .D .T答案:B解析:设两恒星中一个恒星的质量为m ,围绕其连线上的某一点做匀速圆周运动的半径为r ,两星总质量为M ,两星之间的距离为R ,由G ()2m M m R -=mr 224T π,,G ()2m M m R -=(M-m)(R-r)224T π,,联立解得:T=2π经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为T ’=2πT.选项B 正确. 10.(2013高考浙江理综第18题)如图所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M ,半径为R.下列说法正确的是 A .地球对一颗卫星的引力大小为2)(R r GMm- B .一颗卫星对地球的引力大小为2r GMmC .两颗卫星之间的引力大小为223r GmD .三颗卫星对地球引力的合力大小为23r GMm答案:BC解析:由万有引力定律,地球对一颗卫星的引力大小为2r GMm ,一颗卫星对地球的引力大小为2rGMm,选项A 错误B 正确.由2rcos30°=L 可得两颗卫星之间的距离为,由万有引力定律,两颗卫星之间的引力大小为223r Gm ,选项C 正确.三颗卫星对地球引力的合力大小为零,选项D 错误.11.(2013高考四川理综第4题)太阳系外行星大多不适宜人类居住,绕恒星“Glicsc581”运行的行星“Gl-581c ”却很值得我们期待.该行星的温度在0℃到40℃之间,质量是地球的6倍,直径是地球的1.5倍、公转周期为13个地球日.“Glicsc581”的质量是太阳质量的0.31倍.设该行星与地球均视为质量分布均匀的球体,绕其中心天体做匀速圆周运动,则 A .在该行星和地球上发射卫星的第一宇宙速度相同2 B .如果人到了该行星,其体重是地球上的322倍 C .该行星与“Glicsc581”的距离是日地距离的36513倍 D .由于该行星公转速率比地球大,地球上的米尺如果被带上该行星,其长度一定会变短 答案:B解析:由Gm=gR 2,可得该行星表面的重力加速度与地球表面的重力加速度之比为g g '=22''R R m m =6·25.11=38,如果人到了该行星,其体重是地球上的38=322倍,选项B 正确.在该行星上发射卫星的第一宇宙速度v=''R g =4gR ,是地球上发射卫星的第一宇宙速度的4倍,选项A 错误.由G 2r Mm =mr 22⎪⎭⎫⎝⎛T π,G 2''r m M =mr 2'2⎪⎭⎫⎝⎛T π,可得33'r r = M M '·22'T T =0.31·2213365,该行星与“Glicsc581”的距离r ’是日地距离r 的3221336531.0⨯倍,选项C 错误.该行星公转速率比地球大,地球上的米尺如果被带上该行星,在该行星上观察,其长度不变,选项D 错误.12. (2013高考安徽理综第17题)质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E P =-GMmr,其中G 为引力常量,M 为地球质量.该卫星原来的在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为A. GMm (21R -11R ) B. GMm (11R -21R )C.12GMm (21R -11R ) D. 12GMm (11R -21R )答案: C解析:卫星降低轨道,减少的引力势能,△E P =-G1Mm R -(-G 2Mm R )=GMm (21R -11R ).由G 2Mm R=mv 2/R ,可得卫星在半径为R 1的轨道上绕地球做匀速圆周运动的动能E k1=12mv 2= 12GMmR ,卫星在半径为R 2的轨道上绕地球做匀速圆周运动的动能E k2=12mv 2= 22GMmR ,动能增加△E k =22GMm R -12GMm R ,由功能关系△E P =△E k +Q ,联立解得:此过程中因摩擦而产生的热量为Q=12GMm (21R -11R ),所以正确选项为C.。

新高考物理模拟题分类汇编专题05-万有引力定律与航天(含答案)

新高考物理模拟题分类汇编专题05-万有引力定律与航天(含答案)

专题05 万有引力定律与航天1.(2021·天津高三一模)三颗人造卫星A 、B 、C 都在赤道正上方同方向绕地球做匀速圆周运动,A 、C 为地球同步卫星,某时刻A 、B 相距最近,如图所示.已知地球自转周期为1T ,B 的运行周期为2T ,则下列说法正确的是( )A .C 加速可追上同一轨道上的AB .经过时间()12122T T T T -,A 、B 相距最远C .A 、C 向心加速度大小相等,且小于B 的向心加速度D .在相同时间内,C 与地心连线扫过的面积等于B 与地心连线扫过的面积 【答案】BC【解析】A .卫星C 加速后做离心运动,轨道变高,不可能追上卫星A ,A 错误; B .A 、B 卫星由相距最近至相距最远时,两卫星转的圈数差半圈,设经历时间为t ,有2112t t T T -=, 解得经历的时间()1212 2?T T t T T =-,B 正确;C .根据万有引力提供向心加速度,由2GMm ma r =,可得2GMa r=,由于A C B r r r =>,可知A 、C 向心加速度大小相等,且小于B 的向心加速度,C 正确;D .轨道半径为r 的卫星,根据万有引力提供向心力2224GMm r T π=,可得卫星为周期32r T GM= 则该卫星在单位时间内扫过的面积2012r S GMr Tπ==由于A B r r >,所以在相同时间内,A 与地心连线扫过的面积大于B 与地心连线扫过的面积,D 错误。

故选BC 。

2.(2021·天津高三模拟)嫦娥工程分为三期,简称“绕、落、回”三步走。

我国发射的“嫦娥三号”卫星是嫦娥工程第二阶段的登月探测器,该卫星先在距月球表面高度为h 的轨道上绕月球做周期为T 的匀速圆周运动,再经变轨后成功落月。

已知月球的半径为R ,引力常量为G ,忽略月球自转及地球对卫星的影响。

则以下说法正确的是( )A .物体在月球表面自由下落的加速度大小为23224()R h T Rπ+ B .“嫦娥三号”绕月球做匀速圆周运动时的线速度大小为2RTπ C .月球的平均密度为3233()R h GT Rπ+ D【答案】AC【解析】A .在月球表面,重力等于万有引力,则得2MmGmg R =,对于“嫦娥三号”卫星绕月球做匀速圆周运动过程,由万有引力提供向心力得2224()()Mm G m R h R h T π=++,联立解得23224()R h g T R π+=,选项A 正确; B .“嫦娥三号”卫星绕月球做匀速圆周运动,轨道半径为r =R +h 则它绕月球做匀速圆周运动的速度大小为22()r R h v T Tππ+==,选项B 错误; C .根据万有引力提供向心力有2224()()Mm G m R h R h T π=++ 解得月球的质量为2324()R h M GTπ+= 月球的平均密度为32333()=43MR h GT R R πρπ+=,选项C 正确; D .设在月球上发射卫星的最小发射速度为v ,则有22=Mm v G mg m R R=解得2()R h R hvgRT Rπ,选项D 错误。

高中物理万有引力与航天(解析版)

高中物理万有引力与航天(解析版)
12.(2021年湖南卷7题)2021年4月29日,中国空间站天和核心舱发射升空,准确进入预定轨道。根据任务安排,后续将发射问天实验舱和梦天实验舱,计划2022年完成空间站在轨建造。核心舱绕地球飞行的轨道可视为圆轨道,轨道离地面的高度约为地球半径的 。下列说法正确的是( )
A.核心舱进入轨道后所受地球的万有引力大小约为它在地面时的 倍
【答案】BC
14.2016年8月16日1时40分,我国在酒泉卫星发射中心成功将世界首颗量子卫星“墨子号”发射升空,在距离地面h高度的轨道上运行。设火箭在点火后时间t内竖直向上匀加速飞行,速度增大到v,起飞质量为m,忽略时间t内火箭的质量变化,不考虑空气阻力,重力加速度为g,引力常量为G,地球半径为R,下列说法正确的是()。
A.M与N的密度相等
B.Q的质量是P的3倍
C.Q下落过程中的最大动能是P的4倍
D.Q下落过程中弹簧的最大压缩量是P的4倍
【答案】AC
【解析】A、由a–x图象可知,加速度沿竖直向下方向为正方向,根据牛顿第二定律有: ,变形式为: ,该图象的斜率为 ,纵轴截距为重力加速度 。根据图象的纵轴截距可知,两星球表面的重力加速度之比为: ;又因为在某星球表面上的物体,所受重力和万有引力相等,即: ,即该星球的质量 。又因为: ,联立得 。故两星球的密度之比为: ,故A正确;B、当物体在弹簧上运动过程中,加速度为0的一瞬间,其所受弹力和重力二力平衡, ,即: ;结合a–x图象可知,当物体P和物体Q分别处于平衡位置时,弹簧的压缩量之比为: ,故物体P和物体Q的质量之比为: ,故B错误;C、物体P和物体Q分别处于各自的平衡位置(a=0)时,它们的动能最大;根据 ,结合a–x图象面积的物理意义可知:物体P的最大速度满足 ,物体Q的最大速度满足: ,则两物体的最大动能之比: ,C正确;D、物体P和物体Q分别在弹簧上做简谐运动,由平衡位置(a=0)可知,物体P和Q振动的振幅A分别为 和 ,即物体P所在弹簧最大压缩量为2 ,物体Q所在弹簧最大压缩量为4 ,则Q下落过程中,弹簧最大压缩量时P物体最大压缩量的2倍,D错误;故本题选AC。

