数字信号处理:用窗函数法设计IIR数字滤波器

合集下载

数字信号处理中的滤波器设计原理

数字信号处理中的滤波器设计原理

数字信号处理中的滤波器设计原理在数字信号处理中,滤波器是一种用于处理信号的重要工具。

它可以通过选择性地改变信号的频率特性,滤除不需要的频率成分或增强感兴趣的频率成分。

滤波器的设计原理可以分为两个方面:频域设计和时域设计。

一、频域设计频域设计是一种以频率响应为初始条件的设计方法。

其基本思想是通过指定理想频率响应来设计滤波器,并将其转化为滤波器的参数。

常见的频域设计方法包括理想滤波器设计、窗函数法设计和频率抽取法设计。

1. 理想滤波器设计理想滤波器设计方法是基于理想滤波器具有理想的频率响应特性,如理想低通滤波器、理想高通滤波器或理想带通滤波器等。

设计过程中,我们首先指定滤波器的理想响应,然后通过傅里叶变换将其转化为时间域中的脉冲响应,最终得到频率响应为指定理想响应的滤波器。

2. 窗函数法设计窗函数法是一种将指定的理想滤波器响应与某种窗函数相乘的设计方法。

常见的窗函数有矩形窗、汉宁窗、汉明窗等。

通过将理想滤波器响应与窗函数相乘,可以获得更实际可行的设计结果。

3. 频率抽取法设计频率抽取法是一种通过对滤波器的选择性抽取来设计的方法。

在该方法中,我们通常先设计一个频域连续的滤波器,然后通过采样抽取的方式,将频域上的滤波器转化为时域上的滤波器。

二、时域设计时域设计是一种以时域响应为初始条件的设计方法。

其基本思想是通过直接设计或优选设计时域的脉冲响应,进而得到所需的滤波器。

常用的时域设计方法包括有限脉冲响应(FIR)滤波器设计和无限脉冲响应(IIR)滤波器设计。

1. FIR滤波器设计FIR滤波器是一种具有有限长度的脉冲响应的滤波器。

在设计FIR滤波器时,我们可以通过多种方法,如频率采样法、窗函数法、最小二乘法等来优化滤波器的设计参数。

2. IIR滤波器设计IIR滤波器具有无限长度的脉冲响应,其设计涉及到环节函数的设计。

常见的IIR滤波器设计方法有巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等。

综上所述,数字信号处理中的滤波器设计原理可以基于频域设计和时域设计。

IIR和FIR数字滤波器的设计方法及其窗函数设计法

IIR和FIR数字滤波器的设计方法及其窗函数设计法

IIR和FIR数字滤波器的设计⽅法及其窗函数设计法第六章IIR数字滤波器的设计⽅法6.1 数字滤波器的基本概念数字滤波器:是指输⼊输出均为数字信号,通过⼀定运算关系改变输⼊信号所含频率成分的相对⽐例或者滤除某些频率成分的器件。

优点:⾼精度、稳定、体积⼩、重量轻、灵活,不要求阻抗匹配,可实现特殊滤波功能⼀、数字滤波器的分类1. 按功能分:低通、⾼通、带通、带阻、全通滤波器⼀、数字滤波器的分类2.按实现的⽹络结构或单位抽样响应分:⼆、数字滤波器的设计过程⽤⼀个因果稳定的离散LSI 系统的系统函数H (z )逼近此性能指标按设计任务,确定滤波器性能要求,制定技术指标利⽤有限精度算法实现此系统函数:如运算结构、字长的选择等实际技术实现:软件法、硬件法或DSP 芯⽚法三、数字滤波器的性能要求选频滤波器的频率响应:三、数字滤波器的性能要求实际低通滤波器理想低通滤波器三、数字滤波器的性能要求实际低通滤波器理想低通滤波器三、数字滤波器的性能要求实际低通滤波器理想低通滤波器7.3 窗函数设计法(以低通数字滤波器为例)⼀、设计步骤1.确定滤波器的频率响应H d(e jw)]的表达式⼀、设计步骤2.求出此理想滤波器对应的单位抽样响应序列h d(n)所得到的h d(n)是⼀个⽆限长序列。

⼀、设计步骤3.将⽆限长h d(n)截取为长度为N的有限长h(n)⼀、设计步骤4.选取窗函数w(n)及确定长度N矩形窗三⾓形窗汉宁窗4.选取窗函数w(n)及确定长度N1.根据阻带最⼩衰减选择w(n)2.根据过渡带宽及w(n)确定N所得到的h(n)的频谱与h d(n)的频谱会不会⼀样?⼀、设计步骤5.求H(e jw)=DTFT[h(n)],检验是否满⾜设计要求,如不满⾜,改变w(n)和N,重新设计。

