2020年九年级数学中考专题复习:隐形圆求最值问题(含答案)

合集下载

中考数学《隐形圆》专题练习

中考数学《隐形圆》专题练习

中考数学《隐形圆》专题练习(求最值、路径长、面积问题等)1.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为_________.2.如图,在边长为中,AE=CD,连接BE、AD相交于点P,则CP的最小值为3.如图,半径为2cm,圆心角为90°的扇形OAB的弧AB上有一运动的点P从点P向半径OA 引垂线PH交OA于点H,设△OPH的内心为I,当点P在弧AB上从点A运动到点B时,内心I所经过的路径长为____________.4.如图,等腰直角△ABC中,∠C=90°,AC=BC=4,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为_______.5.如图,直线y=x+4分别与x轴、y轴相交与点M、N,边长为2的正方形OABC一个顶点O在坐标系的原点,直线AN与MC相交与点P,若正方形绕着点O旋转一周,则点P到点(0,2)长度的最小值是________.6.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是_________.7.如图,O的半径为2,弦AB=2,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC 的最大面积是________.8.如图,以正方形ABCD的边BC为一边向内部做一等腰△BCE,CE=BC,过E做EH⊥BC,点P 是Rt△CEH的内心,连接AP,若AB=2,则AP的最小值为________.9.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C、D两点,点E为⊙G上一动点,CF⊥AE于F,当点E从点B出发顺时针运动到点D时,点F所经过的路径长为__________.10.如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(7,3),点E在边AB上,且AE=1,已知点P为y轴上一动点,连接EP,过点O作直线EP的垂线段,垂足为点H,在点P从点F(0,254)运动到原点O的过程中,点H的运动路径长为11.已知以AB为直径的⊙O,C为弧AB的中点,P为 BC上任意一点,CD⊥CP交AP于D,连接BD,若AB=6.则BD的最小值为。

2020年九年级数学中考专题复习:隐形圆求最值问题(含答案)

2020年九年级数学中考专题复习:隐形圆求最值问题(含答案)

隐形圆问题一、确定动点轨迹是圆【例题1】如图,已知圆C的半径为3,圆外一定点O满足OC=5,点P为圆C上一动点,经过点O的直线l上有两点A,且OA=OB,∠APB=90°,l不过点C,则AB的最小值为【举一反三】1、如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A’MN,连接A’C,则A’C长度的最小值是第1题第2题2、如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E 为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是3、如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.当PB=6时,在直线l变化过程中,则△ACB’面积的最大值是.4、如图,矩形ABCD中,AB=4,BC=8,P、Q分別是直线BC、AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF、PD,则PF+PD的最小值是二、定边对直角知识回顾:直径所对的圆周角是直角构造思路:一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.图形释义:若AB是一条定线段,且∠APB-90°,则P点轨迹是以AB为直径的圆【例题1】已知正方形ABCD边长为2,E、F分别是BC、CD上的动点,且满足BE=CF,连接AE、BF,交点为P点,则PC的最小值为【举一反三】1、如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF,连接CF交BD于点G,连接BE交AG于点H,若正方形边长为2,则线段DH长度的最小值是2、如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB =∠PBC,则线段CP长的最小值是3、如图,AB是半圆O的直径,点C在半圆O上,AB=5,AC=4.D是弧BC上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为4、如图,在Rt△ABC中,∠BAC=90°,AC=12,AB=10,点D是AC上的一个动点,以AD为直径作圆O,连接BD交圆O于点E,则AE的最小值为5、如图,正方形ABCD的边长为4,动点E、F分別从点A、C同时出发,以相同的速度分别沿AB、CD向终点B、D移动,当点E到达点B时,运动停止,过点B作直线EF的垂线BG,垂足为点G,连接AG,则AG长的最小值为【辅助圆+将军饮马】如图,正方形ABCD的边长是4,点E是AD边上一动点,连接BE,过点A作AF⊥BE于点F,点P是AD边上另一动点,则PC+PF的最小值为【辅助圆+相切】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,D是BC上一动点,CE⊥AD于E,EF⊥AB交BC于点F,则CF的最大值是三、定边对定角在“定边对直角”问题中,依据“直径所对的圆周角是直角”,关键性在于寻找定边、直角,而根据圆周角定理:同圆或等圆中,同弧或等弧所対的圆周角都相.定边必不可少,而直角则可一般为定角.例如,AB为定值,∠P为定角,则P点轨迹是一个圆.当然,∠P度数也是特殊角,比如30°、45°、60°、120°,下面分别作对应的轨迹圆若∠P=30°,以AB为边,同侧构造等边三角形AOB,O即为圆心若∠P=45°,以AB为斜边,同侧构造等腰直角三角形AOB,O即为圆心.若∠P=60°,以AB为底,同侧构造顶角为120°的等腰三角形AOB,O即为圆心.若∠P=120°,以AB为底,异侧为边构造顶角为120°的等腰三角形AOB,O即为圆心.【例题1】如图,等边△ABC边长为2,E、F分別是BC、CA上两个动点,且BE=CF,连接AE、BF,交点为P点,则CP的最小值为【举一反三】1、如图,△ABC为等边三角形,AB=3,若P为△ABC内一动点,且满足∠P AB=∠ACP,则线段PB长度的最小值为2、在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是3、如图,AB是圆O的直径,M、N是弧AB(异于A、B)上两点,C是弧MN上一动点,∠ACB 的角平分线交圆O于点D,∠BAC的平分线交CD于点E,当点C从点M运动到点N时,则C、E两点的运动路径长的比是。

2020中考数学真题复习 利用隐圆求最大或最小值 最值大全

2020中考数学真题复习 利用隐圆求最大或最小值  最值大全

2020中考数学真题复习利用隐圆求最大或最小值最值大全隐圆求最值几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)例1在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________.例2如图, E、F是正方形ABCD的边AD上两个动点, 满足AE=DF. 连接CF交BD于G, 连接BE交AG于点H. 若正方形的边长为2, 则线段DH长度的最小值是.例3、如图, △ABC中, ∠ABC=90°, AB=6, BC=8, O为AC的中点, 过O作OE⊥OF, OE、OF分别交射线AB、BC于E、F, 则EF的最小值为.练习1、如图, Rt△ABC中, ∠C=90°, ∠ABC=30°, AB=6, 点D在AB边上, 点E是BC边上一点 (不与点B、C重合), 且DA=DE, 则AD的取值范围是.2、如图, 已知边长为2的正△ABC, 两顶点A、B分别在直角∠MON的两边上滑动, 点C在∠MON内部, 则OC的长的最大值为.3、如图, ∠xOy=45°, 一把直角三角尺△ABC的两个顶点A、B分别在Ox、Oy上移动, 其中AB=10, 那么点O到顶点A的距离最大值为, 点O到AB的距离的最大值为.补充练习1、如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是.2、如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,D 为AB 边上一点,过点D 作CD 的垂线交直线BC 于点E ,则线段CE 长度的最小值是 .3、如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM 、ON 上,当B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为( )A 、21B 、5C 、1455D 、 524、若在半径为1的圆O 上任取两点A 、B ,再以AB 为边向圆外作正方形,则OC 的最大值和最小值分别为_______、________.5、如图,两同心圆半径分别为3、3,点A 、B 分别为两同心圆上的动点,以AB 为边作正方形ABCD ,则OD 的最大值为________.6、如图△ABC中,AB=3,AC=2,以BC为边的△BCP是等边三角形,则AP的最大值为()A.3 B.4 C.5 D. 67、如图所示,已知P是正方形ABCD外一点,且PA=3,PB=4,则PC的最大值是________.8、过边长为1的正方形的中心O引两条相互垂直的射线,分别与正方形的边交于A,B两点,则线段AB长的取值范围是________.9、如图,半径为1的圆0上有一定点M为圆O上的动点.在射线OM上有一动点B,AB=1,0B>1.线段AB交圆O于另一点C,D为线段的OB中点.则线段CD长度的取值范围________.中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。

初中数学《隐形圆》模型梳理与题型分类含答案解析

初中数学《隐形圆》模型梳理与题型分类含答案解析

隐形圆(4大模型与6类题型)第一部分【模型梳理与题型目录】隐形圆模型是初中数学中的重要知识点,常用于解决一些看似没有直接使用圆的知识但实际上需要运用圆的性质来解决的问题,隐形圆常常用于解决最值问题.本专题梳理了隐形圆四大模型,供大家参考使用.【模型1】 定点定长模型【模型分析】(1)出现共端点、等线段时,可以利用圆的定义构造辅助圆;(2)如图1,若OA=OB =OC,则A、B、C在以O为圆心,OA为半径的圆上.由圆周角定理可得:∠ABC= 1∠AOC,∠ACB=12∠AOB,∠BAC=12∠BOC.2图1【模型2】 90°圆周角模型【模型分析】如图2,在△ABC中,∠C=90°,点C为动点,则点C的轨迹是以AB为直径的⊙O (不包含A、B两点).注:作出辅助圆是关键,计算时结合求点圆、线圆、最值等方法进行相关计算.图2应用:常用于解决直角三角形中动点的轨迹问题。