万有引力与航天经典习题详解

万有引力与航天经典习题详解

1、天文学家新发现了太阳系外的一颗行星。

这颗行星的体积是地球的4.7倍,是地球的25倍。

已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10-11N ·m 2/kg 2,,由此估算该行星的平均密度为A.1.8×103kg/m 3B. 5.6×103kg/m 3C. 1.1×104kg/m 3D.2.9×104kg/m 3答案:D解析:本题考查天体运动的知识.首先根据近地卫星饶地球运动的向心力由万有引力提供2224T R m RMm G π=,可求出地球的质量.然后根据343R M πρ=,可得该行星的密度约为2.9×104kg/m 3。

2、发射人造卫星是将卫星以一定的速度送入预定轨道。

发射场一般选择在尽可能靠近赤道的地方,如图这样选址的优点是,在赤道附近A .地球的引力较大B .地球自转线速度较大C .重力加速度较大D .地球自转角速度较大答案:B 解析:由于发射卫星需要将卫星以一定的速度送入运动轨道,在靠进赤道处的地面上的物体的线速度最大,发射时较节能,因此B 正确。

3、近地人造卫星1和2绕地球做匀速圆周运动的周期分别为T 1和2T ,设在卫星1、卫星2各自所在的高度上的重力加速度大小分别为1g 、2g ,则A .4/31122g T g T ⎛⎫= ⎪⎝⎭B . 4/31221g T g T ⎛⎫= ⎪⎝⎭C . 21122g T g T ⎛⎫= ⎪⎝⎭D . 21221g T g T ⎛⎫= ⎪⎝⎭答案:B4、关于地球的第一宇宙速度,下列表述正确的是A .第一宇宙速度又叫环绕速度B .第一宇宙速度又叫脱离速度C .第一宇宙速度跟地球的质量无关D .第一宇宙速度跟地球的半径无关解析:第一宇宙速度又叫环绕速度A 对,B 错;根据定义有R V mRmM G 22=可知与地球的质量和半径有关,CD 错。

5、宇宙飞船在半径为R 。

2023《 万有引力与航天》单元测试题(解析版)

2023《 万有引力与航天》单元测试题(解析版)