⼆、设计举例。

《数字信号处理》课程教学大纲

《数字信号处理》课程教学大纲

《数字信号处理》课程教学大纲课程编码:课程名称:数字信号处理英文名称: Digital signal processing适用专业:物联网工程先修课程:复变函数、线性代数、信号与系统学分:2总学时:48实验(上机)学时:0授课学时:48网络学时:16一、课程简介《数字信号处理》是物联网工程专业基础必修课。

主要研究如何分析和处理离散时间信号的基本理论和方法,主要培养学生在面对复杂工程问题时的分析、综合与优化能力,是一门既有系统理论又有较强实践性的专业基础课。

课程的目的在于使学生能正确理解和掌握本课程所涉及的信号处理的基本概念、基本理论和基本分析方法,来解决物联网系统中的信号分析问题。

培养学生探索未知、追求真理、勇攀科学高峰的责任感和使命感。

助力学生树立正确的价值观,培养思辨能力、工程思维和科学精神。

培养学生精益求精的大国工匠精神,激发学生科技报国的家国情怀和使命担当。

它既是学习相关专业课程设计及毕业设计必不可少的基础,同时也是毕业后做技术工作的基础。

二、课程目标和任务1.课程目标课程目标1(CT1):运用时间离散系统的基本原理、离散时间傅里叶变换、Z变换、离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、时域采样定理和频域采样定理等工程基础知识,分析物联网领域的复杂工程问题。

培养探索未知、追求真理、勇攀科学高峰的责任感和使命感[课程思政点1]。

助力学生树立正确的价值观,培养思辨能力、工程思维和科学精神[课程思政点2]。

课程目标2 (CT2):说明利用DFT对模拟信号进行谱分析的过程和误差分析、区分各类网络的结构特点;借助文献研究运用窗函数法设计具有线性相位的FIR数字滤波器,分析物联网领域复杂工程问题解决过程中的影响因素,从而获得有效结论的能力。

培养学生精益求精的大国工匠精神,激发学生科技报国的家国情怀和使命担当[课程思政点3]。

2.课程目标与毕业要求的对应关系三、课程教学内容第一章时域离散信号与系统(1)时域离散信号表示;(2)时域离散系统;(3)时域离散系统的输入输出描述法;*(4)模拟信号数字处理方法;教学重点:数字信号处理中的基本运算方法,时域离散系统的线性、时不变性及系统的因果性和稳定性。

FIR和IIR滤波器设计

FIR和IIR滤波器设计

FIR和IIR滤波器设计滤波器是信号处理中常用的工具,用于去除信号中的噪声、增强或抑制特定频率成分等。

FIR(有限脉冲响应)和IIR(无限脉冲响应)是两种常见的滤波器设计方法。

FIR滤波器是一种线性相位的滤波器,其脉冲响应是有限长度的,因此被称为有限脉冲响应。

它的频率响应是通过一个线性组合的单位样本响应来实现的。

在设计FIR滤波器时,可以通过窗函数法或频率采样法来选择滤波器的系数。

窗函数法适用于要求较为简单的滤波器,而频率采样法适用于要求较高的滤波器。

窗函数法是一种基于原始滤波器响应的方法。

它通过将滤波器响应乘以一个窗函数,从而使得脉冲响应在时间上截断。

常用的窗函数有矩形窗、汉明窗、布莱克曼窗等。

通过选择不同窗函数可以得到不同的滤波器特性,如频带宽度、峰值纹波等。

频率采样法是一种通过等间隔采样得到频率响应的方法。

首先确定滤波器的截止频率和带宽,然后选择一组频率点进行采样。

根据采样得到的频率响应,可以通过逆傅里叶变换得到滤波器的脉冲响应,进而得到滤波器的系数。

频率采样法可以灵活地选择频率点,从而得到更精确的滤波器特性。

与FIR滤波器不同,IIR滤波器的脉冲响应是无限长度的,因此被称为无限脉冲响应。

IIR滤波器的频率响应是通过递归方式的单位样本响应来实现的。

在设计IIR滤波器时,可以通过模拟滤波器的方法来选择滤波器的结构和参数。

常用的模拟滤波器有巴特沃斯滤波器、切比雪夫滤波器等。

巴特沃斯滤波器是一种最优近似设计的滤波器,其特点是在通带和阻带中都具有等级衰减。

切比雪夫滤波器是一种在通带和阻带中都具有等级衰减,同时具有较窄过渡带的滤波器。

这两种滤波器的设计方法都是基于频率变换的思想,首先将模拟滤波器的频率响应映射到数字滤波器上,然后利用一定的优化算法来得到滤波器的参数。

FIR和IIR滤波器在滤波器设计中有不同的特点和适用范围。

FIR滤波器具有线性相位特性,因此适用于对信号的相位要求较高的应用,如音频处理、图像处理等。

基于MATLAB的IIR和FIR滤波器的设计与实现要点

基于MATLAB的IIR和FIR滤波器的设计与实现要点

基于MATLAB的IIR和FIR滤波器的设计与实现要点IIR和FIR滤波器是数字信号处理中常用的滤波器设计方法,它们分别基于无限脉冲响应(IIR)和有限脉冲响应(FIR)的理论基础。