【模型3】 定弦定角模型【模型分析】固定的线段只要对应固定的角度,那么这个角的顶点轨迹为圆的一部分.如图①,在⊙O中,若弦AB长度固定,则弦AB所对的圆周角都相等;(注意:弦AB所对的劣弧(AB)上也有圆周角,需要根据题目灵活运用)如图②,若有一固定线段AB及线段AB所对的∠C大小固定,根据圆的知识可知点C不唯一.当∠C<90°时,点C在优弧上运动;当∠C=90°时,点C在半圆上运动,且线段AB是⊙O的直径;当∠C >90°时,点C在劣弧上运动.【模型4】‌四点共圆模型【模型分析】在四边形ABCD中,若∠A+∠C=1800,则A、B、C、D在圆O上,称之为A、B、C、D四点共圆.图3应用:常用于解决四点共圆的问题,如角度相等、线段最值等问题.【题型1】‌定点定长模型......................................................3;【模型2】 90°圆周角模型...................................................6;【题型3】‌定弦定角模型.....................................................11;【题型4】‌四点共圆模型.....................................................15;【题型5】直通中考.........................................................20;【题型6】拓展延伸.........................................................23.第二部分【题型展示与方法点拨】【题型1】 定点定长模型1.(23-24九年级上·福建福州·期末)如图,在等边△ABC中,AB=4,D,E分别是边AB,BC上的动点(不与△ABC的顶点重合),连接AE,CD相交于点F,连接BF,若∠BDF+∠BEF=180°,则BF的最小值为.【433/433【∠BDF +∠BEF =180°,∠DFE =120°,∠AFC =120°,F 在以O 为圆心OA 的长为半径∠AOC =120°的圆弧上运动OA ,OC ,OB ,OF ,OA =OC =OF ,BF ≥OB -OF ,△AOB ≌△COB ,△AOB 为含30度角的直角三角形进行求解即可.解∵等边△ABC ,∴∠ABC =60°,AB =BC ,∵∠BDF +∠BEF =180°,∴∠DFE +∠ABC =360°-∠BDF +∠BEF =180°,∴∠DFE =120°,∴∠AFC =120°,∴点F 在以O 为圆心OA 的长为半径∠AOC =120°的圆弧上运动OA ,OC ,OB ,OF ,OA =OC =OF ,BF ≥OB -OF ,∵AB =BC ,OB =OB ,OA =OC ,∴△AOB ≌△COB ,∴∠ABO =∠CBO =12∠ABC =30°,∠AOB =∠BOC =12∠AOC =60°,∴∠BAO =90°,∴BO =2AO ,AB =3AO =4,∴AO =433,∴BO =2OA =833,OF =AO =433,∴BF ≤433,BF 的最小值为433;故答案为433.【30度角的直角三角形一点到圆上一点的最值F 的运动轨迹.2.(24-25九年级上·全国·课后作业)如图,P 是边长为1的正方形ABCD 内的一个动点,且满足∠PBC +∠PDC =45°,则CP 的最小值是()A.2-2B.12C.22D.2-1【答案】D【分析】本题考查了正方形的性质、等腰直角三角形的性质、勾股定理、圆周角定理,在凹四边形BCDP中,求出∠BPD=135°,得点P在运动过程中,使得∠BPD=135°,即点P在正方形ABCD内,以A为圆心,AB长为半径的圆弧上,如解图,连接AP,AC,当A、P、C三点共线时,CP取得最小值,最小值为AC-AP,求出AC和AP的长度,即可得到结果,解本题的关键是证明∠BPD是定值,从而得到点P的轨迹.解:∵四边形ABCD是正方形,∴∠BCD=90°,在凹四边形BCDP中,∵∠BCD=90°,∠PBC+∠PDC=45°,∴∠BPC+∠CPD=360°-∠BCD-(∠PBC+∠PDC)=225°,∴∠BPD=360°-(∠BPC+∠CPD)始终为135°,得点P在运动过程中,使得∠BPD=135°,即点P在正方形ABCD内,以A为圆心,AB长为半径的圆弧上,如解图,连接AP,AC,,由解图可得AP+CP≥AC,当A、P、C三点共线时,CP取得最小值,最小值为AC-AP,在Rt△ABC中,∵AB=BC=1,∴AC=AB2+BC2=2,∵AP=AB=1,∴CP最小=AC-AP=2-1,故选:D.3.(24-25九年级上·江苏宿迁)如图,在矩形ABCD中,AB=6,BC=8,点E、F分别是边AB、BC上的动点,且EF=4,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为()A.30B.32C.35D.38【答案】D【分析】首先连接AC,BG,证明G在以B为圆心,2为半径的圆弧上,过B作BH⊥AC于H,当G在BH 上时,△ACG面积取最小值,此时四边形AGCD面积取最小值,再进一步解答即可.解:连接AC,BG,∵矩形ABCD,∴∠ABC=90°,S矩形=48,∵EF=4,G为EF的中点,∴BG=12EF=2,∴G在以B为圆心,2为半径的圆弧上,过B作BH⊥AC于H,当G在BH上时,△ACG面积取最小值,此时四边形AGCD面积取最小值,四边形AGCD面积=三角形ACG面积+三角形ACD面积,即四边形AGCD面积=三角形ACG面积+24.设圆弧交BH于G ,此时四边形AGCD面积取最小值,由勾股定理得:AC=62+82=10,∵1 2AC⋅BH=12AB⋅BC,∴BH=4.8,∴G H=2.8,即四边形AGCD面积的最小值=12×10×2.8+24=38.故选:D.【点拨】本题考查了勾股定理及矩形中的与动点相关的最值问题,圆的确定,解题的关键是利用直角三角形斜边的直线等于斜边的一半确定出G点的运动轨迹.【题型2】 90°圆周角模型4.(2024·湖南娄底·一模)如图,正方形ABCD的边长为a,点E、F分别在BC、CD上,且BE=CF,AE与BF相交于点G,连接CG,则CG的最小值为.【答案】5-1 a2【分析】本题考查了正方形的性质,圆周角定理,勾股定理,以及全等三角形的判定与性质,熟练掌握90°的圆周角所对的弦是直径是解答本题的关键.通过证明△ABE ≌△BCF SAS ,可证∠AGB =90°,则点G 在以AB 为直径的一段弧上运动,当点G 在OC 与弧的交点处时,CG 最短,然后根据勾股定理求出OC 的长即可求解.解:∵四边形ABCD 是正方形,∴∠ABC =∠BCF =90°,AB =BC =a ,∴在△ABE 和△BCF 中,AB =BC∠ABC =∠BCFBE =CF∴△ABE ≌△BCF SAS ,∴∠BAE =∠CBF ,∵∠ABF +∠CBF =90°,∴∠ABF +∠BAE =90°,∴∠AGB =90°,∴点G 在以AB 为直径的一段弧上运动,设AB 的中点为O ,则当点G 在OC 与弧的交点处时,CG 最短,∵AB =a ,∴OB =OG =a 2,∴OC =a 2 2+a 2=52a ,∴CG=OC -OG =5-1 a 2,故答案为:5-1 a 2.5.(23-24九年级下·山东日照)如图,已知正方形ABCD 的边长为2,点F 是正方形内一点,连接CF ,DF ,且∠ADF =∠DCF ,点E 是AD 边上一动点,连接EB ,EF ,则EB +EF 长度的最小值为()A.13-1B.10-1C.10D.5+1【答案】A【分析】根据正方形的性质得到∠ADC=90°,推出∠DFC=90°,得到点F在以CD为直径的半圆上移动,如图,设CD的中点为O,正方形ABCD关于直线AD对称的正方形ADC B ,则点B 的对应点是B,连接B O交AD于E,交半圆O于F,线段B F的长即为EB+EF的长度最小值,根据勾股定理即可得到结论.解:∵四边形ABCD是正方形,∴∠ADC=90°,∴∠ADF+∠CDF=90°,∵∠ADF=∠DCF,∴∠DCF+∠CDF=90°,∴∠DFC=90°,∴点F在以CD为直径的半圆上移动,如图,设CD的中点为O,正方形ABCD关于直线AD对称的正方形ADC B ,则点B 的对应点是B,连接B O交AD于E,交半圆O于F,线段B F的长即为EB+EF的长度最小值,OF=1,∵∠C =90°,B C =C D =CD=2,∴OC =3,∴OB =B C 2+OC 2=13,∴B F=13-1,∴FD+FE的长度最小值为13-1,故选:A.【点拨】此题考查了正方形的性质,圆周角定理,轴对称的性质,点的运动轨迹,勾股定理,最小值问题,正确理解点的运动轨迹是解题的关键.6.(24-25九年级上·广东深圳·开学考试)如图,E,F是正方形ABCD的边AD上两个动点,满足AE= DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为1,则线段DH长度的最小值是()A.52-1 B.5-12C.52D.5-1【答案】B【分析】由SAS可判定△ABE≌△DCF,由全等三角形的性质得∠ABE=∠DCF,同理可证∠DCG=∠DAG,由角的和差得∠AHB=90°,取AB的中点O,连接OH,H的运动轨迹为以O为圆心,OH=1 2AB=12为半径的半圆,当O、H、D三点共线时,DH最小,即可求解.解:∵四边形ABCD是正方形,∴AB=AD=CD=1,∠BAE=∠CDF=90°,∠ADG=∠CDG,∵∠BAH+∠DAG=90°,在△ABE和△DCF中,AB=CD∠BAE=∠CDFAE=DF,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,AD=CD∠ADG=∠CDGDG=DG,∴△ADG≌△CDG(SAS),∴∠DCG=∠DAG,∴∠ABE=∠DAG,∴∠ABE+∠BAH=90°,∴∠AHB=90°,如下图,取AB的中点O,连接OH,∴OA=12,∴H的运动轨迹为以O为圆心,OH=12AB=12为半径的半圆,如图,当O、H、D三点共线时,DH最小,∴OD=OA2+AD2=122+12=52,∴DH=OD-OH=52-1 2=5-12;故选:B.【点拨】本题考查了正方形的性质,全等三角形的判定及性质,勾股定理,直角三角形的特征,圆外一点到圆上任一点距离的最值等;能找出动点的运动轨迹及取得最小值的条件,熟练利用勾股定咯求解是解题的关键.【题型3】 定弦定角模型7.(22-23九年级上·江苏南京·阶段练习)如图,CD是△ABC的高,若AB=2,∠ACB=45°,则CD长的最大值为()A.1+2B.4-2C.2D.4【答案】A【分析】在AB上方作以AB为斜边的等腰直角三角形△AOB,根据“定线段对定角度”确定点C在以O为圆心,OA长为半径的圆上运动,当CD经过圆心时CD最长,再计算即可.解:在AB上方作以AB为斜边的等腰直角三角形△AOB,∵∠ACB=45°∴点C在以O为圆心,OA长为半径的圆上运动,∵AB=2,∴OA=OC=2,当CD经过圆心时CD最长∵CD是△ABC的高,∴AD=BD=OD=1AB=12此时CD=OC+OD=2+1,故选:A.【点拨】本题考查几何最值问题,解题的关键是确定点C在以O为圆心,OA长为半径的圆上运动.8.(20-21九年级上·江苏无锡·期末)如图,在平面直角坐标系中,动点A、B分别在x轴上和函数y=x的图象上,AB=4,CB⊥AB,BC=2,则OC的最大值为()A.22+2B.22+4C.25D.25+2【答案】A【分析】根据y=x与x轴的夹角为45°,以AB为斜边作等腰直角三角形,连接AD,CD,OD,则∠DBC= 45°,根据勾股定理求得DB的长,进而证明△DCB是直角三角形,求得DC的长,根据OD+DC≥OC,即可求得OC的最大值解:如图,以AB为斜边作等腰直角三角形,连接AD,CD,OD,∵y=x与x轴的夹角为45°,∴∠AOB=45°=1∠ADB2∴A,O,B在⊙D上,∵AB=4,∠ADB=90°,∴BD=AD=22,∴∠ABD=45°∵BC⊥AB∴∠CBA=90°∴∠CBD=45°∴△BCD中BC=2,BD=22,∠CBD=45°过点C作CE⊥BD于点E,如图则BE=CE=2=DE∴CD=CB=2∵OD+DC≥OC∴当O,D,C三点共线时,OC取得最大值,最大值为OD+DC=DB+DC=22+2故选A【点拨】本题主要考查了勾股定理,同弧所对的圆周角等于圆心角的一半,找到⊙D是解决本题的关键.9.(19-20九年级上·浙江宁波·期末)如图,在等腰Rt△ABC中,∠BAC=90°,BC=2,点P是△ABC内部的一个动点,且满足∠PBC=∠PCA,则线段AP长的最小值为()A.0.5B.2-1C.2-2D.13【答案】C 【分析】先计算出∠PBC +∠PCB =45°,则∠BPC =135°,利用圆周角定理可判断点P 在以BC 为弦的⊙O 上,如图,连接OA 交BC 于P ′,作BC 所对的圆周角∠BQC ,利用圆周角定理计算出∠BOC =90°,从而得到△OBC 为等腰直角三角形,四边形ABOC 为正方形,所以OA =BC =2,OB =2,根据三角形三边关系得到AP ≥OA -OP (当且仅当A 、P 、O 共线时取等号,即P 点在P ′位置),于是得到AP 的最小值.解:解:∵△ABC 为等腰直角三角形,∴∠ACB =45°,即∠PCB +∠PCA =45°,∵∠PBC =∠PCA ,∴∠PBC +∠PCB =45°,∴∠BPC =135°,∴点P 在以BC 为弦的⊙O 上,如图,连接OA 交BC于P ′,作BC 所对的圆周角∠BQC ,则∠BCQ =180°-∠BPC =45°,∴∠BOC =2∠BQC =90°,∴△OBC 为等腰直角三角形,∴四边形ABOC 为正方形,∴OA =BC =2,∴OB =22BC =2,∵AP ≥OA -OP (当且仅当A 、P 、O 共线时取等号,即P 点在P ′位置),∴AP 的最小值为2-2.故选:C .【点拨】本题考查了圆周角定理及等腰直角三角形的性质.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.【题型4】四点共圆模型10.(22-23九年级上·黑龙江哈尔滨·阶段练习)如图,在四边形ABCD 中,∠ABC =∠D =90°,连接AC ,点F 为边CD 上一点,连接BF 交AC 于点E ,AB =AE ,∠FGC +∠FBG =90°,∠BFG +2∠GFC =180°,若AD =722,BG =4,则CG 的长为.【答案】8【分析】延长BA 与CD 的延长线相交于点H ,证明∠FGC =∠ABF ,∠GFC =∠BFD ,由三角形内角和定理得到∠H=∠ACB,BH=BC,进一步得到∠H=∠DAH=45°,则AD=DH=722,由勾股定理得到AH=AD2+DH2=7,证明点C、G、E、F四点共圆,如图,连接EG,证明CE=CG,设CE=CG=x,则BH=BC=4+x,AE=AB=x-3,AC=2x-3,由勾股定理得AB2+BC2=AC2,即x-32+x+42 =2x-32,解方程即可得到答案.解:延长BA与CD的延长线相交于点H,∵∠FGC+∠FBG=90°,∠FBG+∠ABF=∠ABC=90°∴∠FGC=∠ABF,∵∠BFG+2∠GFC=180°,∠BFG+∠BFD+∠CFG=180°,∴2∠GFC=∠BFD+∠CFG,∴∠GFC=∠BFD,∵∠H+∠ABF+∠BFD=180°=∠ACB+∠FGC+∠GFC,∴∠H=∠ACB,∵∠ABC=90°,∴∠H=∠ACB=45°,BH=BC,∵∠ADH=90°,∴∠H=∠DAH=45°,∴AD=DH=722,∴AH=AD2+DH2=7,∵AB=AE,∴∠ABE=∠AEB,∵∠FGC=∠ABE,∠CEF=∠AEB,∴∠FGC=∠CEF,∴点C、G、E、F四点共圆,如图,连接EG,∴∠GFC=∠CEG,∠BFD=∠CGE,∵∠GFC=∠BFD,∴∠CGE=∠CEG,∴CE=CG,设CE=CG=x,则BH=BC=BG+CG=4+x,∴AE=AB=BH-AH=x+4-7=x-3,∴AC=AE+CE=x-3+x=2x-3,由勾股定理得,AB2+BC2=AC2,∴x-32+x+42=2x-32,解得x=-1(不合题意,舍去)或x=8,∴CG=8,故答案为:8【点拨】此题考查了等腰直角三角形的判定和性质、勾股定理、等腰三角形的判定和性质、四点共圆、圆周角定理、圆内接四边形的性质、解一元二次方程等知识,关键在于等腰直角三角形的判定和性质与证明四点共圆.11.(24-25九年级上·江苏宿迁·阶段练习)如图,等边三角形ABC中,AB=5,P为AB边上一动点,PD⊥BC ,PE ⊥AC ,垂足分别为D ,E 则DE 的最小值为.【答案】154【分析】如图,连接PC ,取CP 的中点O ,连接OE ,OD ,过点O 作OH ⊥DE 于H ,首先证明△ODE 是顶角为120°的等腰三角形,当OE 的值最小时,DE 的值最小,即可求出PC 的最小值.解:如图,连接PC ,取CP 的中点O ,连接OE ,OD ,过点O 作OH ⊥DE 于H ,∵△ABC 是等边三角形,∴∠ACB =60°,AB =BC =AC =5,∵PD ⊥BC ,PE ⊥AC ,∴∠PEC =∠PDC =90°,∵OP =OC ,∴OE =OP =OC =OD ,∴C 、D 、P 、E 四点共圆,∴∠EOD =2∠ECD =120°,∴当OE 的值最小时,DE 的值最小,根据垂线段最短可得,当CP ⊥AB 时,PC =532,此时OE 最小,OE =534,∵OE =OD ,OH ⊥DE ,∴DH =EH ,∠DOH =∠EOH =60°,∴∠OEH =30°,∴OH =12OE =538,∴DH =EH =OE 2-OH 2=158,∴DE =2DH =154,∴DE 的值最小为154,故答案为:154.【点拨】本题考查了四点共圆、垂线段最短、圆周角定理、含30°角的直角三角形的性质、等腰直角三角形的判定与性质等知识;正确判断当CP ⊥AB 时OE 最小是解题的关键.12.(23-24九年级下·江苏南京·阶段练习)如图,在△ABC 中,∠ACB =90°,AC =BC =2,点P 是射线AB 上一动点,∠CPD =90°,且PC =PD ,连接AD 、CD ,则AD +CD 的最小值是.【答案】25【分析】取AC中点H,连接DH交AB于点G,连接BD,PH,当DH⊥AC时,DH有最小值,此时易得△ACD是等腰三角形,推出AD=CD,即AD,CD有最小值,则AD+CD有最小值,此时根据∠AHD=∠CHD=∠ACB=90°,推出DH∥BC,设CD中点为O,根据∠CHD=∠CPD=90°,易得点C,H,P,D在以点O为圆心CD为直径的圆上,易得∠CHP+∠PDC=180°,由∠ABC=45°,易得此时点B在圆O上,进而推出∠CBD+∠CPD=180°,则∠CBD=90°,得到四边形BCHD是矩形,即HD=BC=2,利用勾股定理即可计算出CD的最小值,进而得出结果.解:取AC中点H,连接DH交AB于点G,连接BD,PH,当DH⊥AC时,DH有最小值,∵点H是AC中点,DH⊥AC,∴△ACD是等腰三角形,∴AD=CD,∵AH,CH是定值,DH有最小值时,即AD,CD有最小值,则AD+CD有最小值,∵∠AHD=∠CHD=∠ACB=90°,∴DH∥BC,设CD中点为O,∵∠CHD=∠CPD=90°,∴点C,H,P,D在以点O为圆心CD为直径的圆上,∴∠CHP+∠PDC=180°,∵∠ABC=45°,∴此时点B在圆O上,∴∠CBD+∠CPD=180°,∴∠CBD=90°,∵DH∥BC,∴四边形BCHD是矩形,∴HD=BC=2,∵HC=1AC=1,2在Rt△CHD中,∴CD=CH2+HD2=5,∴AD+CD的最小值为2CD=25,故答案为:25.【点拨】本题考查勾股定理求最短距离,圆周角定理,四点共圆,等腰三角形的判定与性质,矩形的判定与性质,正确作出辅助线,证明四点共圆是解题的关键.第三部分【中考链接与拓展延伸】1、直通中考1.(2023·山东泰安·中考真题)如图,在平面直角坐标系中,Rt △AOB 的一条直角边OB 在x 轴上,点A 的坐标为(-6,4);Rt △COD 中,∠COD =90°,OD =43,∠D =30°,连接BC ,点M 是BC 中点,连接AM .将Rt △COD 以点O 为旋转中心按顺时针方向旋转,在旋转过程中,线段AM 的最小值是()A.3B.62-4C.213-2D.2【答案】A【分析】如图所示,延长BA 到E ,使得AE =AB ,连接OE ,CE ,根据点A 的坐标为(-6,4)得到BE =8,再证明AM 是△BCE 的中位线,得到AM =12CE ;解Rt △COD 得到OC =4,进一步求出点C 在以O 为圆心,半径为4的圆上运动,则当点M 在线段OE 上时,CE 有最小值,即此时AM 有最小值,据此求出CE 的最小值,即可得到答案.解:如图所示,延长BA 到E ,使得AE =AB ,连接OE ,CE ,∵Rt △AOB 的一条直角边OB 在x 轴上,点A 的坐标为(-6,4),∴AB =4,OB =6,∴AE =AB =4,∴BE =8,∵点M 为BC 中点,点A 为BE 中点,∴AM 是△BCE 的中位线,∴AM =12CE ;在Rt △COD 中,∠COD =90°,OD =43,∠D =30°,∴OC =33OD =4,∵将Rt △COD 以点O 为旋转中心按顺时针方向旋转,∴点C 在以O 为圆心,半径为4的圆上运动,∴当点M 在线段OE 上时,CE 有最小值,即此时AM 有最小值,∵OE =BE 2+OB 2=10,∴CE 的最小值为10-4=6,∴AM 的最小值为3,故选A .【点拨】本题主要考查了一点到圆上一点的最值问题,勾股定理,三角形中位线定理,坐标与图形,含30度角的直角三角形的性质等等,正确作出辅助线是解题的关键.2.(2022·广西柳州·中考真题)如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为.【答案】25-2【分析】如图,由EG=2,确定E在以G为圆心,半径为2的圆上运动,连接AE,再证明△ADE≌△CDF (SAS),可得AE=CF,可得当A,E,G三点共线时,AE最短,则CF最短,再利用勾股定理可得答案.解:如图,由EG=2,可得E在以G为圆心,半径为2的圆上运动,连接AE,∵正方形ABCD,∴AD=CD,∠ADC=90°,∴∠ADC=∠EDF=90°,∴∠ADE=∠CDF,∵DE=DF,∴△ADE≌△CDF(SAS),∴AE=CF,∴当A,E,G三点共线时,AE最短,则CF最短,∵G位BC中点,BC=AB=4,∴BG=2,此时AG=BG2+AB2=22+42=25,此时AE=25-2,所以CF的最小值为:25-2.故答案为:25-2【点拨】本题考查的是正方形的性质,圆的基本性质,勾股定理的应用,二次根式的化简,熟练的利用圆的基本性质求解线段的最小值是解本题的关键.2、拓展延伸3.(2022·辽宁抚顺·中考真题)如图,正方形ABCD的边长为10,点G是边CD的中点,点E是边AD上一动点,连接BE,将△ABE沿BE翻折得到△FBE,连接GF.当GF最小时,AE的长是.【答案】55-5【分析】根据动点最值问题的求解步骤:①分析所求线段端点(谁动谁定);②动点轨迹;③最值模型(比如将军饮马模型);④定线段;⑤求线段长(勾股定理、相似或三角函数),结合题意求解即可得到结论.解:①分析所求线段GF端点:G是定点、F是动点;②动点F的轨迹:正方形ABCD的边长为10,点E是边AD上一动点,连接BE,将△ABE沿BE翻折得到△FBE,连接GF,则BF=BA=10,因此动点轨迹是以B为圆心,BA=10为半径的圆周上,如图所示:③最值模型为点圆模型;④GF最小值对应的线段为GB-10;⑤求线段长,连接GB,如图所示:在RtΔBCG中,∠C=90°,正方形ABCD的边长为10,点G是边CD的中点,则CG=5,BC=10,根据勾股定理可得BG=CG2+BC2=52+102=55,当G、F、B三点共线时,GF最小为55-10,接下来,求AE的长:连接EG,如图所示=SΔEDG+SΔBCG+根据翻折可知EF=EA,∠EFB=∠EAB=90°,设AE=x,则根据等面积法可知S正方形SΔBAE+SΔBEG,即100=12DE⋅DG+12BC⋅CG+12AB⋅AE+12BG⋅EF=1 2510-x+5×10+10x+55x整理得5+1x=20,解得x=AE=205+1=205-15+15-1=55-5,故答案为:55-5.【点拨】本题考查动点最值下求线段长,涉及到动点最值问题的求解方法步骤,熟练掌握动点最值问题的相关模型是解决问题的关键.4.(2024·内蒙古兴安盟·二模)如图,在正方形ABCD中,点M,N分别为AB,BC上的动点,且AM= BN,DM,AN交于点E,点F为AB的中点,点P为BC上一个动点,连接PE,PF,若AB=4,则PE +PF的最小值为.【答案】210-2【分析】证明△DAM≌△ABN SAS,则∠ADM=∠BAN,∠AED=90°,如图,取AD的中点O,则E在以O为圆心,AD为直径的圆上运动,作F关于BC对称的点F ,连接PF ,连接OF 交⊙O于E ,则PF = PF,由PE+PF=PE+PF ,可知当O、E 、P、F 四点共线时,PE+PF最小为E F ,由勾股定理得,OF =AF 2+OA2=210,根据E F =OF -OE ,求解作答即可.解:∵正方形ABCD,∴AD=AB,∠DAM=∠ABN=90°,又∵AM=BN,∴△DAM≌△ABN SAS,∴∠ADM=∠BAN,∴∠ADM+∠DAE=∠BAN+∠DAE=90°,∴∠AED=90°,如图,取AD的中点O,则E在以O为圆心,AD为直径的圆上运动,作F关于BC对称的点F ,连接PF ,连接OF 交⊙O于E ,∴PF =PF,∴PE+PF=PE+PF ,∴当O、E 、P、F 四点共线时,PE+PF最小为E F ,由勾股定理得,OF =AF 2+OA2=62+22=210,∴E F =OF -OE =210-2,故答案为:210-2.【点拨】本题考查了正方形的性质,全等三角形的判定与性质,90°圆周角所对的弦为直径,轴对称的性质,勾股定理等知识.熟练掌握正方形的性质,全等三角形的判定与性质,90°圆周角所对的弦为直径,轴对称的性质,勾股定理是解题的关键.。

2020年九年级数学中考专题复习:隐形圆求最值问题(含答案)

2020年九年级数学中考专题复习:隐形圆求最值问题(含答案)

隐形圆问题一、确定动点轨迹是圆【例题1】如图,已知圆C的半径为3,圆外一定点O满足OC=5,点P为圆C上一动点,经过点O的直线l上有两点A,且OA=OB,∠APB=90°,l不过点C,则AB的最小值为【举一反三】1、如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A’MN,连接A’C,则A’C长度的最小值是第1题第2题2、如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E 为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是3、如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.当PB=6时,在直线l变化过程中,则△ACB’面积的最大值是.4、如图,矩形ABCD中,AB=4,BC=8,P、Q分別是直线BC、AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF、PD,则PF+PD的最小值是二、定边对直角知识回顾:直径所对的圆周角是直角构造思路:一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.图形释义:若AB是一条定线段,且∠APB-90°,则P点轨迹是以AB为直径的圆【例题1】已知正方形ABCD边长为2,E、F分别是BC、CD上的动点,且满足BE=CF,连接AE、BF,交点为P点,则PC的最小值为【举一反三】1、如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF,连接CF交BD于点G,连接BE交AG于点H,若正方形边长为2,则线段DH长度的最小值是2、如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB =∠PBC,则线段CP长的最小值是3、如图,AB是半圆O的直径,点C在半圆O上,AB=5,AC=4.D是弧BC上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为4、如图,在Rt△ABC中,∠BAC=90°,AC=12,AB=10,点D是AC上的一个动点,以AD为直径作圆O,连接BD交圆O于点E,则AE的最小值为5、如图,正方形ABCD的边长为4,动点E、F分別从点A、C同时出发,以相同的速度分别沿AB、CD向终点B、D移动,当点E到达点B时,运动停止,过点B作直线EF的垂线BG,垂足为点G,连接AG,则AG长的最小值为【辅助圆+将军饮马】如图,正方形ABCD的边长是4,点E是AD边上一动点,连接BE,过点A作AF⊥BE于点F,点P是AD边上另一动点,则PC+PF的最小值为【辅助圆+相切】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,D是BC上一动点,CE⊥AD于E,EF⊥AB交BC于点F,则CF的最大值是三、定边对定角在“定边对直角”问题中,依据“直径所对的圆周角是直角”,关键性在于寻找定边、直角,而根据圆周角定理:同圆或等圆中,同弧或等弧所対的圆周角都相.定边必不可少,而直角则可一般为定角.例如,AB为定值,∠P为定角,则P点轨迹是一个圆.当然,∠P度数也是特殊角,比如30°、45°、60°、120°,下面分别作对应的轨迹圆若∠P=30°,以AB为边,同侧构造等边三角形AOB,O即为圆心若∠P=45°,以AB为斜边,同侧构造等腰直角三角形AOB,O即为圆心.若∠P=60°,以AB为底,同侧构造顶角为120°的等腰三角形AOB,O即为圆心.若∠P=120°,以AB为底,异侧为边构造顶角为120°的等腰三角形AOB,O即为圆心.【例题1】如图,等边△ABC边长为2,E、F分別是BC、CA上两个动点,且BE=CF,连接AE、BF,交点为P点,则CP的最小值为【举一反三】1、如图,△ABC为等边三角形,AB=3,若P为△ABC内一动点,且满足∠P AB=∠ACP,则线段PB长度的最小值为2、在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是3、如图,AB是圆O的直径,M、N是弧AB(异于A、B)上两点,C是弧MN上一动点,∠ACB 的角平分线交圆O于点D,∠BAC的平分线交CD于点E,当点C从点M运动到点N时,则C、E两点的运动路径长的比是。

初中数学《隐形圆》模型梳理与题型分类含答案解析

初中数学《隐形圆》模型梳理与题型分类含答案解析

隐形圆(4大模型与6类题型)第一部分【模型梳理与题型目录】隐形圆模型是初中数学中的重要知识点,常用于解决一些看似没有直接使用圆的知识但实际上需要运用圆的性质来解决的问题,隐形圆常常用于解决最值问题.本专题梳理了隐形圆四大模型,供大家参考使用.【模型1】 定点定长模型【模型分析】(1)出现共端点、等线段时,可以利用圆的定义构造辅助圆;(2)如图1,若OA=OB =OC,则A、B、C在以O为圆心,OA为半径的圆上.由圆周角定理可得:∠ABC= 1∠AOC,∠ACB=12∠AOB,∠BAC=12∠BOC.2图1【模型2】 90°圆周角模型【模型分析】如图2,在△ABC中,∠C=90°,点C为动点,则点C的轨迹是以AB为直径的⊙O (不包含A、B两点).注:作出辅助圆是关键,计算时结合求点圆、线圆、最值等方法进行相关计算.图2应用:常用于解决直角三角形中动点的轨迹问题。