万有引力与航天测试题一、单选题(每小题只有一个正确答案)1.物理学发展历史中,在前人研究基础上经过多年的尝试性计算,首先发表行星运动的三个定律的科学家是()A.哥白尼B.第谷C.伽利略D.开普勒2.通过一个加速装置对电子加一很大的恒力,使电子从静止开始加速,则对这个加速过程,下列描述正确的是()A.根据牛顿第二定律,电子将不断做匀加速直线运动B.电子先做匀加速直线运动,后以光速做匀速直线运动C.电子开始近似于匀加速直线运动,后来质量增大,牛顿运动定律不再适用D.电子是微观粒子,整个加速过程根本就不能用牛顿运动定律解释3.卫星绕某一行星的运动轨道可近似看成是圆轨道,观察发现每经过时间t,卫星运动所通过的弧长为L,该弧长对应的圆心角为θ弧度,如图所示.已知万有引力常量为G,由此可计算出太阳的质量为()A.M=B.M=C.D.4.宇宙中有这样一种三星系统,系统由两个质量为m的小星体和一个质量为M的大星体组成,两个小星体围绕大星体在同一圆形轨道上运行,轨道半径为r.关于该三星系统的说法中正确的是( )①在稳定运行情况下,大星体提供两小星体做圆周运动的向心力②在稳定运行情况下,大星体应在小星体轨道中心,两小星体在大星体相对的两侧③小星体运行的周期为T=④大星体运行的周期为T=A.①③ B.②③ C.①④ D.②④5.设在地球上和某天体上以相同的初速度竖直上抛一物体的最大高度比为k(均不计阻力),且已知地球与该天体的半径之比也为k,则地球与此天体的质量之比为()A. 1B.k2C.k D.6.我国绕月探测工程的预先研究和工程实施已取得重要进展.设地球、月球的质量分别为m1、m2,半径分别为R1、R2,人造地球卫星的第一宇宙速度为v,对应的环绕周期为T,则环绕月球表面附近圆轨道飞行的探测器的速度和周期分别为()A.v,T B.v,TC.v,T D.v,T7.土星周围有美丽壮观的“光环”,组成环的颗粒是大小不等、线度从1 μm到10 m的岩石、尘埃,类似于卫星,它们与土星中心的距离从7.3×104km延伸到1.4×105km.已知环的外缘颗粒绕土星做圆周运动的周期约为14 h,引力常量为6.67×10-11N·m2/kg2,则土星的质量约为(估算时不考虑环中颗粒间的相互作用)()A. 9.0×1016kg B. 6.4×1017kg C. 9.0×1025kg D. 6.4×1026kg8.一艘宇宙飞船绕一个不知名的行星表面飞行,要测定该行星的密度,仅仅需要()A.测定飞船的运行周期B.测定飞船的环绕半径C.测定行星的体积D.测定飞船的运行速度9.甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是()A.乙的周期大于甲的周期B.乙的速度大于第一宇宙速度C.甲的加速度小于乙的加速度D.甲在运行时能经过北极的正上方10.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动.由此可知,冥王星绕O点运动的().A.轨道半径约为卡戎的B.角速度大小约为卡戎的C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍11.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.火星与木星公转周期相等B.火星和木星绕太阳运行速度的大小始终不变C.太阳位于木星运行椭圆轨道的某焦点上D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积12.某星球的半径为R,在其表面上方高度为aR的位置,以初速度v0水平抛出一个金属小球,水平射程为bR,a,b均为数值极小的常数,则这个星球的第一宇宙速度为()A.v0B.v0C.v0D.v013.关于我国发射的“亚洲一号”地球同步通讯卫星的说法,正确的是()A.若其质量加倍,则轨道半径也要加倍B.它在北京上空运行,故可用于我国的电视广播C.它以第一宇宙速度运行D.它运行的角速度与地球自转角速度相同14.人造卫星环绕地球运行的速率v=,其中g为地面处的重力加速度,R为地球半径,r为卫星离地球中心的距离.下列说法正确的是()A.从公式可见,环绕速度与轨道半径成反比B.从公式可见,环绕速度与轨道半径的平方根成反比C.从公式可见,把人造卫星发射到越远的地方越容易D.以上答案都不对15.如图所示,A为地球赤道上的物体,B为地球同步卫星,C为地球表面上北纬60°的物体.已知A、B的质量相同.则下列关于A、B和C三个物体的说法中,正确的是()A.A物体受到的万有引力小于B物体受到的万有引力B.B物体的向心加速度小于A物体的向心加速度C.A、B两物体的轨道半径的三次方与周期的二次方的比值相同D.A和B线速度的比值比C和B线速度的比值大,都小于1二、多选题(每小题至少有两个正确答案)16.(多选)2013年12月2日,我国探月卫星“嫦娥三号”在西昌卫星发射中心成功发射升空,飞行轨道示意图如图所示.“嫦娥三号”从地面发射后奔向月球,先在轨道∶上运行,在P点从圆形轨道∶进入椭圆轨道∶,Q为轨道∶上的近月点,则“嫦娥三号”在轨道∶上()“嫦娥三号”飞行轨道示意图A.运行的周期小于在轨道∶上运行的周期B.从P到Q的过程中速率不断增大C.经过P的速度小于在轨道∶上经过P的速度D.经过P的加速度小于在轨道∶上经过P的加速度17.(多选)假如地球自转角速度增大,关于物体所受的重力,下列说法正确的是()A.放在赤道地面上的物体的万有引力不变B.放在两极地面上的物体的重力不变C.放在赤道地面上的物体的重力减小D.放在两极地面上的物体的重力增加18.(多选)“嫦娥一号”探月卫星发动机关闭,轨道控制结束,卫星进入地月转移轨道,图中MN之间的一段曲线表示转移轨道的一部分,P是轨道上的一点,直线AB过P点且和两边轨道相切,下列说法中正确的是()A.卫星在此段轨道上,动能不变B.卫星经过P点时动能最小C.卫星经过P点时速度方向由P指向BD.卫星经过P点时加速度为019.2016年中国将发射“天宫二号”空间实验室,并发射“神舟十一号”载人飞船和“天舟一号”货运飞船,与“天宫二号”交会对接.“天宫二号”预计由“长征二号F”改进型无人运载火箭或“长征七号”运载火箭从酒泉卫星发射中心发射升空,由长征运载火箭将飞船送入近地点为A、远地点为B的椭圆轨道上,B点距离地面的高度为h,地球的中心位于椭圆的一个焦点上.“天宫二号”飞行几周后进行变轨进人预定圆轨道,如图所示.已知“天宫二号”在预定圆轨道上飞行n圈所用时间为t,引力常量为G,地球半径为R.则下列说法正确的是()A. “天宫二号”从B点沿椭圆轨道向A点运行的过程中,引力为动力B. “天宫二号”在椭圆轨道的B点的向心加速度大于在预定圆轨道上B点的向心加速度C. “天宫二号”在椭圆轨道的B点的速度大于在预定圆轨道上B点的速度D.根据题目所给信息,可以计算出地球质量20.(多选)在中国航天骄人的业绩中有这些记载:“天宫一号”在离地面343 km的圆形轨道上飞行;“嫦娥一号”在距月球表面高度为200 km的圆形轨道上飞行;“北斗”卫星导航系统由“同步卫星”(地球静止轨道卫星,在赤道平面,距赤道的高度约为 36 000千米)和“倾斜同步卫星”(周期与地球自转周期相等,但不定点于某地上空)等组成.则以下分析正确的是()A.设“天宫一号”绕地球运动的周期为T,用G表示引力常量,则用表达式求得的地球平均密度比真实值要小B. “天宫一号”的飞行速度比“同步卫星”的飞行速度要小C. “同步卫星”和“倾斜同步卫星”同周期、同轨道半径,但两者的轨道平面不在同一平面内D. “嫦娥一号”与地球的距离比“同步卫星”与地球的距离小三、填空题21.已知地球半径为R,质量为M,自转周期为T.一个质量为m的物体放在赤道处的海平面上,则物体受到的万有引力F=______,重力G=______.22.对太阳系的行星,由公式=,F=,=k可以得到F=________,这个公式表明太阳对不同行星的引力,与________成正比,与________成反比.23.地球赤道上的物体A,近地卫星B(轨道半径等于地球半径),同步卫星C,若用TA、TB、TC;v A、v B、v C;分别表示三者周期,线速度,则满足________,________.24.据报道,美国计划2021年开始每年送15 000名游客上太空旅游.如图所示,当航天器围绕地球做椭圆运行时,近地点A的速率________(填“大于”“小于”或“等于”)远地点B的速率.25.如图所示是某行星围绕太阳运行的示意图,则行星在A点的速率________在B点的速率.四、计算题26.假设几年后,你作为航天员登上了月球表面,如果你已知月球半径R,那么你用一个弹簧测力计和一个已知质量的砝码m,能否测出月球的质量M?怎样测定?27.