本文将对基于MATLAB的IIR和FIR滤波器的设计与实现要点进行详细的介绍。

1.滤波器设计方法IIR滤波器设计方法主要有两种:基于模拟滤波器的方法和基于离散系统的方法。

前者将模拟滤波器的传递函数转化为离散滤波器的传递函数,常用方法有:脉冲响应不变法、双线性变换法等,MATLAB中提供了相关函数实现这些方法。

后者直接根据滤波器的要求设计离散系统的传递函数,常用方法有:Butterworth、Chebyshev等,MATLAB中也提供了相应的函数实现这些方法。

2.滤波器参数的选择选择合适的滤波器参数是IIR滤波器设计中的关键步骤。

根据滤波器的型号和设定的滤波器规格,主要需要选择的参数包括:滤波器阶数、截止频率、通带和阻带的衰减等。

一般情况下,滤波器阶数越高,滤波器的性能越好,但计算量也会增加,所以需要进行权衡。

3.滤波器实现方法基于MATLAB的IIR滤波器可以通过直接的形式或级联形式实现。

直接形式直接使用传递函数的表达式计算输出样本;级联形式则将传递函数分解为多个较小的子滤波器,逐级计算输出样本,并将各级输出进行累加。

选择哪种形式取决于具体的应用需要和滤波器的阶数。

4.滤波器性能评估设计好IIR滤波器后,需要对其性能进行评估,判断滤波器是否满足要求。

主要评估指标包括:幅频响应、相频响应、群延迟等。

MATLAB提供了多种绘制频域和时域响应曲线的函数,可以用来评估IIR滤波器的性能。

1.滤波器设计方法FIR滤波器设计主要有两种方法:窗函数法和最优化法。

窗函数法是最简单的设计方法,它通过对理想滤波器的频率响应进行窗函数加权来获得滤波器的时域响应,常用的窗函数有:矩形窗、汉宁窗、布莱克曼窗等。

最优化法则通过优化其中一种准则函数,如最小二乘法、Chebyshev等,得到最优的FIR滤波器。

Matlab中的多种滤波器设计方法介绍

Matlab中的多种滤波器设计方法介绍

Matlab中的多种滤波器设计方法介绍引言滤波器是数字信号处理中常用的工具,它可以去除噪声、改善信号质量以及实现其他信号处理功能。

在Matlab中,有许多不同的滤波器设计方法可供选择。

本文将介绍一些常见的滤波器设计方法,并详细说明它们的原理和应用场景。

一、FIR滤波器设计1.1 理想低通滤波器设计理想低通滤波器是一种理论上的滤波器,它可以完全去除截止频率之上的频率分量。

在Matlab中,可以使用函数fir1来设计理想低通滤波器。

该函数需要指定滤波器阶数及截止频率,并返回滤波器的系数。

但是,由于理想低通滤波器是非因果、无限长的,因此在实际应用中很少使用。

1.2 窗函数法设计为了解决理想滤波器的限制,窗函数法设计了一种有限长、因果的线性相位FIR滤波器。

该方法利用窗函数对理想滤波器的频率响应进行加权,从而得到实际可用的滤波器。

在Matlab中,可以使用函数fir1来实现窗函数法设计。

1.3 Parks-McClellan算法设计Parks-McClellan算法是一种优化设计方法,它可以根据指定的频率响应要求,自动选择最优的滤波器系数。

在Matlab中,可以使用函数firpm来实现Parks-McClellan算法。

二、IIR滤波器设计2.1 Butterworth滤波器设计Butterworth滤波器是一种常用的IIR滤波器,它具有平坦的幅频响应,并且在通带和阻带之间有宽的过渡带。