【模型3】 定弦定角模型【模型分析】固定的线段只要对应固定的角度,那么这个角的顶点轨迹为圆的一部分.如图①,在⊙O中,若弦AB长度固定,则弦AB所对的圆周角都相等;(注意:弦AB所对的劣弧(AB)上也有圆周角,需要根据题目灵活运用)如图②,若有一固定线段AB及线段AB所对的∠C大小固定,根据圆的知识可知点C不唯一.当∠C<90°时,点C在优弧上运动;当∠C=90°时,点C在半圆上运动,且线段AB是⊙O的直径;当∠C >90°时,点C在劣弧上运动.【模型4】‌四点共圆模型【模型分析】在四边形ABCD中,若∠A+∠C=1800,则A、B、C、D在圆O上,称之为A、B、C、D四点共圆.图3应用:常用于解决四点共圆的问题,如角度相等、线段最值等问题.【题型1】‌定点定长模型......................................................3;【模型2】 90°圆周角模型...................................................6;【题型3】‌定弦定角模型.....................................................11;【题型4】‌四点共圆模型.....................................................15;【题型5】直通中考.........................................................20;【题型6】拓展延伸.........................................................23.第二部分【题型展示与方法点拨】【题型1】 定点定长模型1.(23-24九年级上·福建福州·期末)如图,在等边△ABC中,AB=4,D,E分别是边AB,BC上的动点(不与△ABC的顶点重合),连接AE,CD相交于点F,连接BF,若∠BDF+∠BEF=180°,则BF的最小值为.【433/433【∠BDF +∠BEF =180°,∠DFE =120°,∠AFC =120°,F 在以O 为圆心OA 的长为半径∠AOC =120°的圆弧上运动OA ,OC ,OB ,OF ,OA =OC =OF ,BF ≥OB -OF ,△AOB ≌△COB ,△AOB 为含30度角的直角三角形进行求解即可.解∵等边△ABC ,∴∠ABC =60°,AB =BC ,∵∠BDF +∠BEF =180°,∴∠DFE +∠ABC =360°-∠BDF +∠BEF =180°,∴∠DFE =120°,∴∠AFC =120°,∴点F 在以O 为圆心OA 的长为半径∠AOC =120°的圆弧上运动OA ,OC ,OB ,OF ,OA =OC =OF ,BF ≥OB -OF ,∵AB =BC ,OB =OB ,OA =OC ,∴△AOB ≌△COB ,∴∠ABO =∠CBO =12∠ABC =30°,∠AOB =∠BOC =12∠AOC =60°,∴∠BAO =90°,∴BO =2AO ,AB =3AO =4,∴AO =433,∴BO =2OA =833,OF =AO =433,∴BF ≤433,BF 的最小值为433;故答案为433.【30度角的直角三角形一点到圆上一点的最值F 的运动轨迹.2.(24-25九年级上·全国·课后作业)如图,P 是边长为1的正方形ABCD 内的一个动点,且满足∠PBC +∠PDC =45°,则CP 的最小值是()A.2-2B.12C.22D.2-1【答案】D【分析】本题考查了正方形的性质、等腰直角三角形的性质、勾股定理、圆周角定理,在凹四边形BCDP中,求出∠BPD=135°,得点P在运动过程中,使得∠BPD=135°,即点P在正方形ABCD内,以A为圆心,AB长为半径的圆弧上,如解图,连接AP,AC,当A、P、C三点共线时,CP取得最小值,最小值为AC-AP,求出AC和AP的长度,即可得到结果,解本题的关键是证明∠BPD是定值,从而得到点P的轨迹.解:∵四边形ABCD是正方形,∴∠BCD=90°,在凹四边形BCDP中,∵∠BCD=90°,∠PBC+∠PDC=45°,∴∠BPC+∠CPD=360°-∠BCD-(∠PBC+∠PDC)=225°,∴∠BPD=360°-(∠BPC+∠CPD)始终为135°,得点P在运动过程中,使得∠BPD=135°,即点P在正方形ABCD内,以A为圆心,AB长为半径的圆弧上,如解图,连接AP,AC,,由解图可得AP+CP≥AC,当A、P、C三点共线时,CP取得最小值,最小值为AC-AP,在Rt△ABC中,∵AB=BC=1,∴AC=AB2+BC2=2,∵AP=AB=1,∴CP最小=AC-AP=2-1,故选:D.3.(24-25九年级上·江苏宿迁)如图,在矩形ABCD中,AB=6,BC=8,点E、F分别是边AB、BC上的动点,且EF=4,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为()A.30B.32C.35D.38【答案】D【分析】首先连接AC,BG,证明G在以B为圆心,2为半径的圆弧上,过B作BH⊥AC于H,当G在BH 上时,△ACG面积取最小值,此时四边形AGCD面积取最小值,再进一步解答即可.解:连接AC,BG,∵矩形ABCD,∴∠ABC=90°,S矩形=48,∵EF=4,G为EF的中点,∴BG=12EF=2,∴G在以B为圆心,2为半径的圆弧上,过B作BH⊥AC于H,当G在BH上时,△ACG面积取最小值,此时四边形AGCD面积取最小值,四边形AGCD面积=三角形ACG面积+三角形ACD面积,即四边形AGCD面积=三角形ACG面积+24.设圆弧交BH于G ,此时四边形AGCD面积取最小值,由勾股定理得:AC=62+82=10,∵1 2AC⋅BH=12AB⋅BC,∴BH=4.8,∴G H=2.8,即四边形AGCD面积的最小值=12×10×2.8+24=38.故选:D.【点拨】本题考查了勾股定理及矩形中的与动点相关的最值问题,圆的确定,解题的关键是利用直角三角形斜边的直线等于斜边的一半确定出G点的运动轨迹.【题型2】 90°圆周角模型4.(2024·湖南娄底·一模)如图,正方形ABCD的边长为a,点E、F分别在BC、CD上,且BE=CF,AE与BF相交于点G,连接CG,则CG的最小值为.【答案】5-1 a2【分析】本题考查了正方形的性质,圆周角定理,勾股定理,以及全等三角形的判定与性质,熟练掌握90°的圆周角所对的弦是直径是解答本题的关键.通过证明△ABE ≌△BCF SAS ,可证∠AGB =90°,则点G 在以AB 为直径的一段弧上运动,当点G 在OC 与弧的交点处时,CG 最短,然后根据勾股定理求出OC 的长即可求解.解:∵四边形ABCD 是正方形,∴∠ABC =∠BCF =90°,AB =BC =a ,∴在△ABE 和△BCF 中,AB =BC∠ABC =∠BCFBE =CF∴△ABE ≌△BCF SAS ,∴∠BAE =∠CBF ,∵∠ABF +∠CBF =90°,∴∠ABF +∠BAE =90°,∴∠AGB =90°,∴点G 在以AB 为直径的一段弧上运动,设AB 的中点为O ,则当点G 在OC 与弧的交点处时,CG 最短,∵AB =a ,∴OB =OG =a 2,∴OC =a 2 2+a 2=52a ,∴CG=OC -OG =5-1 a 2,故答案为:5-1 a 2.5.(23-24九年级下·山东日照)如图,已知正方形ABCD 的边长为2,点F 是正方形内一点,连接CF ,DF ,且∠ADF =∠DCF ,点E 是AD 边上一动点,连接EB ,EF ,则EB +EF 长度的最小值为()A.13-1B.10-1C.10D.5+1【答案】A【分析】根据正方形的性质得到∠ADC=90°,推出∠DFC=90°,得到点F在以CD为直径的半圆上移动,如图,设CD的中点为O,正方形ABCD关于直线AD对称的正方形ADC B ,则点B 的对应点是B,连接B O交AD于E,交半圆O于F,线段B F的长即为EB+EF的长度最小值,根据勾股定理即可得到结论.解:∵四边形ABCD是正方形,∴∠ADC=90°,∴∠ADF+∠CDF=90°,∵∠ADF=∠DCF,∴∠DCF+∠CDF=90°,∴∠DFC=90°,∴点F在以CD为直径的半圆上移动,如图,设CD的中点为O,正方形ABCD关于直线AD对称的正方形ADC B ,则点B 的对应点是B,连接B O交AD于E,交半圆O于F,线段B F的长即为EB+EF的长度最小值,OF=1,∵∠C =90°,B C =C D =CD=2,∴OC =3,∴OB =B C 2+OC 2=13,∴B F=13-1,∴FD+FE的长度最小值为13-1,故选:A.【点拨】此题考查了正方形的性质,圆周角定理,轴对称的性质,点的运动轨迹,勾股定理,最小值问题,正确理解点的运动轨迹是解题的关键.6.(24-25九年级上·广东深圳·开学考试)如图,E,F是正方形ABCD的边AD上两个动点,满足AE= DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为1,则线段DH长度的最小值是()A.52-1 B.5-12C.52D.5-1【答案】B【分析】由SAS可判定△ABE≌△DCF,由全等三角形的性质得∠ABE=∠DCF,同理可证∠DCG=∠DAG,由角的和差得∠AHB=90°,取AB的中点O,连接OH,H的运动轨迹为以O为圆心,OH=1 2AB=12为半径的半圆,当O、H、D三点共线时,DH最小,即可求解.解:∵四边形ABCD是正方形,∴AB=AD=CD=1,∠BAE=∠CDF=90°,∠ADG=∠CDG,∵∠BAH+∠DAG=90°,在△ABE和△DCF中,AB=CD∠BAE=∠CDFAE=DF,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,AD=CD∠ADG=∠CDGDG=DG,∴△ADG≌△CDG(SAS),∴∠DCG=∠DAG,∴∠ABE=∠DAG,∴∠ABE+∠BAH=90°,∴∠AHB=90°,如下图,取AB的中点O,连接OH,∴OA=12,∴H的运动轨迹为以O为圆心,OH=12AB=12为半径的半圆,如图,当O、H、D三点共线时,DH最小,∴OD=OA2+AD2=122+12=52,∴DH=OD-OH=52-1 2=5-12;故选:B.【点拨】本题考查了正方形的性质,全等三角形的判定及性质,勾股定理,直角三角形的特征,圆外一点到圆上任一点距离的最值等;能找出动点的运动轨迹及取得最小值的条件,熟练利用勾股定咯求解是解题的关键.【题型3】 定弦定角模型7.(22-23九年级上·江苏南京·阶段练习)如图,CD是△ABC的高,若AB=2,∠ACB=45°,则CD长的最大值为()A.1+2B.4-2C.2D.4【答案】A【分析】在AB上方作以AB为斜边的等腰直角三角形△AOB,根据“定线段对定角度”确定点C在以O为圆心,OA长为半径的圆上运动,当CD经过圆心时CD最长,再计算即可.解:在AB上方作以AB为斜边的等腰直角三角形△AOB,∵∠ACB=45°∴点C在以O为圆心,OA长为半径的圆上运动,∵AB=2,∴OA=OC=2,当CD经过圆心时CD最长∵CD是△ABC的高,∴AD=BD=OD=1AB=12此时CD=OC+OD=2+1,故选:A.【点拨】本题考查几何最值问题,解题的关键是确定点C在以O为圆心,OA长为半径的圆上运动.8.(20-21九年级上·江苏无锡·期末)如图,在平面直角坐标系中,动点A、B分别在x轴上和函数y=x的图象上,AB=4,CB⊥AB,BC=2,则OC的最大值为()A.22+2B.22+4C.25D.25+2【答案】A【分析】根据y=x与x轴的夹角为45°,以AB为斜边作等腰直角三角形,连接AD,CD,OD,则∠DBC= 45°,根据勾股定理求得DB的长,进而证明△DCB是直角三角形,求得DC的长,根据OD+DC≥OC,即可求得OC的最大值解:如图,以AB为斜边作等腰直角三角形,连接AD,CD,OD,∵y=x与x轴的夹角为45°,∴∠AOB=45°=1∠ADB2∴A,O,B在⊙D上,∵AB=4,∠ADB=90°,∴BD=AD=22,∴∠ABD=45°∵BC⊥AB∴∠CBA=90°∴∠CBD=45°∴△BCD中BC=2,BD=22,∠CBD=45°过点C作CE⊥BD于点E,如图则BE=CE=2=DE∴CD=CB=2∵OD+DC≥OC∴当O,D,C三点共线时,OC取得最大值,最大值为OD+DC=DB+DC=22+2故选A【点拨】本题主要考查了勾股定理,同弧所对的圆周角等于圆心角的一半,找到⊙D是解决本题的关键.9.(19-20九年级上·浙江宁波·期末)如图,在等腰Rt△ABC中,∠BAC=90°,BC=2,点P是△ABC内部的一个动点,且满足∠PBC=∠PCA,则线段AP长的最小值为()A.0.5B.2-1C.2-2D.13【答案】C 【分析】先计算出∠PBC +∠PCB =45°,则∠BPC =135°,利用圆周角定理可判断点P 在以BC 为弦的⊙O 上,如图,连接OA 交BC 于P ′,作BC 所对的圆周角∠BQC ,利用圆周角定理计算出∠BOC =90°,从而得到△OBC 为等腰直角三角形,四边形ABOC 为正方形,所以OA =BC =2,OB =2,根据三角形三边关系得到AP ≥OA -OP (当且仅当A 、P 、O 共线时取等号,即P 点在P ′位置),于是得到AP 的最小值.解:解:∵△ABC 为等腰直角三角形,∴∠ACB =45°,即∠PCB +∠PCA =45°,∵∠PBC =∠PCA ,∴∠PBC +∠PCB =45°,∴∠BPC =135°,∴点P 在以BC 为弦的⊙O 上,如图,连接OA 交BC于P ′,作BC 所对的圆周角∠BQC ,则∠BCQ =180°-∠BPC =45°,∴∠BOC =2∠BQC =90°,∴△OBC 为等腰直角三角形,∴四边形ABOC 为正方形,∴OA =BC =2,∴OB =22BC =2,∵AP ≥OA -OP (当且仅当A 、P 、O 共线时取等号,即P 点在P ′位置),∴AP 的最小值为2-2.故选:C .【点拨】本题考查了圆周角定理及等腰直角三角形的性质.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.【题型4】四点共圆模型10.(22-23九年级上·黑龙江哈尔滨·阶段练习)如图,在四边形ABCD 中,∠ABC =∠D =90°,连接AC ,点F 为边CD 上一点,连接BF 交AC 于点E ,AB =AE ,∠FGC +∠FBG =90°,∠BFG +2∠GFC =180°,若AD =722,BG =4,则CG 的长为.【答案】8【分析】延长BA 与CD 的延长线相交于点H ,证明∠FGC =∠ABF ,∠GFC =∠BFD ,由三角形内角和定理得到∠H=∠ACB,BH=BC,进一步得到∠H=∠DAH=45°,则AD=DH=722,由勾股定理得到AH=AD2+DH2=7,证明点C、G、E、F四点共圆,如图,连接EG,证明CE=CG,设CE=CG=x,则BH=BC=4+x,AE=AB=x-3,AC=2x-3,由勾股定理得AB2+BC2=AC2,即x-32+x+42 =2x-32,解方程即可得到答案.解:延长BA与CD的延长线相交于点H,∵∠FGC+∠FBG=90°,∠FBG+∠ABF=∠ABC=90°∴∠FGC=∠ABF,∵∠BFG+2∠GFC=180°,∠BFG+∠BFD+∠CFG=180°,∴2∠GFC=∠BFD+∠CFG,∴∠GFC=∠BFD,∵∠H+∠ABF+∠BFD=180°=∠ACB+∠FGC+∠GFC,∴∠H=∠ACB,∵∠ABC=90°,∴∠H=∠ACB=45°,BH=BC,∵∠ADH=90°,∴∠H=∠DAH=45°,∴AD=DH=722,∴AH=AD2+DH2=7,∵AB=AE,∴∠ABE=∠AEB,∵∠FGC=∠ABE,∠CEF=∠AEB,∴∠FGC=∠CEF,∴点C、G、E、F四点共圆,如图,连接EG,∴∠GFC=∠CEG,∠BFD=∠CGE,∵∠GFC=∠BFD,∴∠CGE=∠CEG,∴CE=CG,设CE=CG=x,则BH=BC=BG+CG=4+x,∴AE=AB=BH-AH=x+4-7=x-3,∴AC=AE+CE=x-3+x=2x-3,由勾股定理得,AB2+BC2=AC2,∴x-32+x+42=2x-32,解得x=-1(不合题意,舍去)或x=8,∴CG=8,故答案为:8【点拨】此题考查了等腰直角三角形的判定和性质、勾股定理、等腰三角形的判定和性质、四点共圆、圆周角定理、圆内接四边形的性质、解一元二次方程等知识,关键在于等腰直角三角形的判定和性质与证明四点共圆.11.(24-25九年级上·江苏宿迁·阶段练习)如图,等边三角形ABC中,AB=5,P为AB边上一动点,PD⊥BC ,PE ⊥AC ,垂足分别为D ,E 则DE 的最小值为.【答案】154【分析】如图,连接PC ,取CP 的中点O ,连接OE ,OD ,过点O 作OH ⊥DE 于H ,首先证明△ODE 是顶角为120°的等腰三角形,当OE 的值最小时,DE 的值最小,即可求出PC 的最小值.解:如图,连接PC ,取CP 的中点O ,连接OE ,OD ,过点O 作OH ⊥DE 于H ,∵△ABC 是等边三角形,∴∠ACB =60°,AB =BC =AC =5,∵PD ⊥BC ,PE ⊥AC ,∴∠PEC =∠PDC =90°,∵OP =OC ,∴OE =OP =OC =OD ,∴C 、D 、P 、E 四点共圆,∴∠EOD =2∠ECD =120°,∴当OE 的值最小时,DE 的值最小,根据垂线段最短可得,当CP ⊥AB 时,PC =532,此时OE 最小,OE =534,∵OE =OD ,OH ⊥DE ,∴DH =EH ,∠DOH =∠EOH =60°,∴∠OEH =30°,∴OH =12OE =538,∴DH =EH =OE 2-OH 2=158,∴DE =2DH =154,∴DE 的值最小为154,故答案为:154.【点拨】本题考查了四点共圆、垂线段最短、圆周角定理、含30°角的直角三角形的性质、等腰直角三角形的判定与性质等知识;正确判断当CP ⊥AB 时OE 最小是解题的关键.12.(23-24九年级下·江苏南京·阶段练习)如图,在△ABC 中,∠ACB =90°,AC =BC =2,点P 是射线AB 上一动点,∠CPD =90°,且PC =PD ,连接AD 、CD ,则AD +CD 的最小值是.【答案】25【分析】取AC中点H,连接DH交AB于点G,连接BD,PH,当DH⊥AC时,DH有最小值,此时易得△ACD是等腰三角形,推出AD=CD,即AD,CD有最小值,则AD+CD有最小值,此时根据∠AHD=∠CHD=∠ACB=90°,推出DH∥BC,设CD中点为O,根据∠CHD=∠CPD=90°,易得点C,H,P,D在以点O为圆心CD为直径的圆上,易得∠CHP+∠PDC=180°,由∠ABC=45°,易得此时点B在圆O上,进而推出∠CBD+∠CPD=180°,则∠CBD=90°,得到四边形BCHD是矩形,即HD=BC=2,利用勾股定理即可计算出CD的最小值,进而得出结果.解:取AC中点H,连接DH交AB于点G,连接BD,PH,当DH⊥AC时,DH有最小值,∵点H是AC中点,DH⊥AC,∴△ACD是等腰三角形,∴AD=CD,∵AH,CH是定值,DH有最小值时,即AD,CD有最小值,则AD+CD有最小值,∵∠AHD=∠CHD=∠ACB=90°,∴DH∥BC,设CD中点为O,∵∠CHD=∠CPD=90°,∴点C,H,P,D在以点O为圆心CD为直径的圆上,∴∠CHP+∠PDC=180°,∵∠ABC=45°,∴此时点B在圆O上,∴∠CBD+∠CPD=180°,∴∠CBD=90°,∵DH∥BC,∴四边形BCHD是矩形,∴HD=BC=2,∵HC=1AC=1,2在Rt△CHD中,∴CD=CH2+HD2=5,∴AD+CD的最小值为2CD=25,故答案为:25.【点拨】本题考查勾股定理求最短距离,圆周角定理,四点共圆,等腰三角形的判定与性质,矩形的判定与性质,正确作出辅助线,证明四点共圆是解题的关键.第三部分【中考链接与拓展延伸】1、直通中考1.(2023·山东泰安·中考真题)如图,在平面直角坐标系中,Rt △AOB 的一条直角边OB 在x 轴上,点A 的坐标为(-6,4);Rt △COD 中,∠COD =90°,OD =43,∠D =30°,连接BC ,点M 是BC 中点,连接AM .将Rt △COD 以点O 为旋转中心按顺时针方向旋转,在旋转过程中,线段AM 的最小值是()A.3B.62-4C.213-2D.2【答案】A【分析】如图所示,延长BA 到E ,使得AE =AB ,连接OE ,CE ,根据点A 的坐标为(-6,4)得到BE =8,再证明AM 是△BCE 的中位线,得到AM =12CE ;解Rt △COD 得到OC =4,进一步求出点C 在以O 为圆心,半径为4的圆上运动,则当点M 在线段OE 上时,CE 有最小值,即此时AM 有最小值,据此求出CE 的最小值,即可得到答案.解:如图所示,延长BA 到E ,使得AE =AB ,连接OE ,CE ,∵Rt △AOB 的一条直角边OB 在x 轴上,点A 的坐标为(-6,4),∴AB =4,OB =6,∴AE =AB =4,∴BE =8,∵点M 为BC 中点,点A 为BE 中点,∴AM 是△BCE 的中位线,∴AM =12CE ;在Rt △COD 中,∠COD =90°,OD =43,∠D =30°,∴OC =33OD =4,∵将Rt △COD 以点O 为旋转中心按顺时针方向旋转,∴点C 在以O 为圆心,半径为4的圆上运动,∴当点M 在线段OE 上时,CE 有最小值,即此时AM 有最小值,∵OE =BE 2+OB 2=10,∴CE 的最小值为10-4=6,∴AM 的最小值为3,故选A .【点拨】本题主要考查了一点到圆上一点的最值问题,勾股定理,三角形中位线定理,坐标与图形,含30度角的直角三角形的性质等等,正确作出辅助线是解题的关键.2.(2022·广西柳州·中考真题)如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为.【答案】25-2【分析】如图,由EG=2,确定E在以G为圆心,半径为2的圆上运动,连接AE,再证明△ADE≌△CDF (SAS),可得AE=CF,可得当A,E,G三点共线时,AE最短,则CF最短,再利用勾股定理可得答案.解:如图,由EG=2,可得E在以G为圆心,半径为2的圆上运动,连接AE,∵正方形ABCD,∴AD=CD,∠ADC=90°,∴∠ADC=∠EDF=90°,∴∠ADE=∠CDF,∵DE=DF,∴△ADE≌△CDF(SAS),∴AE=CF,∴当A,E,G三点共线时,AE最短,则CF最短,∵G位BC中点,BC=AB=4,∴BG=2,此时AG=BG2+AB2=22+42=25,此时AE=25-2,所以CF的最小值为:25-2.故答案为:25-2【点拨】本题考查的是正方形的性质,圆的基本性质,勾股定理的应用,二次根式的化简,熟练的利用圆的基本性质求解线段的最小值是解本题的关键.2、拓展延伸3.(2022·辽宁抚顺·中考真题)如图,正方形ABCD的边长为10,点G是边CD的中点,点E是边AD上一动点,连接BE,将△ABE沿BE翻折得到△FBE,连接GF.当GF最小时,AE的长是.【答案】55-5【分析】根据动点最值问题的求解步骤:①分析所求线段端点(谁动谁定);②动点轨迹;③最值模型(比如将军饮马模型);④定线段;⑤求线段长(勾股定理、相似或三角函数),结合题意求解即可得到结论.解:①分析所求线段GF端点:G是定点、F是动点;②动点F的轨迹:正方形ABCD的边长为10,点E是边AD上一动点,连接BE,将△ABE沿BE翻折得到△FBE,连接GF,则BF=BA=10,因此动点轨迹是以B为圆心,BA=10为半径的圆周上,如图所示:③最值模型为点圆模型;④GF最小值对应的线段为GB-10;⑤求线段长,连接GB,如图所示:在RtΔBCG中,∠C=90°,正方形ABCD的边长为10,点G是边CD的中点,则CG=5,BC=10,根据勾股定理可得BG=CG2+BC2=52+102=55,当G、F、B三点共线时,GF最小为55-10,接下来,求AE的长:连接EG,如图所示=SΔEDG+SΔBCG+根据翻折可知EF=EA,∠EFB=∠EAB=90°,设AE=x,则根据等面积法可知S正方形SΔBAE+SΔBEG,即100=12DE⋅DG+12BC⋅CG+12AB⋅AE+12BG⋅EF=1 2510-x+5×10+10x+55x整理得5+1x=20,解得x=AE=205+1=205-15+15-1=55-5,故答案为:55-5.【点拨】本题考查动点最值下求线段长,涉及到动点最值问题的求解方法步骤,熟练掌握动点最值问题的相关模型是解决问题的关键.4.(2024·内蒙古兴安盟·二模)如图,在正方形ABCD中,点M,N分别为AB,BC上的动点,且AM= BN,DM,AN交于点E,点F为AB的中点,点P为BC上一个动点,连接PE,PF,若AB=4,则PE +PF的最小值为.【答案】210-2【分析】证明△DAM≌△ABN SAS,则∠ADM=∠BAN,∠AED=90°,如图,取AD的中点O,则E在以O为圆心,AD为直径的圆上运动,作F关于BC对称的点F ,连接PF ,连接OF 交⊙O于E ,则PF = PF,由PE+PF=PE+PF ,可知当O、E 、P、F 四点共线时,PE+PF最小为E F ,由勾股定理得,OF =AF 2+OA2=210,根据E F =OF -OE ,求解作答即可.解:∵正方形ABCD,∴AD=AB,∠DAM=∠ABN=90°,又∵AM=BN,∴△DAM≌△ABN SAS,∴∠ADM=∠BAN,∴∠ADM+∠DAE=∠BAN+∠DAE=90°,∴∠AED=90°,如图,取AD的中点O,则E在以O为圆心,AD为直径的圆上运动,作F关于BC对称的点F ,连接PF ,连接OF 交⊙O于E ,∴PF =PF,∴PE+PF=PE+PF ,∴当O、E 、P、F 四点共线时,PE+PF最小为E F ,由勾股定理得,OF =AF 2+OA2=62+22=210,∴E F =OF -OE =210-2,故答案为:210-2.【点拨】本题考查了正方形的性质,全等三角形的判定与性质,90°圆周角所对的弦为直径,轴对称的性质,勾股定理等知识.熟练掌握正方形的性质,全等三角形的判定与性质,90°圆周角所对的弦为直径,轴对称的性质,勾股定理是解题的关键.。