宇宙中两个相距较近的天体称为“双星”,它们以两者连线上的某一点为圆心做匀速圆周运动,但两者不会因万有引力的作用而吸引到一起.设两者的质量分别为m1和m2,两者相距为L.求:(1)双星的轨道半径之比;(2)双星的线速度之比;(3)双星的角速度.答案解析1.【答案】D【解析】哥白尼提出了日心说,第谷对行星进行了大量的观察和记录,开普勒在第谷的观察记录的基础上提出了行星运动的三个定律,选项D正确,A、B、C错误.2.【答案】C【解析】电子在加速装置中由静止开始加速,开始阶段速度较低,远低于光速,此时牛顿运动定律基本适用,可以认为在它被加速的最初阶段,它做匀加速直线运动.随着电子的速度越来越大,接近光速时,相对论效应越来越大,质量加大,它不再做匀加速直线运动,牛顿运动定律不再适用.3.【答案】B【解析】线速度为v=∶角速度为ω=∶根据线速度和角速度的关系公式,有v=ωr∶卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律,有G=mvω∶联立解得M=,故选项B正确.4.【答案】B【解析】三星应该在同一直线上,并且两小星体在大星体相对的两侧,只有这样才能使某一小星体受到大星体和另一小星体的引力的合力提供向心力.由G+G=mr2,解得小星体的周期T=,所以选项B正确.5.【答案】C【解析】在地球上:h=某天体上;h′=因为=k所以=k根据G=mg,G=mg′可知=又因为=k联立得:=k6.【答案】A【解析】由向心力公式=,=,两式联立,得v2=v;由T2=,T=,两式联立,得T2=T,故A项正确.7.【答案】D【解析】环的外缘颗粒绕土星做圆周运动,根据万有引力提供向心力,列出等式:G=mR()2M=,其中R为轨道半径,大小为1.4×105km,T为周期,约为14 h.代入数据得:M≈6.4×1026kg.8.【答案】A【解析】取飞船为研究对象,由G=mR及M=πR3ρ,知ρ=,故选A.9.【答案】C【解析】人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m、轨道半径为r、地球质量为M,有:G=m=mω2r=m()2r=ma解得:v=∶T=2π∶a=∶由∶∶∶式可以知道,人造卫星的轨道半径越大,线速度越小、周期越大、加速度越小,由于甲卫星的高度大,轨道半径大,故甲卫星的线速度小、周期大,加速度小;第一宇宙速度是近地圆轨道的环绕速度,也是圆轨道运行的最大速度;则C正确;甲只能在赤道上空,则D错误,故选C.10.【答案】A【解析】设冥王星和卡戎的质量分别为m1和m2,轨道半径分别为r1和r2,它们之间的距离为L.冥王星和卡戎绕它们连线上的某点做匀速圆周运动,转动周期和角速度相同,选项B错误;对于冥王星有=m1ω2r1,对于卡戎有=m2ω2r2,可知m1ω2r1=m2ω2r2,故==,选项A正确;又线速度v=ωr,故线速度大小之比==,选项C错误;因两星的向心力均由它们之间的万有引力提供,故大小相等,选项D错误.11.【答案】C【解析】根据开普勒第三定律,=k,k为常量,火星与木星公转的半径不等,所以火星与木星公转周期不相等,故A错误;开普勒第二定律:对每一个行星而言,太阳与行星的连线在相同时间内扫过的面积相等.行星在此椭圆轨道上运动的速度大小不断变化,故B错误;相同时间内,太阳行星的连线在相同时间内扫过的面积相等是对同一个行星而言,故D错误;开普勒第一定律的内容为所有行星分别沿不同大小的椭圆轨道绕太阳运动,太阳处于椭圆的一个焦点上,故C正确.12.【答案】A【解析】设该星球表面重力加速度为g,小球落地时间为t,抛出的金属小球做平抛运动,根据平抛运动规律得aR=gt2,bR=v0t,联立以上两式解得g=,第一宇宙速度即为该星球地表卫星线速度,根据地表卫星重力充当向心力得mg=m,所以第一宇宙速度v===v0,故选项A正确.13.【答案】D【解析】由G=m得r=,可知轨道半径与卫星质量无关,A错.同步卫星的轨道平面必须与赤道平面重合,即在赤道上空运行,不能在北京上空运行,B错.第一宇宙速度是卫星在最低圆轨道上运行的速度,而同步卫星在高轨道上运行,其运行速度小于第一宇宙速度,C错.所谓“同步”就是卫星保持与地面赤道上某一点相对静止,所以同步卫星的角速度与地球自转角速度相同,D对.14.【答案】B【解析】由于g是地球表面处的重力加速度,R是地球半径,都是定值,根据v=可得环绕速度与轨道半径的平方根成反比,B正确,A、D错误;虽然r越大,v越小,但把卫星发射到越远的地方火箭会有更多的动能转化为重力势能,需要的发射速度就越大,C错误.15.【答案】D【解析】根据万有引力定律F=G,且A、B的质量相同,可知,间距越大的,引力越小,因此A物体受到的万有引力大于B物体受到的万有引力,故A错误;由an=ω2r,因A与B的角速度相同,当半径越大时,则向心加速度越大,故B错误;A在地球表面,不是环绕地球做匀速圆周运动,因此不满足开普勒第三定律,故C错误;根据v=ωr,可知,B点线速度最大,而C的线速度最小,因此A与B的线速度之比,C与B的线速度之比,均小于1,再根据同步卫星轨道半径约是地球半径的5.7倍,则=,C为地球表面上北纬60°的物体,那C轨道半径为地球半径的一半,则=,因此=,故D正确.16.【答案】ABC【解析】根据开普勒第三定律=k,可判断嫦娥三号卫星在轨道∶上的运行周期小于在轨道∶上的运行周期,A正确;因为P点是远地点,Q点是近地点,故从P点到Q点的过程中速率不断增大,B正确;根据卫星变轨特点可知,卫星在P点从圆形轨道∶进入椭圆轨道∶要减速,C正确;根据牛顿第二定律和万有引力定律可判断在P点,卫星的加速度是相同的,D错误.17.【答案】ABC【解析】地球自转角速度增大,物体受到的万有引力不变,选项A正确;在两极,物体受到的万有引力等于其重力,则其重力不变,选项B正确,D错误;而对放在赤道地面上的物体,F万=G重+mω2R,由于ω增大,则G重减小,选项C正确.18.【答案】BCD19.【答案】AD【解析】“天宫二号”从B点沿椭圆轨道向A点运行的过程中,速度是变大的,故受到的地球引力为动力,所以A正确;在B点“天宫二号”产生的加速度都是由万有引力产生的,因为同在B点万有引力大小相等,故不管在哪个轨道上运动,在B点时万有引力产生的加速度大小相等,故B错误;“天宫二号”在椭圆轨道的B点的加速后做离心运动才能进入预定圆轨道,故“天宫二号”在椭圆轨道的B点的速度小于在预定圆轨道的B点的速度,故C错误;“天宫二号”在预定圆轨道上飞行n 圈所用时间为t,故周期为T=,根据万有引力提供向心力G=m,得地球的质量M==,故D正确.20.【答案】AC【解析】设地球轨道半径为R,“天宫一号”的轨道半径为r,运行周期为T,地球密度为ρ,则有=m()2r,M=ρ·,解得ρ=,A正确;轨道半径小,运动速度大,B错误;“同步卫星”和“倾斜同步卫星”周期相同,则轨道半径相同,轨道平面不同,C正确;“嫦娥一号”绕月球运动,与地球距离大于同步卫星与地球距离,D错误.21.【答案】-【解析】根据万有引力定律的计算公式,得F万=.物体的重力等于万有引力减去向心力,即mg=F万-F向=-.22.【答案】行星的质量行星和太阳间距离的二次方【解析】=k与F=得F=,再与=k联立消去T可以得到F=,这个公式表明太阳对不同行星的引力与行星的质量成正比,与行星和太阳间距离的二次方成反比.23.【答案】TA=TC>TB v B>v C>v A【解析】卫星A为同步卫星,周期与C物体周期相等,根据卫星绕地球做圆周运动,万有引力提供向心力得周期T=2π,所以TA=TC>TB;AC比较,角速度相等,由v=ωr,可知v A<v C;BC比较,同为卫星,由人造卫星的速度公式v=,可知v B>v C,故TA=TC>TB,v B>v C>v A.24.【答案】大于【解析】25.【答案】大于【解析】26.【答案】将砝码挂在弹簧测力计上,测出弹簧测力计的读数F,由F=mg月,得g月=①在月球表面,砝码的重力应等于月球的引力,mg月=G,则M=,②将①代入②,解得M==.故能测出月球的质量,用弹簧测力计测出砝码的重力F,依据表达式M=求出月球质量.【解析】将砝码挂在弹簧测力计上,测出弹簧测力计的读数F,由F=mg月,得g月=①在月球表面,砝码的重力应等于月球的引力,mg月=G,则M=,②将①代入②,解得M==.故能测出月球的质量,用弹簧测力计测出砝码的重力F,依据表达式M=求出月球质量.27.【答案】(1)(2)(3)【解析】这两颗星必须各自以一定的速度绕某一中心转动才不至于因万有引力而被吸引在一起,从而保持两星间距离L不变,且两者做匀速圆周运动的角速度ω必须相同.如图所示,两者轨迹圆的圆心为O,圆半径分别为R1和R2.由万有引力提供向心力,有G=m1ω2R1①G=m2ω2R2②(1)由,得=.(2)因为v=ωR,所以==.(3)由几何关系知R1+R2=L③联立①②③式解得ω=.。