在Matlab中,可以使用函数butter来设计Butterworth滤波器。

2.2 Chebyshev滤波器设计Chebyshev滤波器是一种具有较陡的滚降率的IIR滤波器,它在通带和阻带之间有一个相对较小的过渡带。

在Matlab中,可以使用函数cheby1和cheby2来设计Chebyshev滤波器。

2.3 Elliptic滤波器设计Elliptic滤波器是一种在通带和阻带上均具有较陡的滚降率的IIR滤波器,它相较于Chebyshev滤波器在通带和阻带上都具有更好的过渡特性。

基于MATLAB的FIR和IIR数字滤波器的设计

基于MATLAB的FIR和IIR数字滤波器的设计

基于MATLAB的FIR和IIR数字滤波器的设计一、本文概述随着数字信号处理技术的飞速发展,数字滤波器作为其中的核心组件,已经广泛应用于通信、音频处理、图像处理、生物医学工程等诸多领域。

在数字滤波器中,有限脉冲响应(FIR)滤波器和无限脉冲响应(IIR)滤波器是最常见的两种类型。

它们各自具有独特的优点和适用场景,因此,对这两种滤波器的深入理解和设计掌握是工程师和研究人员必备的技能。

本文旨在通过MATLAB这一强大的工程计算工具,详细介绍FIR 和IIR数字滤波器的设计原理、实现方法以及对比分析。

我们将简要回顾数字滤波器的基本概念和分类,然后重点阐述FIR和IIR滤波器的设计理论,包括窗函数法、频率采样法、最小均方误差法等多种设计方法。

接下来,我们将通过MATLAB编程实现这些设计方法,并展示如何根据实际应用需求调整滤波器参数以达到最佳性能。

本文还将对FIR和IIR滤波器进行性能对比,分析它们在不同应用场景下的优缺点,并提供一些实用的设计建议。

我们将通过几个典型的应用案例,展示如何在MATLAB中灵活应用FIR和IIR滤波器解决实际问题。

通过阅读本文,读者将能够深入理解FIR和IIR数字滤波器的设计原理和实现方法,掌握MATLAB在数字滤波器设计中的应用技巧,为未来的工程实践和研究工作打下坚实的基础。