隐形圆解决最值及面积问题 - 含答案

隐形圆解决最值及面积问题 - 含答案

定弦定角最值问题【定弦定角题型的识别】有一个定弦,一个主动点,一个从动点,定弦所对的张角固定不变。

【题目类型】图形中一般求一个从动点到一个定点线段长度最值问题,一般涉及定弦定角最值问题【解题原理】同弧所对的圆周角相等,定弦的同侧两个圆周角相等,则四点共圆,因此动点的轨迹是圆。

(线段同侧的两点对线段的张角相等,则这两点以及线段的两个端点共圆。

)【一般解题步骤】①让主动点动一下,观察从动点的运动轨迹,发现从动点的运动轨迹是一段弧。

②寻找不变的张角(这个时候一般是找出张角的补角,这个补角一般为45°、60°或者一个确定的三角函数的对角等)③找张角所对的定弦,根据三点确定隐形圆。

④确定圆心位置,计算隐形圆半径。

⑤求出隐形圆圆心至所求线段定点的距离。

⑥计算最值:在此基础上,根据点到圆的距离求最值(最大值或最小值)。

典型例题讲解1.如图,△ABC中,AC=3,BC=24,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC于E点,弧AE=CP,则AD的最小值为()A.1 B.2 C.2D.2414解:∵∠CDP=∠ACB=45°∴∠BDC=135°(定弦定角最值)如图,当AD过O′时,AD有最小值∵∠BDC=135°∴∠BO′C=90°∴△BO′C为等腰直角三角形∴∠ACO′=45°+45°=90°∴AO′=5又O′B=O′C=4 ∴AD=5-4=12.如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为()16A.213+C.5 D.13-B.29解:连接AE∵AD为⊙O的直径∴∠AEB=∠AED=90°∴E点在以AB为直径的圆上运动当CE过圆心O′时,CE有最小值为213-3.如图,在△ABC中,AC=3,BC=24,∠ACB=45°,AM∥BC,点P在射线AM上运动,连BP交△APC的外接圆于D,则AD的最小值为()A.1 B.2C.2D.34-2解:连接CD∴∠PAC=∠PDC=∠ACB=45°∴∠BDC=135°如图,当AD过圆心O′时,AD有最小值∵∠BDC=135°∴∠BO′C=90°∴O′B=O′C=4又∵∠ACO′=90°∴AO′=5 ∴AD的最小值为5-4=14.如图,⊙O的半径为2,弦AB的长为32,点P为优弧AB上一动点,AC⊥AP交直线PB 于点C,则△ABC的面积的最大值是()A.312+D.346+6312+B.336+C.35.如图,⊙O 的半径为1,弦AB =1,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( )A .21 B .22 C .23 D .436.如图,A(1,0)、B(3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕O 点旋转时,CD 的最小值为__________解:连接DM∵D 是弦EF 的中点 ∴DM ⊥EF ∴点D 在以A 为圆心的,OM 为直径的圆上运动当CD 过圆心A 时,CD 有最小值,连接CM∵C 为弧AB 的中点∴CM ⊥AB ∴CD 的最小值为127.如图,AB 是⊙O 的直径,AB =2,∠ABC =60°,P 是上一动点,D 是AP 的中点,连接CD ,则CD 的最小值为__________解:连接OD ∵D 为弦AP 的中点∴OD ⊥AP ∴点D 在以AO 为直径的圆上运动当CD 过圆心O ′时,CD 有最小值,过点C 作CM ⊥AB 于M∵OB =OC ,∠ABC =60°∴△OBC 为等边三角形∴OM =21,CM =23∴O ′C =47∴CD 的最小值为2147- 8.如图,在矩形ABCD 中,AB =4,AD =6,E 是AB 边的中点,F 是线段BC 边上的动点,将△EBF 沿EF 所在直线折叠得到△EB ′F ,连结B ′D ,则B ′D 的最小值是( ).A. B.6 C. D.4【思路探究】根据E 为AB 中点,BE =B ′E 可知,点A 、B 、B ′在以点E 为圆心,AE 长为半径的圆上,D 、E 为定点,B ′是动点,当E 、B ′、D 三点共线时,B ′D 的长最小,此时B ′D =DE -EB ′,问题得解.【解析】∵AE =BE ,BE =B ′E ,由圆的定义可知,A 、B 、B ′在以点E 为圆心,AB 长为直径的圆上,如图所示. B ′D 的长最小值= DE -EB.故选A.【启示】此题属于动点(B ′)到一定点(E )的距离为定值(“定点定长”),联想到以E 为圆心,EB ′为半径的定圆,当点D 到圆上的最小距离为点D 到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如,当且仅当点E 、B ′、D 三点共线时,等号成立.9.如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE =DF ,连接CF 交BD 于点G ,连结BE 交AG 于点H ,若正方形的边长是2,则线段DH 长度的最小值是 .【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H 在以AB 为直径的圆上.取AB 中点O ,当D 、H 、O 三点共线时,DH 的值最小,此时DH =OD -OH ,问题得解.【解析】由△ABE ≌△DCF ,得∠ABE =∠DCF ,根据正方形的轴对称性,可得∠DCF =∠DAG ,∠ABE =∠DAG ,所以∠AHB =90°,故点H 在以AB 为直径的圆弧上.取AB 中点O ,OD交⊙O 于点H ,此时DH 最小,∵OH =,OD ,∴DH 的最小值为OD -OH . 22=B D DE B E ''≤-HGB A 112AB =1【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H 在以AB 为直径的圆上,点D 在圆外,DH 的最小值为DO -OH.当然此题也可利用的基本模型解决.如图,在矩形ABCD 中,AB =4,AD =6,E 是AB 边的中点,F 是线段BC 边上的动点,将△EBF 沿EF 所在直线折叠得到△EB′F ,连结B′D ,则B′D 的最小值是( ).A. B .6 C . D .4【思路探究】根据E 为AB 中点,BE =B′E 可知,点A 、B 、B′在以点E 为圆心,AE 长为半径的圆上,D 、E 为定点,B′是动点,当E 、B′、D 三点共线时,B′D 的长最小,此时B′D =DE -EB′,问题得解.【解析】∵AE =BE ,BE =B′E ,由圆的定义可知,A 、B 、B′在以点E 为圆心,AB 长为直径的圆上,如图所示. B′D 的长最小值= DE -EB′.故选A .【启示】此题属于动点(B′)到一定点(E )的距离为定值(“定点定长”),联想到以E 为圆心,EB′为半径的定圆,当点D 到圆上的最小距离为点D 到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如,当且仅当点E 、B′、D 三点共线时,等号成立.【典例2】如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE =DF ,连接CF 交BD 于点G ,连结BE 交AG 于点H ,若正方形的边长是2,则线段DH 长度的最小值是.【思路探究】根据正方形的轴对称性易得∠AHB =90°,故点H 在以AB 为直径的圆上.取AB 中点O ,当D 、H 、O 三点共线时,DH 的值最小,此时DH =OD -OH ,问题得解.【解析】由△ABE ≌△DCF ,得∠ABE =∠DCF ,根据正方形的轴对称性,可得∠DCF =∠DAG ,∠ABE =∠DAG ,所以∠AHB =90°,故点H 在以AB 为直径的圆弧上.取AB 中点O ,OD 交⊙O 于点H ,此时DH 最小,∵OH =,OD ,∴DH 的最小值为OD -OH .【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H 在以AB 为直径的圆上,点D 在圆外,DH 的最小值为DO -OH .当然此题也可利用的基本模型解决.DH OD OH ≤-22=B D DE B E ''≤-HGA 112AB =1DH OD OH ≤-【针对训练 】1. 如图,在△ABC 中,∠ACB =90°,AC =2,BC =1,点A ,C 分别在x 轴,y 轴上,当点A 在轴正半轴上运动时,点C 随之在轴上运动,在运动过程中,点B 到原点O 的最大距离为( ).A. B . C . D .3作AC 的中点D ,连接OD 、BD ,∵OB ≤OD+BD ,∴当O 、D 、B 三点共线时OB 取得最大值,∵BD=2,OD=AD=21AC=1, ∴点B 到原点O 的最大距离为1+2.故选C2.如图,在矩形ABCD 中,AB =4,BC =6,E 是矩形内部的一个动点,且AE ⊥BE ,则线段CE 的最小值为( ).A .B .C .D .4 3. 如图,在△ABC 中,AB =10,AC =8,BC =6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P 、Q 分别是边BC 和半圆上的运点,连接PQ ,则PQ 长的最大值与最小值的和是( ).A .6B .C .9D .优质解答如图,设 O 与AC 相切于点E ,连接OE ,作OP 1⊥BC 垂足为P 1交 O 于Q 1,此时垂线段OP 1最短,P 1Q 1最小值为OP 1-OQ 1,∵AB=10,AC=8,BC=6,∴AB 2=AC 2+BC 2,∴∠C=90°,∵∠OP 1B=90°,∴OP 1∥AC ∵AO=OB ,∴P 1C=P 1B ,∴OP 1=21AC=4,∴P 1Q 1最小值为OP 1-OQ 1=1, x y 5612+32210-2213-22131+322如图,当Q 2在AB 边上时,P 2与B 重合时,P 2Q 2经过圆心,经过圆心的弦最长, P 2Q 2最大值=5+3=8,∴PQ 长的最大值与最小值的和是9.故答案为:9.4.如图,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE ,则CE 的最小值为( ).A. B . C .5 D .5.如图,已知正方形ABCD 的边长为2,E 是BC 边上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG ,则CG 的最小值为( ).A .B .C .D .6.如图,△ABC 、△EFG 是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FG 相交于点M ,当△EFG 绕点D 旋转时,线段BM 长的最小值是A .B .C .D .7.如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连结A′C ,则A′C 长度的最小值是 .8.(2017威海)如图,△ABC 为等边三角形,AB =2,若点P 为△ABC 内一动点,且满足∠PAB =∠ACP ,则线段PB 长度的最小值为 .解答 解:∵△ABC 是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=2,∵∠PAB=∠ACP ,∴∠PAC+∠ACP=60°,∴∠APC=120°,∴点P 的运动轨迹是弧AC , 当O 、P 、B 共线时,PB 长度最小,设OB 交AC 于D ,如图所示:213-213+91651-31-21-21+23-31+231-此时PA=PC,OB⊥AC,。

隐形圆中求最值

隐形圆中求最值

利用隐形圆求最值定线+定角1.依据:与一条定线的两端夹角一定的动点路径是以定线为弦,定角为圆周角的弧。

1.如图,△ABC中,∠ABC=90°,AB=6,BC=8,O为AC的中点,过O作OE⊥OF,OE、OF分别交射线AB、BC于E、F,则EF的最小值为.2在Rt△ABC中,∠A CB=90°,AC=12,BC=5,点D是边BC上一个动点,连接AD,作CE⊥AD于点E,再连接BE,求BE的最小值是_______________3.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB+∠PBA=90°,则线段CP长的最小值为.4.在正方形ABCD中,点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,若AD=4,试求出线段CP的最小值.5.直线y=x+4分别与x轴、y轴相交于点M,N,边长为2的正方形OABC一个顶点O在坐标系的原点,直线AN与MC相交于点P,若正方形绕着点O旋转一周,则点P到点(0,2)长度的最小值是()定点+定长1.依据:到定点的距离等于定长的点的集合是以定点为圆心定长为半径的圆。

6.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是()7如图,直线y=﹣x+3与x轴、y轴分别交于A、B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最小值是()8如图,四边形ABCD中,AB=AC=AD,若∠CAD=76°,则∠CBD=度.9.如图,在△ABC中,∠B=75°,∠C=45°,BC=6﹣2,点P是BC上一动点,PD⊥AC于D,PE⊥AB于E.无论P的位置如何变化,线段DE的最小值为()10.如图,矩形ABCD中,AB=2,AD=3,点E、F分别为AD、DC边上的点,且EF=2,点G为EF的中点,点P为BC上一动点,则PA+PG的最小值为()11.如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.12.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AB=6.点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是.13如图,在平行四边形ABCD中,∠BCD=30°,BC=4,CD=3,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.14.在矩形ABCD中,AB=10,AD=4,点P是CD上的动点,当∠APB=90°J ,则DP的长是_15在锐角三角形ABC中,AB=2,AC=6, ∠ACB=45°, 点D是平面内一点,且∠ADB=45°,则线段CD的最小值是___________16.如图,在边长为的等边△ABC中,动点D,E分别在BC,AC边上,且保持AE=CD,连接BE,AD,相交于点P,则CP的最小值为.17.边长为2的等边△ABC的顶点A在x轴的正半轴上移动,顶点B在射线OD上移动,∠AOD=45°,则顶点C到原点O的最大距离为.18.如图,正方形ABCD中,AB=2,E是BC中点,CD上有一动点M,连接EM、BM,将△BEM沿着BM翻折得到△BFM.连接DF、CF,则DF+FC的最小值为.19.如图,点A是直线y=﹣x上的动点,点B是x轴上的动点,若AB=2,则△AOB面积的最大值为__________20.如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE,CF相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是.21如图,在矩形纸片ABCD中,已知AB=1,BC=,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE翻折,得到多边形AB′C′E,点B、C的对应点分别为点B′、C′.(1)当B′C′恰好经过点D时(如图1),求线段CE的长;(2)若B′C′分别交边AD,CD于点F,G,且∠DAE=22.5°(如图2),求△DFG的面积;(3)在点E从点C移动到点D的过程中,求点C′运动的路径长.22如图,△ABC为等边三角形,D、E分别是边AB、BC所在直线上的两个动点,且满足AD=BE,连接AE、CD,直线AE、CD交于点P.如图(1),当点D、E在线段AB、BC上时,求∠APC的度数;如图(2),当点D、E分别是AB、BC延长线上的两个动点,连接AE、CD,DC的延长线与AE交于点P,求∠APC的度数;若等边三角形边长为2,当D、E在运动的过程中,连接BP,直接写出线段BP的最小值和最大值.21.(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB 周长的最大值;问题解决(3)如图③,AC为边长为2的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.。

2020年中考数学解题技巧专题训练:隐圆问题训练(含答案)

2020年中考数学解题技巧专题训练:隐圆问题训练(含答案)

图 F10-4 方法技巧专题: 隐圆问题训练巴Q 有些数学问题,将圆隐藏在已知条件里,隐晦地考查点和圆、直线和圆的位置关系 .解题时,需要我们 通过分析探索,发现这些隐藏的圆(简称隐圆,再利用和圆有关的一些知识进行求解 .常见的隐圆模型有:定弦对 定角;动点到定点的距离为定长;四点共圆等.1 .[2019徐州一模]在矩形ABCD 中,已知AB=2 cm,BC=3 cm,现有一根长为2 cm 的木棒EF 紧贴着矩形的边(即 两个端点始终落在矩形的边上,按逆时针方向滑动一周,则木棒的中点P 在运动过程中所围成的图形的面积为A.6 cm 2C.(2+ 兀)crm 2 .如图 F10-1,已知 AB=AC=AD ,/CBD= 2/BDC, / BAC= 44〉贝U/CAD 的度数为图 F10-13 .如图 F10-2 所示,四边形 ABCD 中,DC//AB,BC=1,AB=AC=AD= 2,则 BD 的长为4 .如图F10-3,在矩形ABCD 中,AB=4,AD=6,E 是AB 边的中点,F 是线段CB 边上的动点,将△ EBF 沿EF 所在直线折叠彳#到^ EB'F,连ZB'D,则B'D 的最小值是 .图 F10-35 .如图F10-4,矩形ABCD 中,AB=2,AD=3,点E,F 分别为AD,DC 边上的点,且EF=2,点G 为EF 的中点,点P 为BC 边上一动点,则PA+PG 的最小值为 .B .3 cm 2D.(6-% )crm 图 F10-2图 F10-78.如图F10-7,点A 与点B 的坐标分别是(1,0),(5,0),点P 是该直角坐标系内的一个动点 ⑴使/APB=30°的点P 有 个;(2)若点P 在y 轴上,且/ APB= 30 °,求满足条件的点 P 的坐标;(3)当点P 在y 轴上移动时,/APB 是否有最大值?请说明理由.9.[2018 广州]如图 F10-8,在四边形 ABCD 中,/ B= 60 , / D= 30 ,AB=BC.(1)求/ A+/C 的度数; (2)连结BD,探究AD,BD,CD 三者之间的数量关系,并说明理由;⑶若AB=1,点E 在四边形ABCD 内部运动,且满足AE 2=BE 2+CE 2,求点E 运动路径的长度. 图 F10-86 .如图F10-5,正方形ABCD 中,AB=2,动点E 从点A 出发向点D 运动,同时动点F 从点D 出发向点C 运动,点E,F 运动的速度相同,当它们到达各自终点时停止运动,运动过程中线段 AF,BE 相交于点 为. P,则线段DP 的最小值7 .如图F10-6,在边长为v3的等边三角形 ABC 中,动点D,E 分别在BC,AC 边上,且保持AE=CD ,连结BE,AD,相交于点P,则CP 的最小值为 图 F10-5图 F10-6 一10.如图F10-9,已知抛物线y=ax2+bx+c(aw即x轴交于A(1,0),B(4,0)两点,与y轴交于C(0,2),连结AC,BC.(1)求抛物线解析式;(2)线段BC的垂直平分线交抛物线于D,E两点,求直线DE的解析式;.(3)若点P在抛物线的对称轴上,且/ CPB= / CAB,求出所有满足条件的P点坐标图F10-9【参考答案】1.D [解析]如图所示:由题意根据直角三角形斜边上的中线等于斜边的一半得出P到B点距离始终为1 cm, 则木棒EF的中点P在运动过程中的轨迹为分别以A,B,C,D为圆心,1 cm为半径的弧.故所围成的图形的面积为:矩形面积-4个扇形面积=6-4X丝需=(6-兀)(cm).2.88° [解析]如图,•「AB=AC=AD,,点B,C,D在以点A为圆心,以AB的长为半径的圆上,・ ./ BAC=2/BDC.•••/ CBD= 2/ BDC,. .Z BAC= /CBD,/ CAD= 2/BAC,而/ BAC= 44°,,/ CAD= 88°.3.vl5 [解析]以A为圆心,AB长为半彳5作圆,延长BA交。

中考数学隐形圆专题含答案

中考数学隐形圆专题含答案

类型一:定点到动点定长点A为定点,点B为动点,AB为定长,则点B的轨迹为圆心为点A,半径为AB的圆。

【经典例题1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F 是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是___.【解析】如图所示:当∠BFE=∠B′EF,点B′在DE上时,此时B′D的值最小,根据折叠的性质,△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB边的中点,AB=4,∴AE=EB′=2,∵AD=6,∴DE=1022622=+,∴B′D=102−2.练习1-1如图③,矩形ABCD 中,AB=3,BC=4,点E 是AB 边上一点,且AE=2,点F 是BC 边上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG 、CG ,四边形AGCD 的面积是否存在最小值,若存在,求这个最小值及此时BF 的长度。