五年2024_2025高考物理真题专题点拨__专题05万有引力定律与航天含解析

五年2024_2025高考物理真题专题点拨__专题05万有引力定律与航天含解析

专题05 万有引力定律与航天【2024年】1.(2024·新课标Ⅰ)火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( )A. 0.2B. 0.4C. 2.0D. 2.5【答案】B【解析】设物体质量为m ,则在火星表面有1121M mF GR 在地球表面有2222M mF GR 由题意知有12110M M 1212R R = 故联立以上公式可得21122221140.4101F M R F M R ==⨯=,故选B 。

2.(2024·新课标Ⅱ)若一匀称球形星体的密度为ρ,引力常量为G ,则在该星体表面旁边沿圆轨道绕其运动的卫星的周期是()D.【答案】A【解析】卫星在星体表面旁边绕其做圆周运动,则2224GMm m R R T, 343V R π= ,M Vρ=知卫星该星体表面旁边沿圆轨道绕其运动的卫星的周期T =3.(2024·新课标Ⅲ)“嫦娥四号”探测器于2024年1月在月球背面胜利着陆,着陆前曾绕月球飞行,某段时间可认为绕月做匀速圆周运动,圆周半径为月球半径的K 倍。

已知地球半径R 是月球半径的P 倍,地球质量是月球质量的Q 倍,地球表面重力加速度大小为g 。

则“嫦娥四号”绕月球做圆周运动的速率为( )A.RKgQPB.RPKgQC.RQgKPD.RPgQK【答案】D【解析】假设在地球表面和月球表面上分别放置质量为m 和m 0的两个物体,则在地球和月球表面处,分别有2Mm Gmg R =,002M m QG m g R P '=⎛⎫⎪⎝⎭解得2P g g Q'= 设嫦娥四号卫星的质量为m 1,依据万有引力供应向心力得1212Mm v QG m R R KK P P =⎛⎫ ⎪⎝⎭解得RPgv QK=,故选D 。

4.(2024·浙江卷)火星探测任务“天问一号”的标识如图所示。

2023年高考物理母题题源解密(全国通用)专题05 万有引力与航天(解析版)

2023年高考物理母题题源解密(全国通用)专题05 万有引力与航天(解析版)

专题五万有引力与航天目录真题考查解读2023年真题展现考向一开普勒第三定律考向二万有引力定律及其应用考向三人造卫星宇宙速度近年真题对比考向一万有引力定律及其应用考向二人造卫星宇宙速度考向三卫星的变轨命题规律解密名校模拟探源易错易混速记【命题意图】通过开普勒第三定律考查追及与相遇问题;通过人造天体的匀速圆周运劝考查万有引力定律应用问题;通过我国航天航空事业的进步考查人造卫星和宇宙速度及分析问题和解决问题的能力。

【考查要点】考查开普勒第三定律的理解及应用,难度较小;考查万有引力和重力的关系,并利用万有引力求解天体的质量和密度,计算星球表面的重力加速度等问题;考查宇宙速度的理解及利用万有引力定律提供卫星做圆周运动的向心力求解各种运动参量,如周期、线速度、角速度、半径、高度等【课标链接】①开普勒第三定律的理解及应用;②万有引力的理解及其应用;③三大宇宙速度的理解应用于计算;卫星运行参数的比较与计算;三种特殊的卫星。

考向一开普勒第三定律1.(2023·1月浙江卷·第10题)太阳系各行星几平在同一平面内沿同一方向绕太阳做圆周运动.当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,称为“行星冲日”.已知地球及各地外行星绕太阳运动的轨道半径如下表:行星名称地球火星木星土星天王星海王星轨道半径/AUR 1.01.55.29.51930则相邻两次“冲日”时间间隔约为()A .火星365天B .火星800天C .天王星365天D .天王星800天【参考答案】B【命题意图】本题考查开普勒定律、行星冲日及其相关知识点。

【名师解析】根据开普勒第三定有2233T T R R 地地,解得T 地设相邻两次“冲日”时间间隔为t ,则,则有222(t T T地解得TT t T T地地由表格中的数据可得800t火天,369t天天。

选项B 正确。

2.(2023·湖北卷·第2题)2022年12月8日,地球恰好运行到火星和太阳之间,且三者几乎排成一条直线,此现象被称为“火星冲日”。

专题(11)万有引力与航天(解析版)

专题(11)万有引力与航天(解析版)