二、FIR滤波器设计有限脉冲响应(FIR)滤波器是一种数字滤波器,其特点是其脉冲响应在有限的时间后为零。

因此,FIR滤波器是非递归的,没有反馈路径,从而保证了系统的稳定性。

在设计FIR滤波器时,我们主要关注的是滤波器的阶数、截止频率和窗函数的选择。

在MATLAB中,有多种方法可以用来设计FIR滤波器。

其中,最常用的方法是使用fir1函数,该函数可以设计一个线性相位FIR滤波器。

该函数的基本语法是b = fir1(n, Wn),其中n是滤波器的阶数,Wn是归一化截止频率,以π为单位。

该函数返回一个长度为n+1的滤波器系数向量b。

iir和fir滤波器的设计实验总结

iir和fir滤波器的设计实验总结

IIR和FIR滤波器是数字信号处理中常用的滤波器类型,它们可以用于滤除信号中的噪音、衰减特定频率成分等。

在本次实验中,我们对IIR 和FIR滤波器的设计进行了实验,并进行了总结。

以下是我们对实验内容的总结:一、实验背景1.1 IIR和FIR滤波器的概念IIR滤波器又称为“递归滤波器”,其特点是反馈自身的输出值作为输入。

FIR滤波器又称为“非递归滤波器”,其特点是只利用当前和过去的输入值。

两者在设计和性能上有所不同。

1.2 实验目的本次实验旨在通过设计IIR和FIR滤波器,加深对数字信号处理中滤波器性能和设计原理的理解,以及掌握滤波器在实际应用中的参数选择和性能评估方法。

二、实验过程2.1 IIR滤波器设计我们首先进行了IIR滤波器的设计实验。

通过选择滤波器类型、截止频率、阶数等参数,利用巴特沃斯、切比雪夫等滤波器设计方法,得到了IIR滤波器的传递函数和零极点分布。

接着进行了IIR滤波器的数字仿真,对滤波器的频率响应、裙延迟等性能进行了评估。

2.2 FIR滤波器设计接下来我们进行了FIR滤波器的设计实验。

通过选择滤波器类型、截止频率、滤波器长度等参数,利用窗函数、最小均方等设计方法,得到了FIR滤波器的传递函数和频响曲线。

然后进行了FIR滤波器的数字仿真,对滤波器的幅频响应、相频响应等进行了分析。

2.3 总结我们总结了IIR和FIR滤波器的设计过程和步骤,对设计参数的选择和调整进行了讨论,同时对两种滤波器的性能进行了比较和评价。

三、实验结果分析3.1 IIR滤波器性能分析通过实验,我们得到了IIR滤波器的频率响应曲线、裙延迟等性能指标。

我们分析了滤波器的截止频率对性能的影响,以及阶数、滤波器类型对性能的影响,并进行了参数优化和调整。

3.2 FIR滤波器性能分析同样地,我们得到了FIR滤波器的幅频响应曲线、相频响应等性能指标。

我们分析了滤波器长度、截止频率对性能的影响,以及窗函数、设计方法对性能的影响,并进行了参数优化和调整。

实验四IIR和FIR数字滤波器设计及软件实现实验报告

实验四IIR和FIR数字滤波器设计及软件实现实验报告

数字信号处理实验报告实验四IIR数字滤波器设计及软件实现(一) FIR数字滤波器设计及软件实现(二)2018 年 11 月 28 日一、实验目的(实验4_1)(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。

(3)掌握IIR数字滤波器的MATLAB实现方法。

(4)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。

(实验4_2)(1)掌握用窗函数法设计FIR数字滤波器的原理和方法。

(2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。

(3)掌握FIR滤波器的快速卷积实现原理。

(4)学会调用MATLAB函数设计与实现FIR滤波器。

二、实验原理与方法(实验4_1)设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。

基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。

MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。

第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。

本实验要求读者调用如上函数直接设计IIR数字滤波器。

本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。

3、实验内容及步骤(实验4_1)(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图1所示。

由图可见,三路信号时域混叠无法在时域分离。

数字信号处理MATLAB实验

数字信号处理MATLAB实验

出该信号,并讨论信号的混叠情况。
(3) 令
,其中 f/fs=1/16,即每个周期有 16 个
点。试利用 MATLAB 编程实现:
○1 作 M=4 倍的抽取,使每个周期变成 4 点。
○2 作 L=3 倍的插值,使每个周期变成 48 点。
(4)输入信号 x(n)为归一化频率分别为 f1=0.04,f2=0.3 的正 弦信号相加而成,N=50,插因子为 5,抽取因子为 3,给出 按有理因子 5/3 做采样率变换的输入输出波形。
(8) 用 FFT 分别计算 xa (n)( p 8, q 2) 和 xb(n) (a=0.1,f=0.0625)的自 相关函数。
三、思考题
(1)实验中的信号序列 xc(n)和 xd(n),在单位圆上的 z 变换频谱
和 一些,为什么?
会相同吗?如果不同,说明哪一个低频分量更多
(2)对一个有限长序列进行 DFT 等价于将该序列周期延拓后进行
0≤n≤15
c)x(n)=3cos(0.125πn+0.2π)+2sin(0.25πn+0.1π) 0≤n≤15 d)将c)中的x(n)扩展为以16为周期的函数x16(n)=x(n+16),绘出四个周 期。 e)将c)中的x(n)扩展为以10为周期的函数x10(n)=x(n+10),绘出四个周 期。 (3)x(n)=[1,-1,3,5],产生并绘出下列序列的样本。
(6)产生一 512 点的随机序列 xe(n),并用 xc(n)和 xe(n)做线性卷积, 观察卷积前后 xe(n)频谱的变化。要求将 xe(n)分成 8 段,分别采用重 叠相加法和重叠保留法。
(7) 用 FFT 分别计算 xa (n)( p 8, q 2) 和 xb(n) (a=0.1,f=0.0625)的 16 点循环相关和线性相关,问一共有多少种结果,他们之间有何异同点。

IIR数字滤波器设计及实现

IIR数字滤波器设计及实现

实验三IIR数字滤波器设计及实现一、实验目的(1)熟悉用脉冲响应不变法和双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数设计IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。

二、实验原理设计IIR数字滤波器一般采用脉冲响应不变法和双线性变换法。

脉冲响应不变法:根据设计指标求出滤波器确定最小阶数N和截止频率Wc;计算相应的模拟滤波器系统函数;将模拟滤波器系统函数:'转换成数字滤波器系统函数双线性变换法:根据数字低通技术指标得到滤波器的阶数N;取合适的T值,几遍校正计算相应模低通的技术指标--;根据阶数N查表的到归一化低通原型系统函数。