若不存在,请说明理由。

【解析】(3)如图3,△四边形ABCD 是矩形,△CD=AB=3,AD=BC=4,△ABC=△D=90°,根据勾股定理得,AC=5, △AB=3,AE=2,△点F 在BC 上的任何位置时,点G 始终在AC 的下方,设点G 到AC 的距离为h ,△S 四边形AGCD =S △ACD +S △ACG =21AD×CD+21AC×h=21×4×3+21×5×h=25h+6, △要四边形AGCD 的面积最小,即:h 最小,△点G 是以点E 为圆心,BE=1为半径的圆上在矩形ABCD 内部的一部分点, △EG△AC 时,h 最小,由折叠知△EGF=△ABC=90°,延长EG 交AC 于H ,则EH△AC ,在Rt△ABC 中,sin△BAC=AC BC =54, 在Rt△AEH 中,AE=2,sin△BAC=AE EH =54, △EH=54AE=58,△h=EH -EG=58-1=53 △S 四边形AGCD 最小=25h+6=25×53+6=215. 练习1-2如图,等边△ABC 的边AB=8,D 是AB 上一点,BD=3,P 是AC 边上一动点,将△ADP 沿直线DP 折叠,A 的对应点为A',则CA'的长度最小值是 .【解析】2练习1-3如图,在平行四边形ABCD 中,△BCD =30°,BC =4,CD=M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△AMN ,连接A'C ,则A'C 长度的最小值是 .【解析】如图,连接MC ;过点M 作ME△CD ,交CD 的延长线于点E ;△四边形ABCD 为平行四边形,△AD△BC ,AD=BC=4,△点M 为AD 的中点,△BCD=30△,△DM=MA=2,△MDE=△BCD=30△, △ME=21DM=1,DE=3, △CE=CD+DE=43,由勾股定理得:CM 2=ME 2+CE 2,第4题图AB C DA'M N△CM=7;由翻折变换的性质得:MA′=MA=2,显然,当折线MA′C 与线段MC 重合时,线段A′C 的长度最短,此时A′C=7−2=5,故答案为5.练习1-4如图,在边长为2的菱形ABCD 中,∠A=60∘,点M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连结A′C ,则A′C 长度的最小值是( ) A. 7 B. 7−1 C. 3 D. 2【解析】如图所示:∵MA′是定值,A′C 长度取最小值时,即A′在MC 上时, 过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60∘,M 为AD 中点,∴2MD=AD=CD=2,∠FDM=60∘,∴∠FMD=30∘,∴FD=21MD=21,∴FM=DM×cos30∘=23, ∴MC=722=+CF FM ,∴A′C=MC−MA′=7−1.故选:B.变式:在Rt △ABC 中,∠C=90°,AC=6,BC=8,点F 在边AC 上,并且CF=2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是_____解题思路:同上题,不难看出点P 的运动轨迹为以点F 为圆心,PF 为半径的圆上运动,求点P 到AB 的距离最小,可过点F 作AB 的垂线于点M ,交圆 F 于点P ,此时,最小值为PM 。

2020中考数学专题-几何模型之隐圆问题-含答案

2020中考数学专题-几何模型之隐圆问题-含答案

2020中考专题4——几何模型之隐圆问题班级姓名.【模型讲解】常见的隐圆模型有:(1)动点到定点的距离为定长;(2)四点共圆;(3)定边对定角(专题3)等.AD=AC=AB∠ADB=∠ACB2∠ADB=∠ACB∠BAC+∠BDC=180°【例题分析】例1.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为.例1图例2图例3图例2.在矩形ABCD中,已知2=,现有一根长为2cm的木棒EF紧贴着矩形的边BC cm=,3AB cm(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P在运动过程cm.中所围成的图形的面积为2例3.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若AB=8,则PM的最大值是。

例4.如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否存在最大值?若存在,求点P的坐标;若不存在,请说明理由.【巩固训练】1.如图1,矩形ABCD 中,2AB =,3AD =,点E 、F 分别AD 、DC 边上的点,且2EF =,点G 为EF 的中点,点P 为BC 上一动点,则PA PG +的最小值为.图1图22.如图2,在矩形ABCD 中,4AB =,6AD =,E 是AB 边的中点,F 是线段BC 边上的动点,将EBF ∆沿EF 所在直线折叠得到△EB F ',连接B D ',则B D '的最小值是.3.在平面直角坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且2AC =.设tan BOC m ∠=,则m 的取值范围是.4.如图3,在Rt ABC ∆中,90C ∠=︒,6AC =,8BC =,点F 在边AC 上,并且2CF =,点E 为边BC 上的动点,将CEF ∆沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是.图3图4图55.如图4,四边形ABCD 中,//DC AB ,1BC =,2AB AC AD ===.则BD 的长为.6.如图5,在四边形ABCD 中,AB =AC =AD ,若∠BAC =25°,∠CAD =75°,则∠BDC =,∠DBC =.7.足球射门,不考虑其他因素,仅考虑射点到球门AB 的张角大小时,张角越大,射门越好.如图6的正方形网格中,点A ,B ,C ,D ,E 均在格点上,球员带球沿CD 方向进攻,最好的射点在()A .点CB .点D 或点EC .线段DE (异于端点)上一点D .线段CD (异于端点)上一点图6图7图88.如图7,已知AB 是⊙O 的直径,PQ 是⊙O 的弦,PQ 与AB 不平行,R 是PQ 的中点,作PS ⊥AB ,QT ⊥AB ,垂足分别为S 、T (S ≠T ),并且∠SRT =60°,则PQAB的值等于.9.如图8,若PA =PB ,∠APB =2∠ACB ,AC 与PB 交于点D ,且PB =4,PD =3,则AD ·DC =.10.在平面直角坐标系中,已知点A (4,0)、B (-6,0),点C 是y 轴上的一个动点,当∠BCA =45°时,点C 的坐标为.11.如图9,Rt △ABC 中,∠C =90°,AC =3,BC =4,点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA =DE ,则AD 的取值范围是.图9图1012.如图10,在平面直角坐标系的第一象限内有一点B ,坐标为(2,m ).过点B 作AB ⊥y 轴,BC ⊥x 轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),发现使得∠OPC =45°的位置有两个,则m 的取值范围为.13.在锐角△ABC 中,AB =4,BC =5,∠ACB =45°,将△ABC 绕点B 按逆时针方向旋转得到△A ′B ′C ′。

隐圆问题 最值问题 7种题型 知识点+例题+练习(非常好 分类全面)

隐圆问题 最值问题 7种题型 知识点+例题+练习(非常好 分类全面)
4、如图,在Rt△ABC中,∠ACB=90∘,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是_________.
3、过定点做折叠的可用圆
(定点为圆心,对应点到定点的距离为半径)
例1、如图,在△ABC中,∠ACB=90°,AB= 5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是.
例2、平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是___________
练习、如图,AB为直径,AB=4,C、D为圆上两个动点,N为CD中点,CM⊥AB于M,当C、D在圆上运动时保持∠CMN=30°,则CD的长( )
A.随C、D的运动位置而变化,且最大值为4
教学内容
隐圆问题
教学目标
掌握隐圆的题型
重点
隐圆
难点
隐圆
教学过程
隐圆专题
1、几个点到某个定点距离相等可用圆
(定点为圆心,相等距离为半径)
例1:如图,若AB=OA=OB=OC,则∠ACB的大小是_______
练习:如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为__________
B.随C、D的运动位置而变化,且最小值为2
C.随C、D的运动位置长度保持不变,等于2
D.随C、D的运动位置而变化,没有最值
6、一边固定及其所对角不变可用圆(定弦定角角)
(圆心在弦的垂直平分线上且和弦的两端点形成的圆心角等于圆周角的两倍)
例1:已知在 中, , ,则 的最大面积为_____________

2024年中考数学重难点押题预测《隐圆问题》含答案解析

2024年中考数学重难点押题预测《隐圆问题》含答案解析

隐圆问题3种模型通用的解题思路:隐圆一般有如下呈现方式:(1)定点定长:当遇到同一个端点出发的等长线段时,通常以这个端点为圆心,等线段长为半径构造辅助圆;(2)定弦定角:当遇到动点对定点对定线段所张的角为定值时,通常把张角转化为圆周角构造辅助圆。