2021年(新高考)物理一轮复习考点强化全突破专题(11)万有引力与航天(解析版)一、开普勒行星运动三定律1.开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上. 2.开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积.3.开普勒第三定律(又叫周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.【自测1】 关于开普勒对行星运动规律的认识,下列说法正确的是( ) A .所有行星绕太阳的运动都是匀速圆周运动 B .所有行星以相同的速率绕太阳做椭圆运动C .对于每一个行星在近日点时的速率均大于它在远日点的速率D .所有行星轨道的半长轴的二次方与公转周期的三次方的比值都相同 【答案】C【解析】根据开普勒第一定律,所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上,故A 错误;行星绕太阳运动的轨道半径越大,则运动的速率越小,故B 错误;根据开普勒第二定律,对于每一个行星,在近日点时的速率均大于它在远日点的速率,故C 正确;根据开普勒第三定律,所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等,故D 错误.二、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的平方成反比. 2.表达式:F =G m 1m 2r2.3.适用条件:万有引力定律的公式只适用于计算质点间的相互作用. 4.引力常量是由英国物理学家卡文迪许利用扭秤实验测得的,G =6.67×10-11N·m 2/kg 2.自测2 质量均为1×105 kg 的两物体(都可看成质点)相距 1 m 时,已知引力常量G =6.67×10-11N·m 2/kg 2,它们之间的万有引力大小最接近于( ) A .一个大人的重力 B .一个鸡蛋的重力 C .一个大西瓜的重力 D .一头牛的重力【答案】B三、万有引力理论的成就 1.预言未知天体 2.计算天体质量 四、宇宙航行1.第一宇宙速度是物体在地面附近绕地球做匀速圆周运动的速度,大小为7.9 km/s ,第一宇宙速度是卫星最大的环绕速度,也是发射卫星的最小发射速度.2.第二宇宙速度是指将卫星发射出去,挣脱地球的束缚所需要的最小发射速度,其大小为11.2 km/s. 3.第三宇宙速度是指使发射出去的卫星挣脱太阳引力的束缚,飞到太阳系外所需要的最小发射速度,其大小为16.7 km/s.自测3 中国预计在2019年和2020年把6颗第三代北斗导航卫星发射升空,并送入绕地球的椭圆轨道.该卫星发射速度v 大小的范围是( ) A .v <7.9 km/sB .7.9 km/s <v <11.2 km/sC .11.2 km/s <v <16.7 km/sD .v >16.7 km/s 【答案】B命题热点一 开普勒三定律的理解和应用 1.行星绕太阳的运动通常按圆轨道处理.2.开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动.3.开普勒第三定律a 3T 2=k 中,k 值只与中心天体的质量有关,不同的中心天体k 值不同.该定律只能用在绕同一中心天体运行的星体之间.例1 (多选)如图1,海王星绕太阳沿椭圆轨道运动,P 点为近日点,Q 点为远日点,M 、N 两点为轨道短轴的两个端点,运行的周期为T 0,若只考虑海王星和太阳之间的相互作用,则海王星在从P 点经过M 、Q 两点到N 点的运动过程中( )图1A .从P 点到M 点所用的时间等于T 04B .从Q 点到N 点阶段,机械能逐渐变大C .从P 点到Q 点阶段,速率逐渐变小D .从M 点到N 点阶段,万有引力对它先做负功后做正功 【答案】CD【解析】由行星运动的对称性,从P 点经M 点到Q 点的时间为12T 0,根据开普勒第二定律,从P 点到M 点运动的速率大于从M 点到Q 点运动的速率,则从P 点到M 点所用的时间小于14T 0,选项A 错误;海王星在运动过程中只受太阳的引力作用,则机械能守恒,选项B 错误;根据开普勒第二定律可知,从P 点到Q 点阶段,速率逐渐变小,选项C 正确;海王星受到的万有引力指向太阳,则从M 点到N 点阶段,万有引力对它先做负功后做正功,选项D 正确.变式1 火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( ) A .太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 【答案】C【解析】由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A 错误.火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B 错误.根据开普勒第三定律(周期定律)知太阳系中所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C 正确.对于某一个行星来说,其与太阳的连线在相同的时间内扫过的面积相等,不同行星在相同时间内扫过的面积不相等,D 错误. 命题热点二 万有引力定律的理解和应用 1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma n =m v 2r =mω2r =m 4π2r T2. (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G MmR 2=mg (g 表示天体表面的重力加速度).2.天体质量和密度的估算(1)利用天体表面的重力加速度g 和天体半径R . 由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体的平均密度ρ=M V =M 43πR 3=3g4πGR.(2)利用卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2;②若已知天体半径R ,则天体的平均密度: ρ=M V =M 43πR 3=3πr 3GT 2R 3.例2 20世纪人类最伟大的创举之一是开拓了太空的全新领域.如图2所示,现有一艘远离星球在太空中直线飞行的宇宙飞船,为了测量自身质量,启动推进器,测出飞船在短时间Δt 内速度的改变量为Δv ,和飞船受到的推力F (其它星球对它的引力可忽略).飞船在某次航行中,当它飞近一个孤立的星球时,飞船能以速度v ,在离星球的较高轨道上绕星球做周期为T 的匀速圆周运动.已知星球的半径为R ,引力常量用G 表示,则宇宙飞船和星球的质量分别是( )图2 A.F Δv Δt ,v 2R G B.F Δv Δt ,v 3T2πG C.F Δt Δv ,v 3R G D.F Δt Δv ,v 3T 2πG【答案】D【解析】根据牛顿第二定律可知F =ma =m Δv Δt,所以m =F Δt Δv ,飞船做匀速圆周运动的周期T =2πr v ,得轨道半径为r =Tv 2π,根据万有引力提供向心力可得G Mmr 2=m v 2r ,得M =v 2r G =v 3T2πG,故选项D 正确.例3 理论上可以证明,质量均匀分布的球壳对壳内物体的引力为零.假定地球的密度均匀,半径为R .若矿井底部和地面处的重力加速度大小之比为k ,则矿井的深度为( ) A .(1-k )R B .kR C.⎝⎛⎭⎫1-1k R D.kR 【答案】A【解析】设地球的平均密度为ρ,地面处的重力加速度为g =GM R 2=Gρ43πR 3R 2=43πGρR ;设矿井深h ,则矿井底部的重力加速度g ′=43πGρ(R -h ),g ′∶g =k ,联立得h =(1-k )R ,选项A 正确.变式2 (2019届书生中学期末)某颗行星,其半径是地球半径的2倍,质量是地球质量的25倍,则它表面的重力加速度是地球表面重力加速度的( ) A .6倍 B .4倍 C.254倍D .12倍【答案】C【解析】设行星的质量为M ,半径为R ,质量为m 的物体在行星表面时,行星对物体的万有引力近似等于物体的重力,则有G Mm R 2=mg ,解得g =GMR 2.则行星表面重力加速度与地球表面重力加速度之比为g 行g 地=2522=254,故C 选项正确.变式3 假设地球可视为质量分布均匀的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ,地球自转的周期为T ,引力常量为G .地球的密度为( ) A.3π(g 0-g )GT 2g 0 B.3πg 0GT 2(g 0-g ) C.3πGT 2 D.3πg 0GT 2g 【答案】B【解析】物体在地球的两极时,mg 0=G Mm R 2,物体在赤道上时,mg +m (2πT )2R =G Mm R 2,又M =ρ·43πR 3,联立以上三式解得地球的密度ρ=3πg 0GT 2(g 0-g ),故选项B 正确,选项A 、C 、D 错误.变式4 宇航员在月球上做自由落体实验,将某物体由距月球表面高h 处静止释放,经时间t 后落到月球表面(设月球半径为R ).据上述信息推断,飞船在月球表面附近绕月球做匀速圆周运动所必须具有的速率为( )A.2Rh tB.2Rh tC.Rh tD.Rh 2t【答案】B【解析】设月球表面的重力加速度为g ′,由物体“自由落体”可得h =12g ′t 2,飞船在月球表面附近做匀速圆周运动可得G Mm R 2=m v 2R ,在月球表面附近mg ′=GMm R 2,联立得v =2Rht ,故B 正确.命题热点三 宇宙航行和卫星问题 1.第一宇宙速度(1)推导方法:①由G Mm R 2=m v 12R 得v 1=GMR=7.9×103 m/s. ②由mg =m v 12R得v 1=gR =7.9×103 m/s.(2)第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度. 2.卫星运行参量的分析3.利用万有引力定律解决卫星运动问题的技巧 (1)一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. (2)两组公式G Mm r 2=m v 2r =mω2r =m 4π2T2r =ma mg =GMmR2(g 为天体表面处的重力加速度)例4 如图3所示,设行星绕太阳的运动是匀速圆周运动,金星自身的半径是火星的n 倍,质量为火星的k 倍.不考虑行星自转的影响,则( )图3A .金星表面的重力加速度是火星的kn 倍B .金星的“第一宇宙速度”是火星的kn倍 C .金星绕太阳运动的加速度比火星小 D .金星绕太阳运动的周期比火星大 【答案】B【解析】根据g =GMR 2可知g 金g 火=k n 2,选项A 错误;根据v =GMR 可知,v 金v 火=kn ,选项B 正确;根据a =GM 太阳r2可知,距离太阳越远,加速度越小,由T =4π2r 3GM 太阳可知,距离太阳越远,周期越大,由题图可知r 金<r 火,所以选项C 、D 均错误.变式5 在同一轨道平面上绕地球做匀速圆周运动的卫星A 、B 、C ,某时刻恰好在过地心的同一直线上,如图4所示,当卫星B 经过一个周期时( )图4A .A 超前于B ,C 落后于B B .A 超前于B ,C 超前于BC .A 、C 都落后于BD .各卫星角速度相等,因而三颗卫星仍在同一直线上 【答案】A【解析】由G Mm r 2=mr 4π2T2可得T =2πr 3GM,故轨道半径越大,周期越大.当B 经过一个周期时,A 已经完成了一个多周期,而C 还没有完成一个周期,所以选项A 正确,B 、C 、D 错误.变式6 据报道,2020年前我国将发射8颗海洋系列卫星,包括2颗海洋动力环境卫星和2颗海陆雷达卫星(这4颗卫星均绕地球做匀速圆周运动),以加强对黄岩岛、钓鱼岛及西沙群岛全部岛屿附近海域的监测.设海陆雷达卫星的轨道半径是海洋动力环境卫星的n 倍,下列说法正确的是( )A .在相同时间内,海陆雷达卫星到地心的连线扫过的面积与海洋动力环境卫星到地心的连线扫过的面积相等B .海陆雷达卫星做匀速圆周运动的半径的三次方与周期的平方之比等于海洋动力环境卫星做匀速圆周运动的半径的三次方与周期的平方之比C .海陆雷达卫星与海洋动力环境卫星角速度之比为32n ∶1 D .海陆雷达卫星与海洋动力环境卫星周期之比为1∶32n 【答案】B【解析】根据G Mm r 2=mω2r =m 4π2T2r ,可得T =2πr 3GM,ω= GMr 3,卫星到地心的连线扫过的面积为S =ωt 2ππr 2=ωt 2r 2=GMr 2t ,半径不同,则面积不同,A 错误;由T =2πr 3GM 可知r 3T 2=GM 4π2,r 3T 2是一个定值,B 正确;根据ω=GMr3可知角速度之比为1∶32n ,C 错误;根据T =2πr 3GM可知周期之比为32n ∶1,D 错误.变式7 NASA 的新一代詹姆斯韦伯太空望远镜将被放置在太阳与地球的第二拉格朗日点L 2处,飘荡在地球背对太阳后方150万公里处的太空.其面积超过哈勃望远镜5倍,其观测能力可能是后者70倍以上,如图5所示,L 2点处在太阳与地球连线的外侧,在太阳和地球的引力共同作用下,卫星在该点能与地球一起绕太阳运动(视为圆周运动),且时刻保持背对太阳和地球,不受太阳的干扰而进行天文观测.不考虑其他星球的影响,下列关于工作在L 2点的天文卫星的说法中正确的是( )图5A .它绕太阳运动的向心力由太阳对它的引力充当B .它绕太阳运动的向心加速度比地球绕太阳运动的向心加速度小C .它绕太阳运行的线速度比地球绕太阳运行的线速度小D .它绕太阳运行的周期与地球绕太阳运行的周期相等 【答案】D变式8 假设两颗人造卫星1和2的质量之比m 1∶m 2=1∶2,都绕地球做匀速圆周运动,卫星2的轨道半径更大些,如图6所示.观测中心对这两个卫星进行了观测,编号为甲、乙,测得甲、乙两颗人造卫星周期之比为T 甲∶T 乙=8∶1.下列说法中正确的是( )图6A .甲是卫星1B .乙星动能较小C .甲的机械能较大D .无法比较两个卫星受到的向心力 【答案】C【解析】卫星做匀速圆周运动,万有引力充当向心力,有G Mm r 2=m 4π2rT 2,解得r =3GMT 24π2,所以r 甲∶r 乙=3T 甲2∶3T 乙2=4∶1,所以甲是卫星2,故A 错误;由G Mm r 2=m v 2r ,得v =GMr,所以v 甲∶v 乙=r 乙∶r 甲=1∶2,由动能表达式E k =12mv 2得甲、乙两星的动能之比E k 甲E k 乙=m 甲v 甲2m 乙v 乙2=12,故B 错误;若卫星2由外侧轨道变轨到卫星1的轨道,需要减速,即需要克服阻力做功才能变轨到卫星1的轨道,所以卫星2的机械能大于它在卫星1轨道上的机械能,而卫星2的质量比卫星1的质量大,同在内侧轨道上卫星2的机械能大于卫星1的机械能,所以卫星2在外侧轨道上的机械能大于卫星1在内侧轨道上的机械能,故C 正确;由万有引力公式F =G Mmr 2,可知两卫星受到的向心力之比F 甲F 乙=m 甲r 乙2m 乙r 甲2=18,故D 错误.拓展 地球同步卫星 同步卫星的六个“一定”例5 如图7所示是北斗导航系统中部分卫星的轨道示意图,已知a 、b 、c 三颗卫星均做圆周运动,a 是地球同步卫星,则( )图7A .卫星a 的角速度小于卫星c 的角速度B .卫星a 的加速度大于卫星b 的加速度C .卫星a 的运行速度大于第一宇宙速度 ,D .卫星b 的周期大于24 h 【答案】A【解析】根据公式G Mmr2=mω2r 可得ω=GMr 3,运动半径越大,角速度越小,故卫星a 的角速度小于卫星c 的角速度,A 正确;根据公式G Mm r 2=ma 可得a =GMr 2,由于卫星a 、b 的轨道半径相同,所以两者的向心加速度相等,B 错误;第一宇宙速度是近地轨道卫星做圆周运动的最大环绕速度,根据公式G Mm r 2=m v 2r 可得v =GM r ,半径越大,线速度越小,所以卫星a 的运行速度小于第一宇宙速度,C 错误;根据公式G Mmr2=m 4π2T 2r 可得T =2πr 3GM,故轨道半径相同,周期相同,所以卫星b 的周期等于24 h ,D 错误.。