,将"' Q 代入。

‘去归一化得到实际的,/ :' ;用双线性变换法将:’转换成数字滤波器三、实验内容及步骤1、用脉冲响应不变法设计(1)根据设计指标求出滤波器确定最小阶数N和截止频率Wcclear;close all;clc; % 开始准备fp=3400;fs=5000;Fs=22050;Rp=2;Rs=20;T=1/Fs; % T=1s 的模拟滤波器设计指标W1p=fp/Fs*2; W1s=fs/Fs*2; % 求归一化频率[N, Wn] = buttord(W1p, W1s, Rp, Rs, 's'; % 确定 butterworth 的最小阶数 N 和频率参数Wn 得到结果为:N 二7Wn 二 0.3266 即:该设计指标下的模拟滤波器最小阶数为N=7,其截至频率为Wn =0.3266;(2)计算相应的模拟滤波器系统函数打:, clear;close all;clc; % 开始准备fp=3400;fs=5000;Fs=22050;Rp=2;Rs=20;T=1/Fs; % T=1s 的模拟滤波器设计指标W1p=fp/Fs*2; W1s=fs/Fs*2; % 求归一化频率[N, Wn] = buttord(W1p, W1s, Rp, Rs, 's'; % 确定 butterworth 的最小阶数 N 和频率参数 Wn[B,A]=butter(N,1,'s' %计算相应的模拟滤波器系统函数得到结果为: B = 1.0e-003 * 0 00 0 0 0 0 0.3966 A =1.0000 1.4678 1.0773 0.5084 0.1661 0.0375 0.0055 0.0004 >>(3)将模拟滤波器系统函数转换成数字滤波器系统函数 clear;close all;clc; % 开始准备fp=3400;fs=5000;Fs=22050;Rp=2;Rs=20;T=1/Fs; % T=1s 的模拟滤波器设计指标W1p=fp/Fs*2; W1s=fs/Fs*2; % 求归一化频率[N, Wn] = buttord(W1p, W1s, Rp, Rs, 's'; % 确定 butterworth 的最小阶数 N 和频率参数Wn[B,A]=butter(N,1,'s' ; %计算相应的模拟滤波器系统函数 [Bz,Az]=impinvar(B,A %用脉冲相应不变法将模拟滤波器转换成数字滤波器 sys=tf(Bz,Az,T; %得到传输函数‘‘‘‘‘ Bz =1.0e-004 *-0.0000 0.0045 0.2045 0.8747 0.7094 0.1090 0.0016 0Az =1.0000 -5.5415 13.2850 -17.8428 14.4878 -7.1069 1.9491 -0.2304>>>>即:由Bz和Az可以写出数字滤波器系统函数为:Transfer function:-9.992e-015 z~7 + 4.454e-007 z~6 + 2.045e-005 z~5 + 8.747e-005 z~4 + 7.094e-005 z"3 + 1.09e-005 z~2+ 1.561e-007 z z 7 - 5.541 z 6 + 13.28 z 5 - 17.84 z 4 + 14.49 z 3 - 7.107 z 2 + 1.949 z - 0.2304Sampling time: 4.5351e-005>>(4)绘图clear;close all;clc; % 开始准备fp=3400;fs=5000;Fs=22050;Rp=2;Rs=20;T=1/Fs; % T=1s 的模拟滤波器设计指标W1p=fp/Fs*2; W1s=fs/Fs*2; % 求归一化频率[N, Wn] = buttord(W1p, W1s, Rp, Rs, 's'; % 确定butterworth 的最小阶数N 和频率参数Wn[B,A]=butter(N,Wn,'s'; %计算相应的模拟滤波器系统函数[Bz,Az]=impinvar(B,A; %用脉冲响应不变法将模拟滤波器转换成数字滤波器sys=tf(Bz,Az,T;%得到传输函数‘ [H,W]=freqz(Bz,Az,512,Fs; % 生成频率响应参数plot(W,20*log10(abs(H; % 绘制幅频响应grid on; %加坐标网格得到结果为:观察实验结果图可看到:在频率为3402Hz处频率为衰减2.015db,在频率为5017Hz处幅度衰减21.36db。