当遇到直角时,通常以斜边为直径构造辅助圆。

(3)四点共圆:对角互补的四边形的四个顶点共圆。

隐圆常与线段最值结合考查。

类型1:定点定长1(2023•新城区校级三模)圆的定义:在同一平面内,到定点的距离等于定长的所有点所组成的图形.(1)已知:如图1,OA=OB=OC,请利用圆规画出过A、B.C三点的圆.若∠AOB=70°,则∠ACB= 35° .如图,RtΔABC中,∠ABC=90°,∠BCA=30°,AB=2.(2)已知,如图2.点P为AC边的中点,将AC沿BA方向平移2个单位长度,点A、P、C的对应点分别为点D、E、F,求四边形BDFC的面积和∠BEA的大小.(3)如图3,将AC边沿BC方向平移a个单位至DF,是否存在这样的a,使得直线DF上有一点Q,满足∠BQA=45°且此时四边形BADF的面积最大?若存在,求出四边形BADF面积的最大值及平移距离a,若不存在,说明理由.【分析】(1)利用圆的定义知A,B,C三点共圆,再利用圆周角定理求解.(2)根据图形的平移性质,判定平移后图形形状,继而确定面积的计算方式和方法,角度问题也迎刃而解.(3)因角度不变,借助圆周角定点在圆周上运动时角度不变的思想,判断出D点能够向右移动的最大距离,求出四边形的最大面积.【解答】(1)以O为圆心,OA为半径作辅助圆,如图,,∵∠AOB =70°,∴∠ACB =35°,故答案为35°.(2)连接PB ,PE ,如图,Rt ΔABC 中,∠ABC =90°,∠BCA =30°,AB =2.∴AC =4,∠BAC =60°,BC =23.∵P 为Rt ΔABC 斜边AC 中点,∴BP =12AC =2,线段AC 平移到DF 之后,AB =AD =PE =2,BP =AE =2,∴四边形ABPE 为菱形,∵∠BAC =60°,∴∠BEA =30°,∵CF ⎳BD ,且∠ABC =90°,∴四边形BDFC 为直角梯形,∴S =12(BD +CF )×BC =12×6×23=63,(3)如图所示,以AB 为斜边在AB 的右侧作等腰直角三角形OAB ,以O 为圆心,OA 为半径作⊙O ,当AC 边沿BC 方向平移a 个单位至DF 时,满足∠BQA =45°且此时四边形BADF 的面积最大,∴直线DF 与⊙O 相切于点Q ,连接OQ 交AD 于G ,过点O 作OH ⊥AD 于H ,则∠AHO =∠OHG =∠DQG =90°,∠OAH =45°,∠GDQ =30°,∵∠ABC =90°,∠BCA =30°,AB =2,∴BC =23,OA =OB =OQ =2,∴AH =OH =1,HG =33,OG =233,∴GQ =2-233,DG =2GQ =22-433,∴AD =AH +HG +GD =1+33+22-433=1+22-3,∴a =1+22-3,此时直角梯形ABFD 的最大面积为:S =12×(BF +AD )×AB =12×(23+1+22-3+1+22-3)×2=42+2.【点评】本题主要考查图形的平移,圆心角,圆周角之间的关系,解题的关键是数形结合,找到极值点求解.2(2024•兰州模拟)综合与实践【问题情境】在数学综合实践课上,“希望小组”的同学们以三角形为背景,探究图形变化过程中的几何问题,如图,在ΔABC 中,AB =AC ,∠BAC =90°,点D 为平面内一点(点A ,B ,D 三点不共线),AE 为ΔABD 的中线.【初步尝试】(1)如图1,小林同学发现:延长AE 至点M ,使得ME =AE ,连接DM .始终存在以下两个结论,请你在①,②中挑选一个进行证明:①DM =AC ;②∠MDA +∠DAB =180°;【类比探究】(2)如图2,将AD 绕点A 顺时针旋转90°得到AF ,连接CF .小斌同学沿着小林同学的思考进一步探究后发现:AE =12CF ,请你帮他证明;【拓展延伸】(3)如图3,在(2)的条件下,王老师提出新的探究方向:点D 在以点A 为圆心,AD 为半径的圆上运动(AD >AB ),直线AE 与直线CF 相交于点G ,连接BG ,在点D 的运动过程中BG 存在最大值.若AB =4,请直接写出BG 的最大值.【分析】(1)利用SAS 证明ΔABE ≅ΔMDE ,可得AB =DM ,再结合AB =AC ,即可证得DM =AC ;由全等三角形性质可得∠BAE =∠DME ,再运用平行线的判定和性质即可证得∠MDA +∠DAB =180°;(2)延长AE 至点M ,使得ME =AE ,连接DM .利用SAS 证得ΔACF ≅ΔDMA ,可得CF =AM ,再由AE =12AM ,可证得AE =12CF ;(3)延长DA 至M ,使AM =AD ,设AM 交CF 于N ,连接BM 交CF 于K ,取AC 中点P ,连接GP ,可证得ΔACF ≅ΔABM (SAS ),利用三角形中位线定理可得AE ⎳BM ,即AG ⎳BM ,利用直角三角形性质可得GP =12AC =12AB =2,得出点G 在以P 为圆心,2为半径的⊙P 上运动,连接BP 并延长交⊙P 于G ′,可得BG ′的长为BG 的最大值,再运用勾股定理即可求得答案.【解答】(1)证明:①∵AE 为ΔABD 的中线,∴BE =DE ,在ΔABE 和ΔMDE 中,BE =DE∠AEB =∠MED AE =ME,∴ΔABE ≅ΔMDE (SAS ),∴AB =DM ,∵AB =AC ,∴DM =AC ;②由①知ΔABE ≅ΔMDE ,∴∠BAE =∠DME ,∴AB ⎳DM ,∴∠MDA +∠DAB =180°;(2)证明:延长AE 至点M ,使得ME =AE ,连接DM .由旋转得:AF =AD ,∠DAF =90°,∵∠BAC =90°,∠DAF +∠BAC +∠BAD +∠CAF =360°,∴∠BAD +∠CAF =180°,由(1)②得:∠MDA +∠DAB =180°,DM =AB =AC ,∴∠CAF =∠MDA ,在ΔACF 和ΔDMA 中,AF =AD∠CAF =∠MDA AC =DM,∴ΔACF ≅ΔDMA (SAS ),∴CF =AM ,∵AE =12AM ,∴AE =12CF ;(3)如图3,延长DA 至M ,使AM =AD ,设AM 交CF 于N ,连接BM 交CF 于K ,取AC 中点P ,连接GP ,由旋转得:AF =AD ,∠DAF =90°,∴AF =AM ,∠MAF =180°-90°=90°,∵∠BAC =90°,∴∠MAF +∠CAM =∠BAC +∠CAM ,即∠CAF =∠BAM ,在ΔACF 和ΔABM 中,AC =AB∠CAF =∠BAM AF =AM,∴ΔACF ≅ΔABM (SAS ),∴∠AFC =∠AMB ,即∠AFN =∠KMN ,∵∠ANF =∠KNM ,∴∠FAN =∠MKN =90°,∴BM ⊥CF ,∵E 、A 分别是DB 、DM 的中点,∴AE 是ΔBDM 的中位线,∴AE ⎳BM ,即AG ⎳BM ,∴AG ⊥CF ,∴∠AGC =90°,∵点P 是AC 的中点,∴GP =12AC =12AB =2,∴点G在以P为圆心,2为半径的⊙P上运动,连接BP并延长交⊙P于G′,∴BG′的长为BG的最大值,在RtΔABP中,BP=AB2+AP2=42+22=25,∴BG′=BP+PG′=25+2,∴BG的最大值为25+2.【点评】本题是几何综合题,考查了三角形的全等的性质与判定,两直线垂直的判定,三角形中位线定理,勾股定理,圆的性质,熟练掌握全等三角形的判定定理是解决本题的关键.3(2022•番禺区二模)已知抛物线y=ax2+bx-32(a>0)与x轴交于点A,B两点,OA<OB,AB=4.其顶点C的横坐标为-1.(1)求该抛物线的解析式;(2)设点D在抛物线第一象限的图象上,DE⊥AC垂足为E,DF⎳y轴交直线AC于点F,当ΔDEF面积等于4时,求点D的坐标;(3)在(2)的条件下,点M是抛物线上的一点,M点从点B运动到达点C,FM⊥FN交直线BD于点N,延长MF与线段DE的延长线交于点H,点P为N,F,H三点构成的三角形的外心,求点P经过的路线长.【分析】(1)利用对称性,求得A和B的坐标,然后用待定系数法求得抛物线的解析式;(2)证明ΔCGA和ΔDEF都为等腰直角三角形,利用等面积法求得DF=4,再求得直线AC的解析式为y =x-1,设点D的坐标,得到点F的坐标,然后求解即可;(3)先求得∠BDF=45°,推出点P的运动路径时H1N1的中点绕点F逆时针旋转90°得到N2H的中点之间的弧长,证明四边形DN2FE为正方形,即可求解.【解答】解:(1)∵点A,点B两点关于直线x=-1对称,AB=4,∴A(1,0),B(-3,0),代入y=ax2+bx-32得,a+b-32=09a-3b-32=0,解得:a=12b=1,∴抛物线的解析式为y=12x2+x-32.(2)如图1所示:∵DF⎳y轴⎳GC,∴∠GCA=∠DFE,∵抛物线的解析式为y=12x2+x-32=12(x+1)2-2,∴顶点C(-1,-2),∵A(1,0),∴AG=2,CG=2,∴ΔCGA为等腰直角三角形,∴∠GCA=∠DFE=45°,∵DE⊥AC,∴ΔDEF为等腰直角三角形,∴DE=EF,DF=2DE,∵SΔDEF=12DE⋅EF=4,∴DE=22,∴DF =2×22=4,设直线AC 的解析式为y =kx +b ,则k +b =0-k +b =-2 ,解得:k =1b =-1 ,∴直线AC 的解析式为y =x -1,设点D x ,12x 2+x -32 ,则F (x ,x -1),∴DF =12x 2+x -32-(x -1)=12x 2-12=4,解得:x =3或x =-3(舍),∴D (3,6),F (3,2).(3)如图2所示,∵ΔNFH 是直角三角形,∴ΔNFH 的外心是斜边NH 的中点,当点M 位于点B 时,△N 1FH 1,其外心是斜边H 1N 1的中点,当点M 位于点C 时,得△N 2FE ,其外心是斜边N 2H 2的中点,即N 2E 的中点,∵D (3,6),B (-3,0),∴tan ∠BDF =3+36=1,∴∠BDF =45°,由(2)得,∠FDE =45°,∴∠DBA =∠BAC =45°,∴BD ⎳AC ,∴FN ⊥BD ,∴DF 平分∠BDE ,∠BDE =90°,∴点D ,N ,F ,H 四点共圆,∴点P 在线段DF 的垂直平分线上,即点P 在N 2E 上运动,即点P 的运动轨迹是一条线段.∵∠DN 2F =∠N 2DH =∠DHF =90°,FN 2=FE ,∴四边形DN 2FE 为正方形,此时点P 在DF 上,且EP =2;当点M 与点C 重合时,此时点P 在DF 上,即为P 2,且FP 2=EP 2=2,由题意,BN 2=BD -DN 2=4,BF =210,N 2F =22,FN 2⎳DH 1,∴ΔBFN 2∽△BH 1D ,∴BN 2BD =BF BH 1,解得FH 1=10,∴FP 1=5,由勾股定理可得:P 1P 2=1,即点P 的运动轨迹长为1.【点评】本题主要考查二次函数的综合问题,包括待定系数法确定函数解析式,三角形外接圆的性质,弧长公式,勾股定理,三角函数解直角三角形等,理解题意,作出相应辅助线是解题的关键.4(2021•红谷滩区校级模拟)(1)学习心得:小刚同学在学习完“圆”这一章内容后,感觉到有一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ΔABC中,AB=AC,∠BAC=80°,D是ΔABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助圆⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC= 40° .(2)问题解决:如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度数.(3)问题拓展:抛物线y=-14(x-1)2+3与y轴交于点A,顶点为B,对称轴BC与x轴交于点C,点P在抛物线上,直线PQ⎳BC交x轴于点Q,连接BQ.①若含45°角的直线三角板如图所示放置,其中,一个顶点与C重合,直角顶点D在BQ上,另一顶点E在PQ上,求Q的坐标;②若含30°角的直角三角板一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,点D与点B,点Q不重合,求点P的坐标.【分析】(1)利用同弦所对的圆周角是所对圆心角的一半求解.(2)由A、B、C、D共圆,得出∠BDC=∠BAC,(3)①先求出抛物线顶点的坐标,再由点D、C、Q、E共圆,得出∠CQB=∠OED=45°,求出CQ,再求点Q的坐标.②分两种情况,Ⅰ、当30°的角的顶点与点C重合时,Ⅱ、当60°的角的顶点与点C重合时,运用点D、C、Q、E共圆,求出CQ即点P的横坐标,再代入抛物线求出点P的纵坐标,即可求出点P的坐标.【解答】解:(1)∵AB=AC,AD=AC,∴以点A为圆心,点B、C、D必在⊙A上,∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,∴∠BDC=12∠BAC=40°,(2)如图2,∵∠BAD=∠BCD=90°,∴点A、B、C、D共圆,∴∠BDC=∠BAC,∵∠BDC=25°,∴∠BAC=25°,(3)①如图3∵点B为抛物线y=-14(x-1)2+3的顶点,∴点B的坐标为(1,3),∵45°角的直角三角板如图所示放置,其中,一个顶点与C重合,直角顶点D在BQ上,另一顶点E在PQ上,∴点D 、C 、Q 、E 共圆,∴∠CQB =∠CED =45°,∴CQ =BC =3,∴OQ =4,∴点Q 的坐标为(4,0),②如图4,Ⅰ、当30°的角的顶点与点C 重合时,∵直角三角板30°角的顶点与点C 重合,直角顶点D 在BQ 上,另一个顶点E 在PQ 上∴点D 、C 、Q 、E 共圆,∴∠CQB =∠CED =60°,∴CQ =33BC =3,∴OQ =1+3,∴把1+3代入y =-14(x -1)2+3得y =94,∴点P 的坐标是1+3,94Ⅱ、如图5,当60°的角的顶点与点C 重合时,∵直角三角板60°角的顶点与点C 重合,直角顶点D 在BQ 上,另一个顶点E 在PQ 上∴点D 、C 、Q 、E 共圆,∴∠CQB =∠CED =30°,∴CQ =3BC =33,∴OQ =1+33,∴把1+33代入y =-14(x -1)2+3得y =-154,∴点P 的坐标是1+33,-154综上所述,点P 的坐标是1+3,94 或1+33,-154 .【点评】本题主要考查了圆的综合题,解题的关键就是运用同弦对的圆周角相等.类型2:定弦定角5(2022•雁塔区校级三模)问题提出(1)如图①,已知ΔABC 为边长为2的等边三角形,则ΔABC 的面积为 3 ;问题探究(2)如图②,在ΔABC 中,已知∠BAC =120°,BC =63,求ΔABC 的最大面积;问题解决(3)如图③,某校学生礼堂的平面示意为矩形ABCD ,其宽AB =20米,长BC =24米,为了能够监控到礼堂内部情况,现需要在礼堂最尾端墙面CD 上安装一台摄像头M 进行观测,并且要求能观测到礼堂前端墙面AB 区域,同时为了观测效果达到最佳,还需要从点M 出发的观测角∠AMB =45°,请你通过所学知识进行分析,在墙面CD 区域上是否存在点M 满足要求?若存在,求出MC 的长度;若不存在,请说明理由.【分析】(1)作AD ⊥BC 于D ,由勾股定理求出AD 的长,即可求出面积;(2)作ΔABC 的外接圆⊙O ,可知点A 在BC上运动,当A O ⊥BC 时,ΔABC 的面积最大,求出A H 的长,从而得出答案;(3)以AB 为边,在矩形ABCD 的内部作一个等腰直角三角形AOB ,且∠AOB =90°,过O 作HG ⊥AB 于H ,交CD 于G ,利用等腰直角三角形的性质求出OA ,OG 的长,则以O 为圆心,OA 为半径的圆与CD 相交,从而⊙O 上存在点M ,满足∠AMB =45°,此时满足条件的有两个点M ,过M 1作M 1F ⊥AB 于F ,作EO ⊥M 1F 于E ,连接OF ,利用勾股定理求出OE 的长,从而解决问题.【解答】解:(1)作AD ⊥BC 于D ,∵ΔABC 是边长为2的等边三角形,∴BD =1,∴AD =AB 2-BD 2=3,∴ΔABC 的面积为12×2×3=3,故答案为:3;(2)作ΔABC 的外接圆⊙O ,∵∠BAC =120°,BC =63,∴点A 在BC 上运动,当A O ⊥BC 时,ΔABC 的面积最大,∴∠BOA =60°,BH =CH =33,∴OH =3,OB =6,∴A H =OA -OH =6-3=3,∴ΔABC的最大面积为1×63×3=93;2(3)存在,以AB为边,在矩形ABCD的内部作一个等腰直角三角形AOB,且∠AOB=90°,过O作HG⊥AB于H,交CD于G,∵AB=20米,∴AH=OH=10米,OA=102米,∵BC=24米,∴OG=14米,∵102>14,∴以O为圆心,OA为半径的圆与CD相交,∴⊙O上存在点M,满足∠AMB=45°,此时满足条件的有两个点M,过M1作M1F⊥AB于F,作EO⊥M1F于E,连接OF,∴EF=OH=10米,OM1=102米,∴EM1=14米,∴OE=OM12-M1E2=2米,∴CM1=BF=8米,同理CM2=BH+OE=10+2=12(米),∴MC的长度为8米或12米.【点评】本题是四边形综合题,主要考查了等边三角形的性质,矩形的性质,等腰直角三角形的性质,勾股定理,垂径定理等知识,熟练掌握定角定边的基本模型是解题的关键.6(2023•灞桥区校级模拟)问题提出:(1)如图①,ΔABC为等腰三角形,∠C=120°,AC=BC=8,D 是AB上一点,且CD平分ΔABC的面积,则线段CD的长度为4.问题探究:(2)如图②,ΔABC 中,∠C =120°,AB =10,试分析和判断ΔABC 的面积是否存在最大值,若存在,求出这个最大值;若不存在,请说明理由.问题解决:(3)如图③,2023年第九届丝绸之路国际电影开幕式在西安曲江竞技中心举行,主办方要在会场旁规划一个四边形花圃ABCD ,满足BC =600米,CD =300米,∠C =60°,∠A =60°,主办方打算过BC 的中点M 点(入口)修建一条径直的通道ME (宽度忽略不计)其中点E (出口)为四边形ABCD 边上一点,通道ME 把四边形ABCD 分成面积相等并且尽可能大的两部分,分别规划成不同品种的花圃以供影迷休闲观赏.问是否存在满足上述条件的通道ME ?若存在,请求出点A 距出口的距离AE 的长;若不存在,请说明理由.【分析】(1)由题意可知,CD 是ΔABC 的中线,利用等腰三角形的性质推出CD ⊥AB ,利用三角函数求解即可解决问题;(2)当ΔABC 的AB 边上的高CD 最大时,三角形ABC 的面积最大,即CD 过圆心O ,连接AO .求出CD 的最大值即可得出答案;(3)连接DM ,BD .首先证明∠BDC =90°,求出BD ,推出ΔBDC 的面积是定值,要使得四边形ABCD 的面积最大,只要ΔABD 的面积最大即可,因为BD 为定值,∠A 为定角=60°,推出当ΔABD 是等边三角形时,求出四边形ABCD 的面积最大值,然后再求出∠MDE =90°,构建方程解决问题即可.【解答】解:(1)如图①,∵CD 平分ΔABC 的面积,∴AD =DB ,∵AC =BC =8,∴CD ⊥AB ,∠ACD =∠BCD =12∠ACB =60°,∴CD =AC cos ∠ACD =8cos60°=4,∴CD 的长度为4,故答案为:4;(2)存在.如图②,∵AB =10,∠ACB =120°都是定值,∴点C 在AB 上,并且当点C 在AB的中点时,ΔABC 的面积最大;连接OC 交AB 于点D ,则CD ⊥AB ,AD =BD =12AB =5,∠ACD =12∠ACB =60°,∴tan ∠ACD =AD CD ,CD =AD tan60°=533,∴S ΔABC =12AB ⋅CD =2533,答:ΔABC 的面积最大值是2533;(3)存在.如图③,连接DM ,BD ,∵M 是BC 的中点,∴CM =12BC =300,∴CM =CD ,又∵∠C =60°,∴ΔCMD 是等边三角形,∴∠MDC =∠CMD =60°,CM =DM =BM ,∴∠CBD =∠MDB =30°,∴∠BDC =90°,∴BD =CD ⋅tan60°=3003米,在ΔABD 中,BD =3003米,∠A =60°为定值,由(2)可知当AB =AD 时,即ΔABD 为等边三角形时ΔABD 的面积最大,此时也为四边形ABCD 的最大值(ΔBDC 的面积不变),S max =S ΔBDC +S ΔBDA =12×300×3003+34(3003)2=1125003;∵ΔABD 是等边三角形,∴∠ADB =60°,∴∠ADM =∠ADB +∠BDM =90°,由S ΔEMD +S ΔCDM =12S max ,得:12DE ×300+34×3002=12×1125003,解得:DE =2253,∴AE =AD -DE =3003-2253=753(米),答:点A 距出口的距离AE 的长为753米.【点评】本题是圆的综合题,考查了勾股定理,垂径定理,解直角三角形,等边三角形的判定和性质等知识,解题的关键是理解题意构造辅助圆,灵活运用所学知识解决问题,难度较大,属于中考压轴题.7(2023•柯城区校级一模)如图,点A 与点B 的坐标分别是(1,0),(5,0),点P 是该直角坐标系内的一个动点.(1)使∠APB =30°的点P 有无数个;(2)若点P 在y 轴上,且∠APB =30°,求满足条件的点P 的坐标;(3)当点P 在y 轴上移动时,∠APB 是否有最大值?若有,求点P 的坐标,并说明此时∠APB 最大的理由;若没有,也请说明理由.【分析】(1)已知点A 、点B 是定点,要使∠APB =30°,只需点P 在过点A 、点B 的圆上,且弧AB 所对的圆心角为60°即可,显然符合条件的点P 有无数个.(2)结合(1)中的分析可知:当点P 在y 轴的正半轴上时,点P 是(1)中的圆与y 轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P 的坐标;当点P 在y 轴的负半轴上时,同理可求出符合条件的点P 的坐标.(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB 最大,只需构造过点A 、点B 且与y 轴相切的圆,切点就是使得∠APB 最大的点P ,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.【解答】解:(1)以AB 为边,在第一象限内作等边三角形ABC ,以点C 为圆心,AC 为半径作⊙C ,交y 轴于点P 1、P 2.在优弧AP 1B 上任取一点P ,如图1,则∠APB =12∠ACB =12×60°=30°.∴使∠APB =30°的点P 有无数个.故答案为:无数.(2)①当点P 在y 轴的正半轴上时,过点C 作CG ⊥AB ,垂足为G ,如图1.∵点A (1,0),点B (5,0),∴OA =1,OB =5.∴AB =4.∵点C 为圆心,CG ⊥AB ,∴AG =BG =12AB =2.∴OG =OA +AG =3.∵ΔABC 是等边三角形,∴AC =BC =AB =4.∴CG =AC 2-AG 2=42-22=23.∴点C 的坐标为(3,23).过点C 作CD ⊥y 轴,垂足为D ,连接CP 2,如图1,∵点C 的坐标为(3,23),∴CD =3,OD =23.∵P 1、P 2是⊙C 与y 轴的交点,∴∠AP 1B =∠AP 2B =30°.∵CP 2=CA =4,CD =3,∴DP 2=42-32=7.∵点C 为圆心,CD ⊥P 1P 2,∴P 1D =P 2D =7.∴P 2(0,23-7).P 1(0,23+7).②当点P 在y 轴的负半轴上时,同理可得:P3(0,-23-7).P 4(0,-23+7).综上所述:满足条件的点P的坐标有:(0,23-7)、(0,23+7)、(0,-23-7)、(0,-23+7).(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.理由:可证:∠APB=∠AEH,当∠APB最大时,∠AEH最大.由sin∠AEH=2AE得:当AE最小即PE最小时,∠AEH最大.所以当圆与y轴相切时,∠APB最大.①当点P在y轴的正半轴上时,连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP.∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°.∴四边形OPEH是矩形.∴OP=EH,PE=OH=3.∴EA=3.∵∠EHA=90°,AH=2,EA=3,∴EH=EA2-AH2=32-22=5∴OP=5∴P(0,5).②当点P在y轴的负半轴上时,同理可得:P(0,-5).理由:①若点P在y轴的正半轴上,在y轴的正半轴上任取一点M(不与点P重合),连接MA,MB,交⊙E于点N,连接NA,如图2所示.∵∠ANB是ΔAMN的外角,∴∠ANB>∠AMB.∵∠APB=∠ANB,∴∠APB>∠AMB.②若点P在y轴的负半轴上,同理可证得:∠APB>∠AMB.综上所述:当点P在y轴上移动时,∠APB有最大值,此时点P的坐标为(0,5)和(0,-5).【点评】本题考查了垂径定理、圆周角定理、勾股定理、等边三角形的性质、矩形的判定与性质,切线的性质、三角形外角性质等知识,综合性强.同时也考查了创造性思维,有一定的难度.构造辅助圆是解决本题关键.类型3:四点共圆8(2022•中原区校级模拟)阅读下列材料,并完成相应的任务.西姆松定理是一个平面几何定理,其表述为:过三角形外接圆上异于三角形顶点的任意一点作三边或其延长线的垂线,则三垂足共线(此线常称为西姆松线).某数学兴趣小组的同学们尝试证明该定理.如图(1),已知ΔABC 内接于⊙O ,点P 在⊙O 上(不与点A ,B ,C 重合),过点P 分别作AB ,BC ,AC 的垂线,垂足分别为点D ,E ,F .求证:点D ,E ,F 在同一条直线上.如下是他们的证明过程(不完整):如图(1),连接PB ,PC ,DE ,EF ,取PC 的中点Q ,连接QE .QF ,则EQ =FQ =12PC =PQ =CQ ,(依据1)∵点E ,F ,P ,C 四点共圆,∴∠FCP +∠FEP =180°.(依据2)又∵∠ACP +∠ABP =180°,∴∠FEP =∠ABP .同上可得点B ,D ,P ,E 四点共圆,⋯⋯任务:(1)填空:①依据1指的是中点的定义及直角三角形斜边上的中线等于斜边的一半;②依据2指的是.(2)请将证明过程补充完整.(3)善于思考的小虎发现当点P 是BC 的中点时,BD =CF ,请你利用图(2)证明该结论的正确性.【分析】(1)利用直角直角三角形斜边上的中线的性质和圆内接四边形对角互补即可;(2)利用直角三角形斜边上中线的性质证明点E ,F ,P ,C 和点B ,D ,P ,E 四点分别共圆,再说明∠FEP +∠DEP =180°,可证明结论;(3)连接PA ,PB ,PC ,利用HL 证明Rt ΔPBD ≅Rt ΔPCF ,从而得出结论.【解答】(1)解:①依据1指的是中点的定义及直角三角形斜边上的中线等于斜边的一半,②依据2指的是圆内接四边形对角互补,故答案为:①直角三角形斜边上的中线等于斜边的一半;②圆内接四边形对角互补;(2)解:如图(1),连接PB ,PC ,DE ,EF ,取PC 的中点Q ,连接QE .QF ,则EQ =FQ =12PC =PQ =CQ ,∴点E ,F ,P ,C 四点共圆,∴∠FCP +∠FEP =180°,又∵∠ACP +∠ABP =180°,∴∠FEP =∠ABP ,同上可得点B ,D ,P ,E 四点共圆,∴∠DBP =∠DEP ,∵∠ABP +∠DBP =180°,∴∠FEP +∠DEP =180°,∴点D ,E ,F 在同一直线上;(3)证明:如图,连接PA ,PB ,PC ,∵点P 是BC的中点,∴BP =PC ,∴BP =PC ,∠PAD =∠PAC ,又∵PD ⊥AD ,PF ⊥AC ,∴PD =PF ,∴Rt ΔPBD ≅Rt ΔPCF (HL ),∴BD =CF .【点评】本题主要考查了四点共圆,以及圆内接四边形的性质,角平分线的性质,全等三角形的判定与性质等知识,证明Rt ΔPBD ≅Rt ΔPCF 是解题的关键.9(2021•哈尔滨模拟)(1)【学习心得】于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ΔABC 中,AB =AC ,∠BAC =90°,D 是ΔABC 外一点,且AD =AC ,求∠BDC 的度数.若以点A 为圆心,AB 为半径作辅助⊙A ,则点C 、D 必在⊙A 上,∠BAC 是⊙A 的圆心角,而∠BDC 是圆周角,从而可容易得到∠BDC =45°.(2)【问题解决】如图2,在四边形ABCD 中,∠BAD =∠BCD =90°,∠BDC =25°,求∠BAC 的度数.(3)【问题拓展】如图3,如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是.【分析】(1)利用同弦所对的圆周角是所对圆心角的一半求解.(2)由A 、B 、C 、D 共圆,得出∠BDC =∠BAC ,(3)根据正方形的性质可得AB =AD =CD ,∠BAD =∠CDA ,∠ADG =∠CDG ,然后利用“边角边”证明ΔABE 和ΔDCF 全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS ”证明ΔADG 和ΔCDG 全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB =90°,取AB 的中点O ,连接OH 、OD ,根据直角三角形斜边上的中线等于斜边的一半可得OH =12AB =1,利用勾股定理列式求出OD ,然后根据三角形的三边关系可知当O 、D 、H 三点共线时,DH 的长度最小.【解答】解:(1)如图1,∵AB =AC ,AD =AC ,∴以点A 为圆心,AB 为半径作圆A ,点B 、C 、D 必在⊙A 上,∵∠BAC 是⊙A 的圆心角,而∠BDC 是圆周角,∴∠BDC =12∠BAC =45°,故答案为:45;(2)如图2,取BD 的中点O ,连接AO 、CO .∵∠BAD =∠BCD =90°,∴点A 、B 、C 、D 共圆,∴∠BDC =∠BAC ,∵∠BDC =25°,∴∠BAC =25°,(3)如图3,在正方形ABCD 中,AB =AD =CD ,∠BAD =∠CDA ,∠ADG =∠CDG ,在ΔABE 和ΔDCF 中,AB =CD∠BAD =∠CDA AE =DF,∴ΔABE ≅ΔDCF (SAS ),∴∠1=∠2,在ΔADG 和ΔCDG 中,AD =CD∠ADG =∠CDG DG =DG,∴ΔADG ≅ΔCDG (SAS ),∴∠2=∠3,∴∠1=∠3,∵∠BAH +∠3=∠BAD =90°,∴∠1+∠BAH =90°,∴∠AHB =180°-90°=90°,取AB 的中点O ,连接OH 、OD ,则OH =AO =12AB =1,在Rt ΔAOD 中,OD =AO 2+AD 2=12+22=5,根据三角形的三边关系,OH +DH >OD ,∴当O 、D 、H 三点共线时,DH 的长度最小,最小值=OD-OH=5-1.(解法二:可以理解为点H 是在Rt ΔAHB ,AB 直径的半圆AB上运动当O 、H 、D 三点共线时,DH 长度最小)故答案为:5-1.【点评】本题主要考查了圆的综合题,需要掌握垂径定理、圆周角定理、等腰直角三角形的性质以及勾股定理等知识,难度偏大,解题时,注意辅助线的作法.10(2022•潢川县校级一模)如图1,点B在直线l上,过点B构建等腰直角三角形ABC,使∠BAC= 90°,且AB=AC,过点C作CD⊥直线l于点D,连接AD.(1)小亮在研究这个图形时发现,∠BAC=∠BDC=90°,点A,D应该在以BC为直径的圆上,则∠ADB的度数为45°,将射线AD顺时针旋转90°交直线l于点E,可求出线段AD,BD,CD的数量关系为;(2)小亮将等腰直角三角形ABC绕点B在平面内旋转,当旋转到图2位置时,线段AD,BD,CD的数量关系是否变化,请说明理由;(3)在旋转过程中,若CD长为1,当ΔABD面积取得最大值时,请直接写AD的长.【分析】(1)由∠BAC=90°,且AB=AC,可得∠ACB=∠ABC=45°,由∠BAC=∠BDC=90°,推出A、B、C、D四点共圆,所以∠ADB=∠ACB=45°;由题意知ΔEAB≅ΔDAC,所以BE=CD,由AE=AD,∠EAD=90°,可知ΔADE是等腰直角三角形,推出CD+DB=EB+BD=DE=2AD;(2)如图2,将AD绕点A顺时针旋转90°交直线l于点E.易证ΔEAB≅ΔDAC(SAS),则BE=CD,由AE=AD,∠EAD=90°,所以ΔADE是等腰直角三角形,则DE=2AD,由BD-CD=BD-BE=DE,推出BD-CD=2AD;(3)当点D在线段AB的垂直平分线上且在AB的左侧时,ΔABD的面积最大.【解答】解:(1)①如图,在图1中.∵∠BAC=90°,且AB=AC,∴∠ACB=∠ABC=45°,∵∠BAC=∠BDC=90°,∴A、B、C、D四点共圆,∴∠ADB=∠ACB=45°;②由题意可知,∠EAD=∠BAC=90°,∴∠EAB=∠DAC,又AE=AD,AB=AC,∴ΔEAB≅ΔDAC(SAS),∴BE=CD,∵AE=AD,∠EAD=90°,∴ΔADE是等腰直角三角形,∴DE=2AD,∵CD+DB=EB+BD=DE,∴CD+DB=2AD;故答案为45°,CD+DB=2AD;(2)线段AD,BD,CD的数量关系会变化,数量关系为BD-CD=2AD.理由如下:如图2,将AD绕点A顺时针旋转90°交直线l于点E.则∠DAE=∠CAB=90°,∴∠DAC=∠EAB,又AD=AE,AC=AB,∴ΔEAB≅ΔDAC(SAS),∴BE=CD,∵AE=AD,∠EAD=90°,∴ΔADE是等腰直角三角形,∴DE=2AD,∵BD-CD=BD-BE=DE,∴BD-CD=2AD;(3)由(2)知,ΔCDA≅ΔBEA,∴∠CDA=∠AEB,∵∠DEA=45°,∴∠AEB=180°-45°=135°,∴∠CDA=∠AEB=135°,∴∠CDA+∠ABC=135°+45°=180°,∴A、B、C、D四点共圆,于是作A、B、C、D外接圆⊙O,如图,当点D在线段AB的垂直平分线上且在AB的左侧时,DG经过圆心,此时DG最长,因此ΔABD的面积最大.作DG⊥AB,则DG平分∠ADB,DB=DA,在DA上截取一点H,使得CD=DH=1,∵∠ADB=∠ACB=45°,∴∠GDB=22.5°,∠DBG=67.5°,∴∠DBC=67.5°-45°=22.5°,∠HCB=∠DHC-∠HBC=45°-22.5°=22.5°,∴∠HCB=∠HBC,∴HB=CH=2,∴AD=BD=DH+BH=1+2.【点评】本题考查三角形综合题、等腰直角三角形的性质和判定、全等三角形的判定和性质、圆等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用辅助圆解决问题,属于中考压轴题.。