【突破】高中物理第5章万有引力与航天章末分层突破教师用书沪科版必修2

【突破】高中物理第5章万有引力与航天章末分层突破教师用书沪科版必修2

【关键字】突破第5章万有引力与航天万有引力与航天[自我校对]①地心②日心③正比④反比⑤G⑥质点⑦6.67×10-11⑧⑨7.9⑩11.2⑪16.7天体质量、密度等估算问题1.估算问题一般是估算天体的质量、天体的密度、运动的轨道半径、运转周期等有关物理量.2.估算的依据主要是万有引力提供做匀速圆周运动的向心力,根据牛顿第二定律列动力学方程,另外,“黄金代换”GM=gR2也常是列方程的依据.3.在估算时要充分利用常量和常识.例如,地球表面的重力加速度g=9.8 m/s2,地球公转周期T=1年=365天,地球自转周期T=1天=24小时,月球公转周期T=27.3天等.4.用测定绕行天体(如卫星)轨道半径和周期的方法测质量,只能测定其中心天体(如地球)的质量,不能测定绕行天体自身的质量,绕行天体的质量在方程式中被约掉了.天文学家新发现了太阳系外的一颗行星.这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运动的周期约为 1.4 小时,引力常量G=6.67×10-11N·m2/kg2,由此估算该行星的平均密度约为( )A.1.8×103 kg/m3B.5.6×103 kg/m3C.1.1×104 kg/m3D.2.9×104 kg/m3【解析】近地卫星绕地球做圆周运动时,所受万有引力充当其做圆周运动的向心力,即=m()2R,密度、质量和体积关系M=ρ·πR3,解两式得:ρ=≈5.60×103 kg/m3.由已知条件可知该行星密度是地球密度的倍,即ρ=5.60×103× kg/m3≈2.98×104 kg/m3,D项正确.【答案】 D天体运动的规律“一”、“二”、“三”分析处理天体运动问题,要抓住“一个模型”、应用“两个思路”、区分“三个不同”.1.一个模型无论是自然天体(如行星、月球等),还是人造天体(如人造卫星、空间站等),只要天体的运动轨迹为圆形,就可将其简化为质点的匀速圆周运动.2.两个思路(1)所有做圆周运动的天体,所需的向心力都来自万有引力.因此,向心力等于万有引力,据此所列方程是研究天体运动的基本关系式,即G=m=mω2r=mr=man.(2)不考虑地球或天体自转影响时,物体在地球或天体表面受到的万有引力约等于物体的重力,即 G=mg变形得GM=gR2,此式通常称为“黄金代换式”.3.三个不同(1)不同公式中r的含义不同.在万有引力定律公式中,r的含义是两质点间的距离;在向心力公式(F=m=mω2r)中,r的含义是质点运动的轨道半径.当一个天体绕另一个天体做匀速圆周运动时,两式中的r相等.(2)运行速度、发射速度和宇宙速度的含义不同.三种速度的比较,如下表所示速圆周运动的向心加速度a′的含义不同.①绕地球做匀速圆周运动的卫星的向心加速度a ,由G =ma , 得a =,其中r 为卫星的轨道半径.②若不考虑地球自转的影响,地球表面的重力加速度为g =,其中R 为地球的半径. ③地球表面的物体随地球自转做匀速圆周运动的向心加速度a ′=ω2Rcos θ,其中ω、R 分别是地球的自转角速度和半径,θ是物体所在位置的纬度值.(多选)已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G ,有关同步卫星,下列表述正确的是( )A .卫星距地面的高度为B .卫星的运行速度小于第一宇宙速度C .卫星运行时受到的向心力大小为GD .卫星运行的向心加速度小于地球表面的重力加速度【解析】 对同步卫星有万有引力提供向心力G =m(R +h),所以h =-R ,A 错误;第一宇宙速度是最大的环绕速度,B 正确;同步卫星运动的向心力等于万有引力,应为F =,C 错误;同步卫星的向心加速度为a 同=,地球表面的重力加速度a 表=,知a 表>a 同,D 正确.【答案】 BD 双星问题 1.双星众多的天体中如果有两颗恒星,它们靠得较近,在万有引力作用下绕着它们连线上的某一点共同转动,这样的两颗恒星称为双星.2.双星问题特点如图5­1所示为质量分别是m 1和m 2的两颗相距较近的恒星.它们间的距离为L .此双星问题的特点是:图5­1(1)两星的运行轨道为同心圆,圆心是它们之间连线上的某一点; (2)两星的向心力大小相等,由它们间的万有引力提供; (3)两星的运动周期、角速度相同;(4)两星的运动半径之和等于它们间的距离,即r 1+r 2=L . 3.双星问题的处理方法双星间的万有引力提供了它们做圆周运动的向心力,即G m 1m 2L2=m 1ω2r 1=m 2ω2r 2,由此得出:(1)m 1r 1=m 2r 2,即某恒星的运动半径与其质量成反比.(2)由于ω=2πT ,r 1+r 2=L ,所以两恒星的质量之和m 1+m 2=4π2L 3GT2.宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动而不会因万有引力的作用吸引到一起.(1)试证明它们的轨道半径之比、线速度之比都等于质量的反比;(2)设两者的质量分别为m 1和m 2,两者相距L ,试写出它们角速度的表达式. 【解析】 (1)证明:两天体绕同一点做匀速圆周运动的角速度ω一定相同.它们做匀速圆周运动的向心力由它们之间的万有引力提供,所以两天体与它们的圆心总是在一条直线上.设两者的圆心为O 点,轨道半径分别为R 1和R 2,如图所示.对两天体,由万有引力定律可分别列出Gm 1m 2L2=m 1ω2R 1① Gm 1m 2L 2=m 2ω2R 2 ② 所以R 1R 2=m 2m 1,所以v 1v 2=R 1ωR 2ω=R 1R 2=m 2m 1,即它们的轨道半径、线速度之比都等于质量的反比.(2)由①②两式相加得Gm 1+m 2L2=ω2(R 1+R 2)③ 因为R 1+R 2=L ,所以ω=G m 1+m 2L 3. 【答案】 (1)见解析 (2)ω=G m 1+m 2L 3卫星变轨问题1.当卫星绕天体做匀速圆周运动时,万有引力提供向心力,由G Mm r 2=m v 2r ,得v =GMr,由此可见轨道半径r 越大,线速度v 越小.当由于某原因速度v 突然改变时,若速度v 突然减小,则F >m v 2r ,卫星将做近心运动,轨迹为椭圆;若速度v 突然增大,则F <m v 2r,卫星将做离心运动,轨迹变为椭圆,此时可用开普勒第三定律分析其运动.2.卫星到达椭圆轨道与圆轨道的切点时,卫星受到万有引力相同,所以加速度相同.如图5­2所示,某次发射同步卫星的过程如下:先将卫星发射至近地圆轨道1,然后再次点火进入椭圆形的过渡轨道2,最后将卫星送入同步轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是( )图5­2A .卫星在轨道3上的速率大于在轨道1上的速率B .卫星在轨道3上的角速度大于在轨道1上的角速度C .卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度D .卫星在轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度【解析】 由G Mm r 2=m v 2r =mrω2得,v =GMr ,ω=GMr 3,由于r 1<r 3,所以v 1>v 3,ω1>ω3,A 、B 错;轨道1上的Q 点与轨道2上的Q 点是同一点,到地心的距离相同,根据万有引力定律及牛顿第二定律知,卫星在轨道1上经过Q 点时的加速度等于它在轨道2上经过Q 点时的加速度,同理卫星在轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度,C 错,D 对.【答案】 D1.(2016·全国丙卷)关于行星运动的规律,下列说法符合史实的是( ) A .开普勒在牛顿定律的基础上,导出了行星运动的规律 B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D .开普勒总结出了行星运动的规律,发现了万有引力定律【解析】 开普勒在前人观测数据的基础上,总结出了行星运动的规律,与牛顿定律无联系,选项A 错误,选项B 正确;开普勒总结出了行星运动的规律,但没有找出行星按照这些规律运动的原因,选项C 错误;牛顿发现了万有引力定律,选项D 错误.【答案】 B2.(2015·福建高考)如图5­3所示,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r 1、r 2,线速度大小分别为v 1、v 2,则( )图5­3A.v 1v 2=r 2r 1B.v 1v 2=r 1r 2C.v 1v 2=⎝ ⎛⎭⎪⎫r 2r 12D.v 1v 2=⎝ ⎛⎭⎪⎫r 1r 22【解析】 对人造卫星,根据万有引力提供向心力GMm r 2=m v 2r,可得v =GMr.所以对于a 、b 两颗人造卫星有v 1v 2=r 2r 1,故选项A 正确. 【答案】 A3.(2016·全国乙卷)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )A .1 hB .4 hC .8 hD .16 h【解析】 万有引力提供向心力,对同步卫星有:GMm r 2=mr 4π2T 2,整理得GM =4π2r 3T2 当r =6.6R 地时,T =24 h若地球的自转周期变小,轨道半径最小为2R 地 三颗同步卫星A 、B 、C 如图所示分布 则有4π26.6R 地3T 2=4π22R 地3T ′2解得T ′≈T6=4 h ,选项B 正确.【答案】 B4.(2016·北京高考)如图5­4所示,一颗人造卫星原来在椭圆轨道1绕地球E 运行,在P 点变轨后进入轨道2做匀速圆周运动.下列说法正确的是( )图5­4A .不论在轨道1还是轨道2运行,卫星在P 点的速度都相同B .不论在轨道1还是轨道2运行,卫星在P 点的加速度都相同C .卫星在轨道1的任何位置都具有相同加速度D .卫星在轨道2的任何位置都具有相同动量【解析】 在P 点,沿轨道1运行时,地球对人造卫星的引力大于人造卫星做圆周运动需要的向心力,即F 引>mv 21r ,沿轨道2运行时,地球对人造卫星的引力刚好能提供人造卫星做圆周运动的向心力,即F 引=mv 22r,故v 1<v 2,选项A 错误;在P 点,人造卫星在轨道1和轨道2运行时,地球对人造卫星的引力相同,由牛顿第二定律可知,人造卫星在P 点的加速度相同,选项B 正确;在轨道1的不同位置,地球对人造卫星引力大小不同,故加速度也不同,选项C 错误;在轨道2上不同位置速度方向不同,故动量不同,选项D 错误.【答案】 B5.(2016·天津高考)我国即将发射“天宫二号”空间实验室,之后发射“神舟十一号”飞船与“天宫二号”对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( )图5­5A .使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B .使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C .飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D .飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接【解析】飞船在同一轨道上加速追赶空间实验室时,速度增大,所需向心力大于万有引力,飞船将做离心运动,不能实现与空间实验室的对接,选项A错误;同理,空间实验室在同一轨道上减速等待飞船时,速度减小,所需向心力小于万有引力,空间实验室做近心运动,也不能实现对接,选项B错误;当飞船在比空间实验室半径小的轨道上加速时,飞船做离心运动,逐渐靠近空间实验室,可实现对接,选项C正确;当飞船在比空间实验室半径小的轨道上减速时,飞船将做近心运动,远离空间实验室,不能实现对接,选项D错误.【答案】 C我还有这些不足:(1)(2)我的课下提升方案:(1)(2)此文档是由网络收集并进行重新排版整理.word可编辑版本!。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优创卷·一轮复习单元测评卷第五章 万有引力与航天A 卷 名校原创基础卷一、选择题(本题共8小题,每小题4分.在每小题给出的四个选项中,第1~6题只有一项符合题目要求,第7~10题有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分.)1.(2020·江苏省宜兴期末)观看科幻电影《流浪地球》后,某同学设想地球仅在木星引力作用下沿椭圆轨道通过木星的情景,如图所示,轨道上P 点距木星最近(距木星表面的高度可忽略)。

则( )A.地球靠近木星的过程中运行速度减小B.地球远离木星的过程中加速度增大C.地球远离木星的过程中角速度增大D.地球在P 点的运行速度大于木星第一宇宙速度 【答案】D 【解析】A.地球靠近木星时所受的万有引力与速度成锐角,做加速曲线运动,则运行速度变大,A 错误;B.地球远离木星的过程,其距离r 变大,则可知万有引力增大,由牛顿第二定律:2GMmma r = 则加速度逐渐减小,B 错误;C.地球远离木星的过程线速度逐渐减小,而轨道半径逐渐增大,根据圆周运动的角速度关系vrω=,可知运行的角速度逐渐减小,C 错误;D.木星的第一宇宙速度指贴着木星表面做匀速圆周的线速度,设木星的半径为R ,满足1GMv R过P 点后做离心运动,则万有引力小于需要的向心力,可得22P v MmG m R R<可推得:1P GMv v R>= 即地球在P 点的运行速度大于木星第一宇宙速度,D 正确; 故选D 。

2.(2020·江西省南康月考)如图所示为一卫星绕地球运行的轨道示意图,O 点为地球球心,已知地球表面重力加速度为g ,地球半径为R ,OA=R ,OB=4R ,下列说法正确的是( )A.卫星在A 点的速率v gR >B.卫星在A 点的加速度>a gC.卫星在B 点的速率gRv = D.卫星在B 点的加速度216B GMa R <【答案】A【解析】A.在A 处,若为圆轨道,万有引力提供向心力22Mm v G m R R= 解得GMv R=结合2MmGmg R= 解得v gR =在椭圆轨道上,卫星在A gR A 正确; B.万有引力提供加速度2MmGma r = 解得2GMa r=因为OA R =,所以a g =B 错误;C.根据开普勒第二定律41A B v v = 根据机械能守恒定律2211224A B Mm Mmmv G mv GR R-=- 联立方程解得B v ==C 错误;D.万有引力提供加速度216B MmGma R= 解得216B GMa R=D 错误。

故选A 。

3.(2020·张家界市月考)月球公转周期为“一个月”,其天文学数据比日常生活中的30天要少3天,设月地距离为地球半径的n 倍,由此可知地球同步卫星到地心的距离为地球半径的( ) A.3n倍 B.4n 倍 C.7n 倍 D.9n 倍 【答案】D 【解析】根据开普勒第三定律3232r T r T =同同月月解得233333221=279T n r r n R R T =⨯=同同月月ABC 错误,D 正确。