fir、iir 数字滤波器的设计与实现 概述及解释说明

fir、iir 数字滤波器的设计与实现 概述及解释说明

fir、iir 数字滤波器的设计与实现概述及解释说明1. 引言在数字信号处理领域,滤波器是一种广泛应用的工具,用于去除或强调信号中的特定频率成分。

fir(Finite Impulse Response)和iir(Infinite Impulse Response)数字滤波器是两种常见的数字滤波器类型。

1.1 概述本文旨在介绍fir和iir数字滤波器的设计和实现方法,并比较它们的优缺点。

通过对这些内容的讨论,读者将能够了解到这两种滤波器的基本原理、设计方法以及实际应用中需要考虑的因素。

1.2 文章结构本文按照以下结构进行组织:第2节将详细介绍fir数字滤波器的设计与实现方法,包括其简介、设计方法和实现步骤。

第3节将类似地讨论iir数字滤波器,包括简介、设计方法和实现步骤。

第4节将对fir和iir数字滤波器进行对比,并讨论它们在性能、实现复杂度和工程应用方面的差异。

最后,在第5节中,我们将总结fir和iir数字滤波器的特点,并提供一些关于选择合适类型滤波器时需要考虑的要点。

1.3 目的本文的目的是帮助读者了解fir和iir数字滤波器的基本概念和工作原理,并对它们在实际应用中的设计和实现方法有一个全面的了解。

通过比较这两种滤波器的优缺点,读者将能够更好地选择适合自己需求的滤波器类型,并在实践中取得更好的效果。

以上是引言部分内容,主要说明了文章介绍fir、iir数字滤波器设计与实现的目标和结构。

2. fir数字滤波器的设计与实现2.1 fir数字滤波器简介fir(Finite Impulse Response)数字滤波器是一种常见的数字滤波器,其特点是只有有限个输入产生响应,并且在其单位冲激响应长度范围内,具有线性相位特性。

fir数字滤波器根据其系数序列进行信号的卷积运算,常用于信号处理、通信系统等领域。

2.2 fir数字滤波器设计方法fir数字滤波器设计可以采用多种方法,包括频域设计方法和时域设计方法。

IIR和FIR数字滤波器的设计方法及其窗函数设计法

IIR和FIR数字滤波器的设计方法及其窗函数设计法

第六章IIR数字滤波器的设计方法6.1 数字滤波器的基本概念数字滤波器:是指输入输出均为数字信号,通过一定运算关系改变输入信号所含频率成分的相对比例或者滤除某些频率成分的器件。

优点:高精度、稳定、体积小、重量轻、灵活,不要求阻抗匹配,可实现特殊滤波功能一、数字滤波器的分类1. 按功能分:低通、高通、带通、带阻、全通滤波器一、数字滤波器的分类2.按实现的网络结构或单位抽样响应分:二、数字滤波器的设计过程⏹用一个因果稳定的离散LSI 系统的系统函数H (z )逼近此性能指标⏹按设计任务,确定滤波器性能要求,制定技术指标⏹利用有限精度算法实现此系统函数:如运算结构、字长的选择等⏹实际技术实现:软件法、硬件法或DSP 芯片法三、数字滤波器的性能要求选频滤波器的频率响应:三、数字滤波器的性能要求实际低通滤波器理想低通滤波器三、数字滤波器的性能要求实际低通滤波器理想低通滤波器三、数字滤波器的性能要求实际低通滤波器理想低通滤波器7.3 窗函数设计法(以低通数字滤波器为例)一、设计步骤1.确定滤波器的频率响应H d(e jw)]的表达式一、设计步骤2.求出此理想滤波器对应的单位抽样响应序列h d(n)所得到的h d(n)是一个无限长序列。

一、设计步骤3.将无限长h d(n)截取为长度为N的有限长h(n)一、设计步骤4.选取窗函数w(n)及确定长度N⏹矩形窗⏹三角形窗⏹汉宁窗4.选取窗函数w(n)及确定长度N1.根据阻带最小衰减选择w(n)2.根据过渡带宽及w(n)确定N所得到的h(n)的频谱与h d(n)的频谱会不会一样?一、设计步骤5.求H(e jw)=DTFT[h(n)],检验是否满足设计要求,如不满足,改变w(n)和N,重新设计。

二、设计举例设计过程1.按照任务要求,确定滤波器的性能要求。

设计过程2.用一个因果稳定的线性移不变系统函数去逼近这一性能要求。

(采用窗函数法)≤取N为33,设计过程2.用一个因果稳定的线性移不变系统函数去逼近这一性能要求。

基于FDATool的IIR滤波器设计步骤

基于FDATool的IIR滤波器设计步骤

基于FDATool的IIR滤波器设计步骤使用FDATool设计IIR滤波器的具体步骤如下:1.1 滤波器指标若需要设计一个IIR滤波器(h(0)=0),给定的参数如下:(1) 低通滤波器(2) 采样频率F S为48kHz,滤波器F P为3.6kHz,Fstop为12KHZ;在此利用MATLAB来完成IIR滤波器系数的确定。

1.2 打开MATLAB的FDAToolMATLAB集成了一套功能强大的滤波器设计工具FDATool(Filter Design & Analysis Tool),可以完成多种滤波器的设计、分析和性能评估。

两种打开方式:1、可在MATLAB的命令窗口中直接打入代码FDATool,按回车键,便可打开FDATool的窗口如下图B.1所示;2、单击MATLAB主窗口下方的“Start”按钮,如图B.1所示,选择菜单“ToolBox”→“Filter Design”→“Filter Design & Analysis Tool (FDATool)”命令,打开FDATool,如图B.2所示。