隐形圆模型的最值问题-含答案

隐形圆模型的最值问题-含答案

隐形圆模型的最值问题【母题示例】如图,在矩形ABCD中,AB=4,BC=2,点E是CD上一动点,沿AE折叠矩形,使得点D落在矩形ABCD内的点D′处,连接CD′,则CD′的最小值为________.【命题形式】常在几何图形中,结合折叠、旋转问题计算最值,一般会出现直角、定点和定长等特征信息.【母题剖析】先判断点D′在以A为圆心,AD为半径的圆上,再根据勾股定理确定CD′的最小值即可.【母题解读】隐形圆模型的最值问题是一种特殊的最值问题,其中以基本图形(三角形、矩形等)为背景,结合图形变换(折叠、旋转)来计算图形中某条线段的最值.常见的模型有:直角模型;定角模型;折叠旋转模型等.解题的关键是先确定动点轨迹所在圆的圆心,再连接定点与圆心,从而实现问题的解决.模型一直角模型【模型解读】直角模型是在问题中出现“直角”“垂直”“90°”等关键词,利用“90°的圆周角所对的弦是直径”从而确定动点所在轨迹,以及动点的圆心,再确定定点和圆的位置关系,最后利用勾股定理等方法求线段的最值.【基本图形】基本图形BM⊥BN,点C是∠MBN内一点,且AC⊥BC,则点C在说明以AB为直径的圆上【核心突破】1.如图,正方形ABCD的边长为6,点E、F分别从点D和点C出发,沿射线DA、射线CD运动,且DE=CF,直线AF、直线BE交于点H,连接DH,则线段DH长度的最小值为( )A.35-3 B.25-3 C.33-3 D.32.如图,在平面直角坐标系中,点A的坐标为(-3,0),点B的坐标为(3,0),点P是平面内一点,且AP⊥BP,点M的坐标为(3,4),连接MP,则MP的最小值为________.模型二定角模型【模型解读】定角模型是直角模型的一种变形形式,其依据是已知定角,则根据“同弧所对的圆周角相等”得到动点的轨迹为圆弧,再画出对应图形进行计算.【基本图形】基本图形说明点P是正方形ABCD内一点,且∠APB=60°,则以AB为边在正方形ABCD 内作等边△ABM,点P在△ABM的外接圆在正方形内的部分弧上基本图形说明点P是平面内一点,且∠APB=45°,则以AB为斜边作等腰Rt△AOB,点P在以O为圆心,OA为半径的圆的优弧上【模型突破】1.如图,矩形ABCD中,AD=5,AB=23,点P是矩形ABCD内(含边界)上一点,且∠APB=60°,连接CP,则CP的最小值为________.2.如图,在平面直角坐标系中,矩形ABCD的顶点A,D均在x轴上,点B在第三象限,且OA=2,OD=1,AB=4,点E是AB的中点,连接OE,动点P是平面内一点,且∠OPE=45°,连接CP,求CP的最小值.模型三折叠、旋转模型【模型解读】折叠、旋转模型是在几何图形中,通过折叠或旋转变换得到动点,而此时动点的轨迹为以定点为圆心,定长为半径的圆,从而画出动点轨迹,并进行计算.【基本图形】基本图形沿过矩形ABCD的顶点A折叠△ADE,得到△AD′E,则点D′说明在以A为圆心,AD为半径的圆弧上基本图形△AEF绕正方形ABCD的顶点A旋转,则点F的轨迹为以A 说明为圆心,AF为半径的圆【模型突破】1.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB上任意一点(点E不与点B重合),沿DE翻折△DBE,使点B落在点F处,连接AF,则线段AF的长取最小值时,BF的长为________.。

隐形圆模型的最值问题含答案

隐形圆模型的最值问题含答案

隐形圆模型的最值问题【母题示例】如图示意,在矩形ABCD中,AB=4,BC=2,点E是CD上一动点,沿AE折叠矩形,使得点D落在矩形ABCD内的点D′处,连接CD′,则CD′的最小值为________.【命题形式】常在几何图形中,结合折叠、旋转问题计算最值,一般会出现直角、定点和定长等特征信息.【母题剖析】先判断点D′在以A为圆心,AD为半径的圆上,再据勾股定理确定CD′的最小值即可.【母题解读】隐形圆模型的最值问题是一种特殊的最值问题,其中以基本图形(三角形、矩形等)为背景,结合图形变换(折叠、旋转)来计算图形中某条线段的最值.常见的模型有:直角模型;定角模型;折叠旋转模型等.解题的关键是先确定动点轨迹所在圆的圆心,再连接定点与圆心,从而实现问题的解决.模型一直角模型【模型解读】直角模型是在问题中出现“直角”“垂直”“90°”等关键词,利用“90°的圆周角所对的弦是直径”从而确定动点所在轨迹,以及动点的圆心,再确定定点和圆的位置关系,最后利用勾股定理等方法求线段的最值.【基本图形】基本图形BM⊥BN,点C是∠MBN内一点,且AC⊥BC,则点C在说明以AB为直径的圆上【核心突破】1.如图示意,正方形ABCD的边长为6,点E、F分别从点D和点C出发,沿射线DA、射线CD运动,且DE=CF,直线AF、直线BE交于点H,连接DH,则线段DH 长度的最小值为( )A.35-3 B.25-3 C.33-3 D.32.如图,在平面直角坐标系中,点A的坐标为(-3,0),点B的坐标为(3,0),点P是平面内一点,且AP⊥BP,点M的坐标为(3,4),连接MP,则MP的最小值为________.模型二定角模型【模型解读】定角模型是直角模型的一种变形形式,其依据是已知定角,则根据“同弧所对的圆周角相等”得到动点的轨迹为圆弧,再画出对应图形进行计算.【基本图形】基本图形说明点P是正方形ABCD内一点,且∠APB=60°,则以AB为边在正方形ABCD内作等边△ABM ,点P在△ABM的外接圆在正方形内的部分弧上基本图形说明点P是平面内一点,且∠APB=45°,则以AB为斜边作等腰Rt△AOB,点P在以O为圆心,OA为半径的圆的优弧上【模型突破】1.如图,矩形ABCD中,AD=5,AB=23,点P是矩形ABCD内(含边界)上一点,且∠APB=60°,连接CP,则CP的最小值为________.2.如图示意,在平面直角坐标系中,矩形ABCD的顶点A,D均在x轴上,点B 在第三象限,且OA=2,OD=1,AB=4,点E是AB的中点,连接OE,动点P是平面内一点,且∠OPE=45°,连接CP,求CP的最小值.模型三折叠、旋转模型【模型解读】折叠、旋转模型是在几何图形中,通过折叠或旋转变换得到动点,而此时动点的轨迹为以定点为圆心,定长为半径的圆,从而画出动点轨迹,并进行计算.【基本图形】基本图形沿过矩形ABCD的顶点A折叠△ADE,得到△AD′E,则点D′说明在以A为圆心,AD为半径的圆弧上基本图形△AEF绕正方形ABCD的顶点A旋转,则点F的轨迹为以A 说明为圆心,AF为半径的圆【模型突破】1.如图示意,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB上任意一点(点E不与点B重合),沿DE翻折△DBE,使点B落在点F处,连接AF,则线段AF的长取最小值时,BF的长为________.2.如图示意,△ABC和△CDE都是等腰直角三角形(∠ACB=∠DCE=90°).保持△ABC固定不动,将△CDE绕点C顺时针旋转一周,连接AD、AE、BD,直线AE与BD相交于点H.点P、M、N分别是AD、AB、DE的中点.若AC=4,CD=2,则在旋转过程中,△PMN的面积的最大值为________.参考答案【核心母题剖析】25-2 【点拨】∵将△ADE沿AE折叠得到△AD′E,∴AD′=AD,∴点D′在以A为圆心,AD为半径的圆上,连接AC交⊙A于D′,此时CD′取得最小值.∵在矩形ABCD中,AB=4,BC=2,∴由勾股定理得AC=AB2+BC2=25,∴CD′的最小值为AC-AD=25-2.【核心归纳突破】模型一、直角模型1.A 【点拨】∵DE=CF,∴AE=DF,在Rt△ABE和Rt△DAF中,⎩⎪⎨⎪⎧AB =DA ,∠BAE=∠ADF,AE =DF ,∴△ABE≌△DAF,∴∠ABE=∠DAF,∴∠ABE+∠BAH=90°,∴AH⊥BE,点H 的轨迹是以AB 为直径的⊙P,如解图所示,连接DP ,交⊙P 于点H ,此时DH 的长度最小,∵AB=AD =6,∴AP=3,∴DP=AD 2+AP 2=62+32=35,∴DH=DP -PH =35-3.2.2 【点拨】∵AP⊥BP,∴点P 在以AB 为直径的圆上,∵A(-3,0),B(3,0),∴AB 的中点为O ,如解图所示,连接OM 交⊙O 于P ,此时MP 最小,∵点M 的坐标为(3,4),∴OM=5,∴MP 的最小值为MO -OP =5-3=2.模型二、定角模型1.19-2 【点拨】如解图,以AB 为边在矩形ABCD 内作等边△ABM,设△ABM 的外接圆圆心为O ,连接AO ,OC ,OM ,延长MO 交AB 于N ,过点O 作OE⊥BC 于E ,则AN =BN =3,易得∠AON=60°,∴ON=1,AO =2,∴CE=BC -BE =BC -ON =4,在Rt△COE 中,由勾股定理得OC =OE 2+CE 2=19,∵∠APB =60°=∠AMB,∴点P 在⊙O 在矩形内部分的弧上,∴当CO 交⊙O 于P 时,CP 最小,最小值为19-2.2.解:∵AB=4,点E 是AB 的中点,∴AE=BE =2,如解图,过点E 作EF⊥y 轴于F ,则四边形AEFO 是正方形,以F 为圆心,FE 为半径画圆,在优弧EO 上取点P ,连接OP ,EP , 则∠EPO=12∠EFO=45°. 连接CF 交⊙F 于P ,则此时CP 最小.设BC 交y 轴于G ,则CG =OD =1,FG =2,∴由勾股定理得FC =5,∴CP 的最小值为CF -FP =5-2.模型三、折叠、旋转模型1.1255【点拨】由题意得:DF =DB ,∴点F 在以D 为圆心,BD 为半径的圆上,如解图,连接AD 交⊙D 于点F ,此时AF 值最小,∵点D 是边BC 的中点,∴CD=BD =3,而AC=4,由勾股定理得:AD =5,而FD =3,∴FA=5-3=2,即线段AF 长的最小值是2,连接BF ,过F 作FH⊥BC 于H ,∵∠ACB=90°,∴FH∥AC,∴△DFH∽△DAC,∴DF AD =DH CD =HF AC ,即35=DH 3=HF 4,∴HF=125,DH =95,∴BH=245,∴BF=BH 2+HF 2=1255. 2.92【点拨】∵△ABC 和△CDE 都是等腰直角三角形,∠ACB =∠ECD=90°,∴AC=BC ,CE =CD ,∠ACB+∠BCE=∠BCE+∠ECD,∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD ,∠CAE=∠CBD,∴∠HBA+∠HAB=∠HBC+∠CBA+∠HAB=∠CBA+∠CAB=90°,∴BD⊥AE.∵P,M 分别是AD ,AB 的中点,∴PM∥BD,且PM =12BD ,同理,PN∥AE,且PN =12AE ,∴PM⊥PN,PM =PN ,∴△PMN 是等腰直角三角形,∴S △PMN =12PM 2=18BD 2,∴当BD 最大时,△PMN 的面积最大,∵△CDE 绕点C 旋转,∴点D 在以C 为圆心,CD 为半径的圆上,∴当点D 在BC 的延长线上时,BD 最大,此时BD =AC +CD =6,∴△PMN 面积的最大值为18×62=92.。

初中数学《隐形圆》模型梳理与题型分类含答案解析

初中数学《隐形圆》模型梳理与题型分类含答案解析

隐形圆(4大模型与6类题型)第一部分【模型梳理与题型目录】隐形圆模型是初中数学中的重要知识点,常用于解决一些看似没有直接使用圆的知识但实际上需要运用圆的性质来解决的问题,隐形圆常常用于解决最值问题.本专题梳理了隐形圆四大模型,供大家参考使用.【模型1】 定点定长模型【模型分析】(1)出现共端点、等线段时,可以利用圆的定义构造辅助圆;(2)如图1,若OA=OB =OC,则A、B、C在以O为圆心,OA为半径的圆上.由圆周角定理可得:∠ABC= 1∠AOC,∠ACB=12∠AOB,∠BAC=12∠BOC.2图1【模型2】 90°圆周角模型【模型分析】如图2,在△ABC中,∠C=90°,点C为动点,则点C的轨迹是以AB为直径的⊙O (不包含A、B两点).注:作出辅助圆是关键,计算时结合求点圆、线圆、最值等方法进行相关计算.图2应用:常用于解决直角三角形中动点的轨迹问题。