故选D 。

4.(2020·辽河油田期中)如图所示,A 、B 、C 三颗人造地球卫星绕地球做匀速圆周运动,已知三颗卫星的质量关系为A B C m m m =<,轨道半径的关系为A B C r r r <=,则三颗卫星( )A.线速度大小关系为A B C v v v <=B.加速度大小关系为A B C a a a >=C.向心力大小关系为A B C F F F =<D.周期关系为A B C T T T >= 【答案】B【解析】人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,则有:22224GMm mv m rma r r Tπ⋅===, 解得:GM v r =,2GM a r =,234rT GMπ=由题意有:A B C r r r <=,因此可知线速度大小关系为:A B C v v v >=,加速度大小关系为:A B C a a a >=,周期关系为:A B C T T T <=, 根据2GMmF r =向和A B C m m m =<可知A B F F >,B C F F <, 故选项B 正确,A 、C 、D 错误.5.(2020·浙江省高三二模)脉冲星是科学家不会放过的“天然太空实验室”,它是快速旋转的中子星,属于大质量恒星死亡后留下的残骸,也是宇宙中密度最高的天体之一。

某颗星的自转周期为T (实际测量为1.83s ,距离地球1.6万光年)。

假设该星球恰好能维持自转不瓦解,令该星球的密度ρ与自转周期T 的相关量为21T ρ为q 星,同时假设地球同步卫星离地面的高度为地球半径的6倍,地球的密度0ρ与自转周期0T 的相关量2001T ρ为q 地,则( ) A.7q q =星地 B.q q =星地C.149q q =星地 D.1343q q =星地 【答案】D 【解析】由224F m R Tπ=,可得周期越小,物体需要的向心力越大,物体对星球表面的压力越小,当周期小到一定值时,压力为零,此时万有引力充当向心力,即222Mm m R R T G π⎛⎫ ⎪⎝⎭= 又343M R ρπ=联立解得213G q T ρπ==星 地球的同步卫星的轨道是地球的半径的7倍,对地球的同步卫星()()2002200477M m Gm R T R π'='又300043M R ρπ=联立解得20011029Gq T ρπ==地1=343q q 星地 故选D 。

6.(2020·江苏省扬州联考)为了实现人类登陆火星的梦想,我国宇航员王跃和俄罗斯宇航员一起进行了“模拟登火星”的实验活动,假设火星半径与地球半径之比为1∶2,火星质量与地球质量之比为1∶9。

已知地表的重力加速度为g ,地球半径为R ,万有引力常量为G ,忽略自转的影响,则( ) A.火星表面与地球表面的重力加速度之比为2∶9B.∶3C.火星的密度为3gGRπD.若王跃以相同初速度在火星表面与地球表面能竖直跳起的最大高度之比为9∶2 【答案】B 【解析】 A.由2MmGmg R = 得2MGg R= 已知火星半径是地球半径的12,质量是地球质量的19,则火星表面的重力加速度是地球表重力加速度的49,故A 错误; B.根据22Mm v G m R R= 得v =已知火星半径是地球半径的12,质量是地球质量的19,则火星的第一宇宙速度是地球第一宇宙速度的3倍,故B 正确;2MmGmg R= 得,地球的质量GgR M 2= 地球的密度3344ππ3M g GR R ρ==火星表面的重力加速度是地球表重力加速度的49,火星半径是地球半径的12,则火星的密度为23πg GR ,故C 错误;D.火星表面的重力加速度是地球表重力加速度的49,根据22v h g =知,在火星表面与地球表面能竖直跳起的最大高度之比为9:4,故D 错误。

故选B 。

7.(2020·江西省南康月考)2019年4月10日,“事件视界望远镜"项目正式公布了人类历史上第一张黑洞照片.黑洞是一种密度极大,引力极强的天体,以至于光都无法从天体表面逃逸,所以称为黑洞,理论分析表明,任意天体的逃逸速度是环绕速度(第一宇宙速度)的2倍.如果天文学家观测到距离某果洞为r 的天体以速度v 绕该黑洞做匀速圆周运动.已知光速为c ,引力常最为G .下列关于该黑洞的说法,正确的是( )A.该黑洞质量为2v rGB.该黑洞质量为2Gv rC.该黑洞的最小半径为222v rcD.该黑洞的最大半径为222v rc【答案】AD 【解析】由于某天体绕黑洞做匀速圆周运动,则天体所受的万有引力等于向心力,则有:22Mm v G m r r=,解得:2v rM G =,A 正确,B 错误;设“黑洞”的可能半径为R ,质量为M ,逃逸速度大于真空中光速的天体才能成为黑洞,所以需满足逃逸速度2GM R 大于光速c ;即有22GM R c ≤,又2v rM G=,代入可得,该黑洞最大半径222v rR c=,C 错误,D 正确.8.(2020·广西壮族自治区桂林期中)如图所示,a.b 两颗卫星在同一平面内绕地球做匀速圆周运动,其中b 为地球同步卫星(周期为1天)。

地球的质量为M 。

半径为R ,引力常量为G 。

下列说法错误的是( )A.地球北极附近的重力加速度大小为2GMR B.a 运行的线速度小于b 运行的线速度 C.a 运行的周期大于1天D.根据开普勒第二定律可知,在相同时间内,a .b 与地心连线扫过的面积相等 【答案】BCD 【解析】C.开普勒第三定律可知,卫星的轨道半径越大,运行的周期越长,因b 运行的周期为1天,故a 运行的周期小于1天,故C 符合题意;B.因a 的轨道半径比b 的轨道半径小,故a 运行的线速度大于b 运行的线速度,故B 符合题意; A.根据2GMmmg R= 可得2GMg R =故A 不符合题意;D.对同一行星而言,它与中心天体的连线在相等的时间内扫过的面积相等,故D 符合题意。

故选BCD 。

9.(2020·江西省南昌月考)美国国家航空航天局宣布首次在太阳系外发现“类地”行星Kepler-186f 。

若宇航员乘坐宇宙飞船到达该行星表面进行科学考察,在行星表面h 高度(远小于行星半径)处以初速度v 水平抛出一个小球,测得水平位移为x 。

已知该行星半径为R ,自转周期为T ,万有引力常量为G 。

则下列说法正确的是( )A.该行星表面的重力加速度为222hv xB.该行星的质量为2222hv R GxC.RD.【答案】ABC 【解析】A.根据平抛运动的规律可知:212h gt =,x vt =解得222hv g x=,A 正确; B.根据2Mm mg G R =,得行星的质量22222gR hv R M G Gx==,B 正确;C.根据2224()()Mm G m R h R h T π=++得,又2GM gR =,解得h R =,C 正确;D.根据2v mg m R=得,行星的第一宇宙速度v ==D 错误。

10.(2020·辽宁省沈阳月考)2017年10月16日,美国激光干涉引力波天文台等机构联合宣布首次发现双中子星并合引力波事件.如图为某双星系统A 、B 绕其连线上的O 点做匀速圆周运动的示意图,若A 星的轨道半径大于B 星的轨道半径,双星的总质量M ,双星间的距离为L ,其运动周期为T ,则( )A.A 的质量一定大于B 的质量B.A 的线速度一定大于B 的线速度C.L 一定,M 越大,T 越大D.M 一定,L 越大,T 越大 【答案】BD 【解析】设双星质量分别为A B m m 、,轨道半径分别为A B R R 、,角速度相等且为ω,根据万有引力定律可知:22A B A A mm G m R L ω=, 22A B B B m m G m R L ω=,距离关系为:A BR R L +=,联立解得:A B B Am R m R =,因为A B R R >,所以A 的质量一定小于B 的质量,故A 错误;根据线速度与角速度的关系有:A AB B v R v R ωω==、,因为角速度相等,半径A B R R >,所以A 的线速度大于B 的线速度,故B 正确;又因为2T πω=,联立以上可得周期为:()32A B L T G m m π=+,所以总质量M 一定,两星间距离L 越大,周期T 越大,故C 错误,D 正确.所以BD 正确,AC 错误.二、非选择题(本大题共6小题,共60分)11.(8分)(2020·江苏省宜兴中学高一期末)地球质量约为月球质量的81倍,地球半径约为月球半径的4倍,一飞行器在近地圆轨道1上,经一系列变轨后在近月圆轨道2上运行,已知地球中心到月球中心的距离为r 求:(1)飞行器在近地圆轨道1上受到地球的引力F 1与在近月圆轨道2上受到月球的引力F 2的比值; (2)O 为地月连线上一点,飞行器在该点受到地球和月球的引力的合力为零,求O 点到地心的距离r 1.【答案】(1)8116(2)910r【解析】(1)由万有引力定律得飞行器在近地圆轨道1上受到地球的引力1121mMF GR=在近月圆轨道2上受到月球的引力2222mMF GR=所以211222218118111616F M RF M R=⨯=⨯=(2)由题意可得122212()()mM mMG Gr r=12r r r+=联立解得1910r r=12.(9分)(2020·江西省南康中学高一月考)如图所示,宇航员站在某一质量分布均匀的星球表面一斜坡上的P点沿水平方向以初速度0v抛出一个小球,测得小球经时间t落到斜坡上另一点Q,斜面的倾角为θ,已知该星球半径为R,万有引力常量为G,求:(1)该星球表面的重力加速度g;(2)该星球的第一宇宙速度v;(3)人造卫星在该星球表面做匀速圆周运动的最小周期T。

相关文档
最新文档