【模型3】 定弦定角模型【模型分析】固定的线段只要对应固定的角度,那么这个角的顶点轨迹为圆的一部分.如图①,在⊙O中,若弦AB长度固定,则弦AB所对的圆周角都相等;(注意:弦AB所对的劣弧(AB)上也有圆周角,需要根据题目灵活运用)如图②,若有一固定线段AB及线段AB所对的∠C大小固定,根据圆的知识可知点C不唯一.当∠C<90°时,点C在优弧上运动;当∠C=90°时,点C在半圆上运动,且线段AB是⊙O的直径;当∠C >90°时,点C在劣弧上运动.【模型4】‌四点共圆模型【模型分析】在四边形ABCD中,若∠A+∠C=1800,则A、B、C、D在圆O上,称之为A、B、C、D四点共圆.图3应用:常用于解决四点共圆的问题,如角度相等、线段最值等问题.【题型1】‌定点定长模型......................................................3;【模型2】 90°圆周角模型...................................................6;【题型3】‌定弦定角模型.....................................................11;【题型4】‌四点共圆模型.....................................................15;【题型5】直通中考.........................................................20;【题型6】拓展延伸.........................................................23.第二部分【题型展示与方法点拨】【题型1】 定点定长模型1.(23-24九年级上·福建福州·期末)如图,在等边△ABC中,AB=4,D,E分别是边AB,BC上的动点(不与△ABC的顶点重合),连接AE,CD相交于点F,连接BF,若∠BDF+∠BEF=180°,则BF的最小值为.【433/433【∠BDF +∠BEF =180°,∠DFE =120°,∠AFC =120°,F 在以O 为圆心OA 的长为半径∠AOC =120°的圆弧上运动OA ,OC ,OB ,OF ,OA =OC =OF ,BF ≥OB -OF ,△AOB ≌△COB ,△AOB 为含30度角的直角三角形进行求解即可.解∵等边△ABC ,∴∠ABC =60°,AB =BC ,∵∠BDF +∠BEF =180°,∴∠DFE +∠ABC =360°-∠BDF +∠BEF =180°,∴∠DFE =120°,∴∠AFC =120°,∴点F 在以O 为圆心OA 的长为半径∠AOC =120°的圆弧上运动OA ,OC ,OB ,OF ,OA =OC =OF ,BF ≥OB -OF ,∵AB =BC ,OB =OB ,OA =OC ,∴△AOB ≌△COB ,∴∠ABO =∠CBO =12∠ABC =30°,∠AOB =∠BOC =12∠AOC =60°,∴∠BAO =90°,∴BO =2AO ,AB =3AO =4,∴AO =433,∴BO =2OA =833,OF =AO =433,∴BF ≤433,BF 的最小值为433;故答案为433.【30度角的直角三角形一点到圆上一点的最值F 的运动轨迹.2.(24-25九年级上·全国·课后作业)如图,P 是边长为1的正方形ABCD 内的一个动点,且满足∠PBC +∠PDC =45°,则CP 的最小值是()A.2-2B.12C.22D.2-1【答案】D【分析】本题考查了正方形的性质、等腰直角三角形的性质、勾股定理、圆周角定理,在凹四边形BCDP中,求出∠BPD=135°,得点P在运动过程中,使得∠BPD=135°,即点P在正方形ABCD内,以A为圆心,AB长为半径的圆弧上,如解图,连接AP,AC,当A、P、C三点共线时,CP取得最小值,最小值为AC-AP,求出AC和AP的长度,即可得到结果,解本题的关键是证明∠BPD是定值,从而得到点P的轨迹.解:∵四边形ABCD是正方形,∴∠BCD=90°,在凹四边形BCDP中,∵∠BCD=90°,∠PBC+∠PDC=45°,∴∠BPC+∠CPD=360°-∠BCD-(∠PBC+∠PDC)=225°,∴∠BPD=360°-(∠BPC+∠CPD)始终为135°,得点P在运动过程中,使得∠BPD=135°,即点P在正方形ABCD内,以A为圆心,AB长为半径的圆弧上,如解图,连接AP,AC,,由解图可得AP+CP≥AC,当A、P、C三点共线时,CP取得最小值,最小值为AC-AP,在Rt△ABC中,∵AB=BC=1,∴AC=AB2+BC2=2,∵AP=AB=1,∴CP最小=AC-AP=2-1,故选:D.3.(24-25九年级上·江苏宿迁)如图,在矩形ABCD中,AB=6,BC=8,点E、F分别是边AB、BC上的动点,且EF=4,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为()A.30B.32C.35D.38【答案】D【分析】首先连接AC,BG,证明G在以B为圆心,2为半径的圆弧上,过B作BH⊥AC于H,当G在BH 上时,△ACG面积取最小值,此时四边形AGCD面积取最小值,再进一步解答即可.解:连接AC,BG,∵矩形ABCD,∴∠ABC=90°,S矩形=48,∵EF=4,G为EF的中点,∴BG=12EF=2,∴G在以B为圆心,2为半径的圆弧上,过B作BH⊥AC于H,当G在BH上时,△ACG面积取最小值,此时四边形AGCD面积取最小值,四边形AGCD面积=三角形ACG面积+三角形ACD面积,即四边形AGCD面积=三角形ACG面积+24.设圆弧交BH于G ,此时四边形AGCD面积取最小值,由勾股定理得:AC=62+82=10,∵1 2AC⋅BH=12AB⋅BC,∴BH=4.8,∴G H=2.8,即四边形AGCD面积的最小值=12×10×2.8+24=38.故选:D.【点拨】本题考查了勾股定理及矩形中的与动点相关的最值问题,圆的确定,解题的关键是利用直角三角形斜边的直线等于斜边的一半确定出G点的运动轨迹.【题型2】 90°圆周角模型4.(2024·湖南娄底·一模)如图,正方形ABCD的边长为a,点E、F分别在BC、CD上,且BE=CF,AE与BF相交于点G,连接CG,则CG的最小值为.【答案】5-1 a2【分析】本题考查了正方形的性质,圆周角定理,勾股定理,以及全等三角形的判定与性质,熟练掌握90°的圆周角所对的弦是直径是解答本题的关键.通过证明△ABE ≌△BCF SAS ,可证∠AGB =90°,则点G 在以AB 为直径的一段弧上运动,当点G 在OC 与弧的交点处时,CG 最短,然后根据勾股定理求出OC 的长即可求解.解:∵四边形ABCD 是正方形,∴∠ABC =∠BCF =90°,AB =BC =a ,∴在△ABE 和△BCF 中,AB =BC∠ABC =∠BCFBE =CF∴△ABE ≌△BCF SAS ,∴∠BAE =∠CBF ,∵∠ABF +∠CBF =90°,∴∠ABF +∠BAE =90°,∴∠AGB =90°,∴点G 在以AB 为直径的一段弧上运动,设AB 的中点为O ,则当点G 在OC 与弧的交点处时,CG 最短,∵AB =a ,∴OB =OG =a 2,∴OC =a 2 2+a 2=52a ,∴CG=OC -OG =5-1 a 2,故答案为:5-1 a 2.5.(23-24九年级下·山东日照)如图,已知正方形ABCD 的边长为2,点F 是正方形内一点,连接CF ,DF ,且∠ADF =∠DCF ,点E 是AD 边上一动点,连接EB ,EF ,则EB +EF 长度的最小值为()A.13-1B.10-1C.10D.5+1【答案】A【分析】根据正方形的性质得到∠ADC=90°,推出∠DFC=90°,得到点F在以CD为直径的半圆上移动,如图,设CD的中点为O,正方形ABCD关于直线AD对称的正方形ADC B ,则点B 的对应点是B,连接B O交AD于E,交半圆O于F,线段B F的长即为EB+EF的长度最小值,根据勾股定理即可得到结论.解:∵四边形ABCD是正方形,∴∠ADC=90°,∴∠ADF+∠CDF=90°,∵∠ADF=∠DCF,∴∠DCF+∠CDF=90°,∴∠DFC=90°,∴点F在以CD为直径的半圆上移动,如图,设CD的中点为O,正方形ABCD关于直线AD对称的正方形ADC B ,则点B 的对应点是B,连接B O交AD于E,交半圆O于F,线段B F的长即为EB+EF的长度最小值,OF=1,∵∠C =90°,B C =C D =CD=2,∴OC =3,∴OB =B C 2+OC 2=13,∴B F=13-1,∴FD+FE的长度最小值为13-1,故选:A.【点拨】此题考查了正方形的性质,圆周角定理,轴对称的性质,点的运动轨迹,勾股定理,最小值问题,正确理解点的运动轨迹是解题的关键.6.(24-25九年级上·广东深圳·开学考试)如图,E,F是正方形ABCD的边AD上两个动点,满足AE= DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为1,则线段DH长度的最小值是()A.52-1 B.5-12C.52D.5-1【答案】B【分析】由SAS可判定△ABE≌△DCF,由全等三角形的性质得∠ABE=∠DCF,同理可证∠DCG=∠DAG,由角的和差得∠AHB=90°,取AB的中点O,连接OH,H的运动轨迹为以O为圆心,OH=1 2AB=12为半径的半圆,当O、H、D三点共线时,DH最小,即可求解.解:∵四边形ABCD是正方形,∴AB=AD=CD=1,∠BAE=∠CDF=90°,∠ADG=∠CDG,∵∠BAH+∠DAG=90°,在△ABE和△DCF中,AB=CD∠BAE=∠CDFAE=DF,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,AD=CD∠ADG=∠CDGDG=DG,∴△ADG≌△CDG(SAS),∴∠DCG=∠DAG,∴∠ABE=∠DAG,∴∠ABE+∠BAH=90°,∴∠AHB=90°,如下图,取AB的中点O,连接OH,∴OA=12,∴H的运动轨迹为以O为圆心,OH=12AB=12为半径的半圆,如图,当O、H、D三点共线时,DH最小,∴OD=OA2+AD2=122+12=52,∴DH=OD-OH=52-1 2=5-12;故选:B.【点拨】本题考查了正方形的性质,全等三角形的判定及性质,勾股定理,直角三角形的特征,圆外一点到圆上任一点距离的最值等;能找出动点的运动轨迹及取得最小值的条件,熟练利用勾股定咯求解是解题的关键.【题型3】 定弦定角模型7.(22-23九年级上·江苏南京·阶段练习)如图,CD是△ABC的高,若AB=2,∠ACB=45°,则CD长的最大值为()A.1+2B.4-2C.2D.4【答案】A【分析】在AB上方作以AB为斜边的等腰直角三角形△AOB,根据“定线段对定角度”确定点C在以O为圆心,OA长为半径的圆上运动,当CD经过圆心时CD最长,再计算即可.解:在AB上方作以AB为斜边的等腰直角三角形△AOB,∵∠ACB=45°∴点C在以O为圆心,OA长为半径的圆上运动,∵AB=2,∴OA=OC=2,当CD经过圆心时CD最长∵CD是△ABC的高,∴AD=BD=OD=1AB=12此时CD=OC+OD=2+1,故选:A.【点拨】本题考查几何最值问题,解题的关键是确定点C在以O为圆心,OA长为半径的圆上运动.8.(20-21九年级上·江苏无锡·期末)如图,在平面直角坐标系中,动点A、B分别在x轴上和函数y=x的图象上,AB=4,CB⊥AB,BC=2,则OC的最大值为()A.22+2B.22+4C.25D.25+2【答案】A【分析】根据y=x与x轴的夹角为45°,以AB为斜边作等腰直角三角形,连接AD,CD,OD,则∠DBC= 45°,根据勾股定理求得DB的长,进而证明△DCB是直角三角形,求得DC的长,根据OD+DC≥OC,即可求得OC的最大值解:如图,以AB为斜边作等腰直角三角形,连接AD,CD,OD,∵y=x与x轴的夹角为45°,∴∠AOB=45°=1∠ADB2∴A,O,B在⊙D上,∵AB=4,∠ADB=90°,∴BD=AD=22,∴∠ABD=45°∵BC⊥AB∴∠CBA=90°∴∠CBD=45°∴△BCD中BC=2,BD=22,∠CBD=45°过点C作CE⊥BD于点E,如图则BE=CE=2=DE∴CD=CB=2∵OD+DC≥OC∴当O,D,C三点共线时,OC取得最大值,最大值为OD+DC=DB+DC=22+2故选A【点拨】本题主要考查了勾股定理,同弧所对的圆周角等于圆心角的一半,找到⊙D是解决本题的关键.9.(19-20九年级上·浙江宁波·期末)如图,在等腰Rt△ABC中,∠BAC=90°,BC=2,点P是△ABC内部的一个动点,且满足∠PBC=∠PCA,则线段AP长的最小值为()A.0.5B.2-1C.2-2D.13【答案】C 【分析】先计算出∠PBC +∠PCB =45°,则∠BPC =135°,利用圆周角定理可判断点P 在以BC 为弦的⊙O 上,如图,连接OA 交BC 于P ′,作BC 所对的圆周角∠BQC ,利用圆周角定理计算出∠BOC =90°,从而得到△OBC 为等腰直角三角形,四边形ABOC 为正方形,所以OA =BC =2,OB =2,根据三角形三边关系得到AP ≥OA -OP (当且仅当A 、P 、O 共线时取等号,即P 点在P ′位置),于是得到AP 的最小值.解:解:∵△ABC 为等腰直角三角形,∴∠ACB =45°,即∠PCB +∠PCA =45°,∵∠PBC =∠PCA ,∴∠PBC +∠PCB =45°,∴∠BPC =135°,∴点P 在以BC 为弦的⊙O 上,如图,连接OA 交BC于P ′,作BC 所对的圆周角∠BQC ,则∠BCQ =180°-∠BPC =45°,∴∠BOC =2∠BQC =90°,∴△OBC 为等腰直角三角形,∴四边形ABOC 为正方形,∴OA =BC =2,∴OB =22BC =2,∵AP ≥OA -OP (当且仅当A 、P 、O 共线时取等号,即P 点在P ′位置),∴AP 的最小值为2-2.故选:C .【点拨】本题考查了圆周角定理及等腰直角三角形的性质.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.【题型4】四点共圆模型10.(22-23九年级上·黑龙江哈尔滨·阶段练习)如图,在四边形ABCD 中,∠ABC =∠D =90°,连接AC ,点F 为边CD 上一点,连接BF 交AC 于点E ,AB =AE ,∠FGC +∠FBG =90°,∠BFG +2∠GFC =180°,若AD =722,BG =4,则CG 的长为.【答案】8【分析】延长BA 与CD 的延长线相交于点H ,证明∠FGC =∠ABF ,∠GFC =∠BFD ,由三角形内角和定理得到∠H=∠ACB,BH=BC,进一步得到∠H=∠DAH=45°,则AD=DH=722,由勾股定理得到AH=AD2+DH2=7,证明点C、G、E、F四点共圆,如图,连接EG,证明CE=CG,设CE=CG=x,则BH=BC=4+x,AE=AB=x-3,AC=2x-3,由勾股定理得AB2+BC2=AC2,即x-32+x+42 =2x-32,解方程即可得到答案.解:延长BA与CD的延长线相交于点H,∵∠FGC+∠FBG=90°,∠FBG+∠ABF=∠ABC=90°∴∠FGC=∠ABF,∵∠BFG+2∠GFC=180°,∠BFG+∠BFD+∠CFG=180°,∴2∠GFC=∠BFD+∠CFG,∴∠GFC=∠BFD,∵∠H+∠ABF+∠BFD=180°=∠ACB+∠FGC+∠GFC,∴∠H=∠ACB,∵∠ABC=90°,∴∠H=∠ACB=45°,BH=BC,∵∠ADH=90°,∴∠H=∠DAH=45°,∴AD=DH=722,∴AH=AD2+DH2=7,∵AB=AE,∴∠ABE=∠AEB,∵∠FGC=∠ABE,∠CEF=∠AEB,∴∠FGC=∠CEF,∴点C、G、E、F四点共圆,如图,连接EG,∴∠GFC=∠CEG,∠BFD=∠CGE,∵∠GFC=∠BFD,∴∠CGE=∠CEG,∴CE=CG,设CE=CG=x,则BH=BC=BG+CG=4+x,∴AE=AB=BH-AH=x+4-7=x-3,∴AC=AE+CE=x-3+x=2x-3,由勾股定理得,AB2+BC2=AC2,∴x-32+x+42=2x-32,解得x=-1(不合题意,舍去)或x=8,∴CG=8,故答案为:8【点拨】此题考查了等腰直角三角形的判定和性质、勾股定理、等腰三角形的判定和性质、四点共圆、圆周角定理、圆内接四边形的性质、解一元二次方程等知识,关键在于等腰直角三角形的判定和性质与证明四点共圆.11.(24-25九年级上·江苏宿迁·阶段练习)如图,等边三角形ABC中,AB=5,P为AB边上一动点,PD⊥BC ,PE ⊥AC ,垂足分别为D ,E 则DE 的最小值为.【答案】154【分析】如图,连接PC ,取CP 的中点O ,连接OE ,OD ,过点O 作OH ⊥DE 于H ,首先证明△ODE 是顶角为120°的等腰三角形,当OE 的值最小时,DE 的值最小,即可求出PC 的最小值.解:如图,连接PC ,取CP 的中点O ,连接OE ,OD ,过点O 作OH ⊥DE 于H ,∵△ABC 是等边三角形,∴∠ACB =60°,AB =BC =AC =5,∵PD ⊥BC ,PE ⊥AC ,∴∠PEC =∠PDC =90°,∵OP =OC ,∴OE =OP =OC =OD ,∴C 、D 、P 、E 四点共圆,∴∠EOD =2∠ECD =120°,∴当OE 的值最小时,DE 的值最小,根据垂线段最短可得,当CP ⊥AB 时,PC =532,此时OE 最小,OE =534,∵OE =OD ,OH ⊥DE ,∴DH =EH ,∠DOH =∠EOH =60°,∴∠OEH =30°,∴OH =12OE =538,∴DH =EH =OE 2-OH 2=158,∴DE =2DH =154,∴DE 的值最小为154,故答案为:154.【点拨】本题考查了四点共圆、垂线段最短、圆周角定理、含30°角的直角三角形的性质、等腰直角三角形的判定与性质等知识;正确判断当CP ⊥AB 时OE 最小是解题的关键.12.(23-24九年级下·江苏南京·阶段练习)如图,在△ABC 中,∠ACB =90°,AC =BC =2,点P 是射线AB 上一动点,∠CPD =90°,且PC =PD ,连接AD 、CD ,则AD +CD 的最小值是.【答案】25【分析】取AC中点H,连接DH交AB于点G,连接BD,PH,当DH⊥AC时,DH有最小值,此时易得△ACD是等腰三角形,推出AD=CD,即AD,CD有最小值,则AD+CD有最小值,此时根据∠AHD=∠CHD=∠ACB=90°,推出DH∥BC,设CD中点为O,根据∠CHD=∠CPD=90°,易得点C,H,P,D在以点O为圆心CD为直径的圆上,易得∠CHP+∠PDC=180°,由∠ABC=45°,易得此时点B在圆O上,进而推出∠CBD+∠CPD=180°,则∠CBD=90°,得到四边形BCHD是矩形,即HD=BC=2,利用勾股定理即可计算出CD的最小值,进而得出结果.解:取AC中点H,连接DH交AB于点G,连接BD,PH,当DH⊥AC时,DH有最小值,∵点H是AC中点,DH⊥AC,∴△ACD是等腰三角形,∴AD=CD,∵AH,CH是定值,DH有最小值时,即AD,CD有最小值,则AD+CD有最小值,∵∠AHD=∠CHD=∠ACB=90°,∴DH∥BC,设CD中点为O,∵∠CHD=∠CPD=90°,∴点C,H,P,D在以点O为圆心CD为直径的圆上,∴∠CHP+∠PDC=180°,∵∠ABC=45°,∴此时点B在圆O上,∴∠CBD+∠CPD=180°,∴∠CBD=90°,∵DH∥BC,∴四边形BCHD是矩形,∴HD=BC=2,∵HC=1AC=1,2在Rt△CHD中,∴CD=CH2+HD2=5,∴AD+CD的最小值为2CD=25,故答案为:25.【点拨】本题考查勾股定理求最短距离,圆周角定理,四点共圆,等腰三角形的判定与性质,矩形的判定与性质,正确作出辅助线,证明四点共圆是解题的关键.第三部分【中考链接与拓展延伸】1、直通中考1.(2023·山东泰安·中考真题)如图,在平面直角坐标系中,Rt △AOB 的一条直角边OB 在x 轴上,点A 的坐标为(-6,4);Rt △COD 中,∠COD =90°,OD =43,∠D =30°,连接BC ,点M 是BC 中点,连接AM .将Rt △COD 以点O 为旋转中心按顺时针方向旋转,在旋转过程中,线段AM 的最小值是()A.3B.62-4C.213-2D.2【答案】A【分析】如图所示,延长BA 到E ,使得AE =AB ,连接OE ,CE ,根据点A 的坐标为(-6,4)得到BE =8,再证明AM 是△BCE 的中位线,得到AM =12CE ;解Rt △COD 得到OC =4,进一步求出点C 在以O 为圆心,半径为4的圆上运动,则当点M 在线段OE 上时,CE 有最小值,即此时AM 有最小值,据此求出CE 的最小值,即可得到答案.解:如图所示,延长BA 到E ,使得AE =AB ,连接OE ,CE ,∵Rt △AOB 的一条直角边OB 在x 轴上,点A 的坐标为(-6,4),∴AB =4,OB =6,∴AE =AB =4,∴BE =8,∵点M 为BC 中点,点A 为BE 中点,∴AM 是△BCE 的中位线,∴AM =12CE ;在Rt △COD 中,∠COD =90°,OD =43,∠D =30°,∴OC =33OD =4,∵将Rt △COD 以点O 为旋转中心按顺时针方向旋转,∴点C 在以O 为圆心,半径为4的圆上运动,∴当点M 在线段OE 上时,CE 有最小值,即此时AM 有最小值,∵OE =BE 2+OB 2=10,∴CE 的最小值为10-4=6,∴AM 的最小值为3,故选A .【点拨】本题主要考查了一点到圆上一点的最值问题,勾股定理,三角形中位线定理,坐标与图形,含30度角的直角三角形的性质等等,正确作出辅助线是解题的关键.2.(2022·广西柳州·中考真题)如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为.【答案】25-2【分析】如图,由EG=2,确定E在以G为圆心,半径为2的圆上运动,连接AE,再证明△ADE≌△CDF (SAS),可得AE=CF,可得当A,E,G三点共线时,AE最短,则CF最短,再利用勾股定理可得答案.解:如图,由EG=2,可得E在以G为圆心,半径为2的圆上运动,连接AE,∵正方形ABCD,∴AD=CD,∠ADC=90°,∴∠ADC=∠EDF=90°,∴∠ADE=∠CDF,∵DE=DF,∴△ADE≌△CDF(SAS),∴AE=CF,∴当A,E,G三点共线时,AE最短,则CF最短,∵G位BC中点,BC=AB=4,∴BG=2,此时AG=BG2+AB2=22+42=25,此时AE=25-2,所以CF的最小值为:25-2.故答案为:25-2【点拨】本题考查的是正方形的性质,圆的基本性质,勾股定理的应用,二次根式的化简,熟练的利用圆的基本性质求解线段的最小值是解本题的关键.2、拓展延伸3.(2022·辽宁抚顺·中考真题)如图,正方形ABCD的边长为10,点G是边CD的中点,点E是边AD上一动点,连接BE,将△ABE沿BE翻折得到△FBE,连接GF.当GF最小时,AE的长是.【答案】55-5【分析】根据动点最值问题的求解步骤:①分析所求线段端点(谁动谁定);②动点轨迹;③最值模型(比如将军饮马模型);④定线段;⑤求线段长(勾股定理、相似或三角函数),结合题意求解即可得到结论.解:①分析所求线段GF端点:G是定点、F是动点;②动点F的轨迹:正方形ABCD的边长为10,点E是边AD上一动点,连接BE,将△ABE沿BE翻折得到△FBE,连接GF,则BF=BA=10,因此动点轨迹是以B为圆心,BA=10为半径的圆周上,如图所示:③最值模型为点圆模型;④GF最小值对应的线段为GB-10;⑤求线段长,连接GB,如图所示:在RtΔBCG中,∠C=90°,正方形ABCD的边长为10,点G是边CD的中点,则CG=5,BC=10,根据勾股定理可得BG=CG2+BC2=52+102=55,当G、F、B三点共线时,GF最小为55-10,接下来,求AE的长:连接EG,如图所示=SΔEDG+SΔBCG+根据翻折可知EF=EA,∠EFB=∠EAB=90°,设AE=x,则根据等面积法可知S正方形SΔBAE+SΔBEG,即100=12DE⋅DG+12BC⋅CG+12AB⋅AE+12BG⋅EF=1 2510-x+5×10+10x+55x整理得5+1x=20,解得x=AE=205+1=205-15+15-1=55-5,故答案为:55-5.【点拨】本题考查动点最值下求线段长,涉及到动点最值问题的求解方法步骤,熟练掌握动点最值问题的相关模型是解决问题的关键.4.(2024·内蒙古兴安盟·二模)如图,在正方形ABCD中,点M,N分别为AB,BC上的动点,且AM= BN,DM,AN交于点E,点F为AB的中点,点P为BC上一个动点,连接PE,PF,若AB=4,则PE +PF的最小值为.【答案】210-2【分析】证明△DAM≌△ABN SAS,则∠ADM=∠BAN,∠AED=90°,如图,取AD的中点O,则E在以O为圆心,AD为直径的圆上运动,作F关于BC对称的点F ,连接PF ,连接OF 交⊙O于E ,则PF = PF,由PE+PF=PE+PF ,可知当O、E 、P、F 四点共线时,PE+PF最小为E F ,由勾股定理得,OF =AF 2+OA2=210,根据E F =OF -OE ,求解作答即可.解:∵正方形ABCD,∴AD=AB,∠DAM=∠ABN=90°,又∵AM=BN,∴△DAM≌△ABN SAS,∴∠ADM=∠BAN,∴∠ADM+∠DAE=∠BAN+∠DAE=90°,∴∠AED=90°,如图,取AD的中点O,则E在以O为圆心,AD为直径的圆上运动,作F关于BC对称的点F ,连接PF ,连接OF 交⊙O于E ,∴PF =PF,∴PE+PF=PE+PF ,∴当O、E 、P、F 四点共线时,PE+PF最小为E F ,由勾股定理得,OF =AF 2+OA2=62+22=210,∴E F =OF -OE =210-2,故答案为:210-2.【点拨】本题考查了正方形的性质,全等三角形的判定与性质,90°圆周角所对的弦为直径,轴对称的性质,勾股定理等知识.熟练掌握正方形的性质,全等三角形的判定与性质,90°圆周角所对的弦为直径,轴对称的性质,勾股定理是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

隐形圆问题
一、确定动点轨迹是圆
【例题 1】如图,已知圆 C 的半径为 3,圆外一定点 O 满足OC=5,点 P 为圆C 上一动点, 经过点 O 的直线 l 上有两点 A ,且 OA=OB ,∠APB=90°,l 不过点 C ,则 AB 的最小值为
【举一反三】
1、如图,在边长为 2的菱形 ABCD 中,∠ A=60°, M 是 AD 边的中点, N 是 AB 边上的一动 点,将△ AMN 沿 MN 所在直线翻折得到△ A'MN,连接 A'C ,则 A'C 长度的最小值是
3、如图,已知等边 △ABC 的边长为 8,点 P 是 AB 边上的一个动点 (与点 A 、B 不
重合 ).直线 l 是经过点 P 的一条直线, 把△ABC 沿直线 l 折叠,点 B 的对应点是点 B'.当PB=6时,在直 线 l 变化过程中,则 △ ACB '面积的最大值是 .
4、如图,矩形 ABCD 中,AB =4,BC=8,P 、Q 分別是直线 BC 、AB 上的两个动点, AE =2, △AEQ 沿 EQ 翻折形成△ FEQ ,连接 PF 、PD ,则 PF+PD 的最小值是
2、如图,在 Rt △ABC 中, ∠C=90°,AC =6, 为边 BC 上的动点,将 △ CEF 沿直线 EF 翻折, 小值是
BC=8,点 F 在边 AC 上,并且 CF = 2,点 E 点 C 落在点 P 处,则点 P 到
边 AB 距离的最
第 2
二、定边对直角
知识回顾 :直径所对的圆周角是直角
构造思路 :一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧 图形释义 :
【例题 1】已知正方形 ABCD 边长为 2,E 、F 分别是 BC 、CD 上的动点,且满足 BE
= CF , 连接 AE 、 BF ,交点为 P 点,则 PC 的最小值为
【举一反三】
1、如图, E 、F 是正方形 ABCD 的边 AD 上的两个动点,满足 AE =DF ,连接 CF 交 BD 于 点 G ,连接 BE 交 AG 于点 H ,若正方形边长为 2,则线段 DH 长度的最小值是
2、如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC =4,P 是△ABC 内部的一个动点, 且满足 ∠PAB =∠ PBC ,则线段 CP 长的最小值是
若 AB 是一条定线段,且 ∠APB-90 °,
则 P 点轨迹是以 AB 为直径的圆
3、如图, AB 是半圆 O 的直径,点 C 在半圆 O 上, AB= 5,AC= 4.D 是弧 BC 上的一个动点,连接 AD,过点 C作CE⊥AD于E,连接 BE.在点 D移动的过程中,BE的最小值为
4、如图,在 Rt△ ABC 中,∠BAC=90°,AC=12,AB=10,点 D 是 AC 上的一个动点,以 AD 为直径作圆 O,连接 BD 交圆 O 于点 E,则 AE 的最小值为
5、如图,正方形 ABCD 的边长为 4,动点 E、F 分別从点 A、C 同时出发,以相同的速度分别沿 AB、CD 向终点 B、D 移动,当点 E 到达点 B时,运动停止,过点 B 作直线 EF的垂线
【辅助圆 +将军饮马】如图,正方形 ABCD 的边长是 4,点 E 是 AD 边上一动点,连接 BE,过点 A作AF⊥BE于点 F,点 P是AD 边上另一动点,则 PC+PF的最小值为
【辅助圆 +相切】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,D是 BC上一动点,
CE⊥AD于E,EF⊥AB交BC于点 F,则 CF的最大值是
三、定边对定角
在“定边对直角”问题中,依据“直径所对的圆周角是直角”,关键性在于寻找定边、直角,而根据圆周角定理 :同圆或等圆中,同弧或等弧所対的圆周角都相 .定边必不可少,而直角则可
一般为定角 .例如, AB 为定值,∠ P 为定角,则 P 点轨迹是一个圆 .
当然,∠ P 度数也是特殊角,比如 30°、45°、60°、120°,下面分别作对应的轨迹圆若∠ P=
30°,以 AB 为边,同侧构造等边三角形 AOB,O 即为圆心
若∠ P=45°,以 AB为斜边,同侧构造等腰直角三角形AOB,O 即为圆心 .
120°的等腰三角形 AOB ,O 即为圆心 . 若∠ P=60°,以 AB 为底,同侧构
若∠ P=120°,以 AB为底,异侧为边构造顶角为120°的等腰三角形 AOB ,O即为圆心 .
【例题 1】如图,等边△ ABC边长为 2,E、F 分別是 BC、CA 上两个动点,且
BE=CF,连接 AE、BF,交点为 P点,则 CP 的最小值为
【举一反三】
1、如图,△ ABC 为等边三角形, AB=3,若 P 为△ABC 内一动点,且满足∠ PAB=∠ ACP,则线段 PB 长度的最小值为
2、在△ABC中, AB= 4,∠ C= 60°,∠ A>∠B,则 BC 的长的取值范围是
3、如图,AB 是圆 O的直径, M、N是弧 AB(异于 A、B)上两点,C是弧 MN 上一动点,∠ACB 的角平分线交圆 O 于点 D,∠ BAC 的平分线交 CD 于点 E,当点 C 从点 M 运动到点 N 时,则 C、E 两点的运动路径长的比是。

相关文档
最新文档