图B.1 FDATool的启动图B.2 FDATool的主界面Fdatool界面总共分两大部分,一部分是design filter,在界面的下半部分,用来设置滤波器的设计参数,另一部分则是特性区,在界面的上半部分,用来显示滤波器的各种特性。

design filter部分主要分为:Response Type(响应类型)选项,包括Lowpass(低通)、Highpass (高通)、Bandpass(带通)、Bandstop(带阻)和特殊的滤波器。

根据本次作业要求,在该选项中选择Lowpass选项。

Design Method(设计方法)选项,包括IIR滤波器的Butterworth (巴特沃思)法、Chebyshev Type i(切比雪夫i型)法、Chebyshev Type ii(切比雪夫ii型)法、Elliptic(椭圆滤波器)法等和FIR滤波器的Equiripple法、Least-squares(最小乘方)法、Window(窗函数)法等多种方法。

fir和iir滤波器原理

fir和iir滤波器原理

fir和iir滤波器原理FIR(有限脉冲响应)滤波器和IIR(无限脉冲响应)滤波器是两种常见的数字滤波器类型。

它们在信号处理中有着广泛的应用,如音频处理、图像处理、数据压缩等。

本篇文章将详细介绍FIR和IIR滤波器的原理,包括其基本概念、数学模型、设计方法以及应用。

一、基本概念FIR滤波器是一种线性时不变滤波器,其输出仅取决于当前的输入和过去的FIR滤波器系数。

IIR滤波器则不同,它的输出不仅取决于当前的输入,还取决于过去的输出和滤波器系数。

二、数学模型1.FIR滤波器:FIR滤波器的传递函数可以表示为系统单位冲击响应的有限长度。

其数学模型为H(z)=∑nx(n)*z(-n),其中x(n)是输入信号,H(z)是输出信号,z(-n)是z的逆,n是滤波器阶数,∑是求和。

2.IIR滤波器:IIR滤波器的传递函数通常表示为一个线性微分方程。

其数学模型为H(z,θ)=∑θ(n)*z(-n)+u(n),其中H(z,θ)是输出信号,u(n)是输入信号,θ(n)是滤波器系数,z(-n)和∑是同FIR滤波器一样。

三、设计方法1.FIR滤波器设计:通常采用窗函数法、频率采样法和等波纹设计法。

窗函数法通过选择合适的窗函数来减少滤波器的相位失真;频率采样法通过采样频率来设计滤波器;等波纹设计法通过调整滤波器系数来使滤波器输出与输入信号的频谱保持一致。

2.IIR滤波器设计:IIR滤波器的设计方法相对复杂,包括零极点配对、长项法和映射法等。

通常需要根据特定需求来选择合适的设计方法,同时注意系统的稳定性、频率响应和稳定性失真等指标。

四、应用FIR和IIR滤波器在各种领域都有广泛应用,包括音频处理、图像处理、通信、数据压缩等。

FIR滤波器在音频处理中常用于消除音频信号中的噪声,改善音质;在图像处理中常用于降噪和图像增强。

IIR滤波器在通信中常用于消除干扰信号,改善通信质量;在数据压缩中常用于降低数据冗余,提高数据传输效率。

五、总结FIR和IIR滤波器是数字信号处理中的重要工具,它们各自有其特点和适用范围。

基于matlab的IIR数字滤波器设计

基于matlab的IIR数字滤波器设计

基于matlab的IIR数字滤波器设计一.IIR数字滤波器介绍1.IIR数字滤波器的根本原理所谓数字滤波器,是指输入,输出均为数字信号,通过一定运算关系改变输入信号所含频率成分的相比照例或者滤除某些频率成分的硬件。

实质上就是一个由有限精度算法实现的线性时不变离散系统。

它的根本工作原理是利用离散系统的特性对系统输入信号进展加工和变换,改变输入序列的频谱或信号波形,让有用的频率分量通过,抑制无用的信号分量输出,因此数字滤波与模拟滤波的概念一样,根据其频率特性同样可以分为低通,高通,带通,带阻,只是信号的形式和实现滤波方式有所不同。

如果要处理的信号是模拟信号,就可以通过A/D或者D/A转换,在信号形式上进展匹配转换,同样可以使用数字滤波器对模拟信号进展滤波。

数字滤波器滤波的数学表达式:y〔n〕=x(n)*h(n); 如果滤波器的输入输出信号都是离散信号,那么该滤波器的脉冲响应也一定是离散信号,这样的滤波器就成为了数字滤波器。

上面的系统为时域离散系统时,其频域特性为:其中分别是数字滤波器的输出序列和输入序列的频域响应,是数字滤波器的频域响应。

可以看见按照输入信号的频谱特点和处理信号的目的适中选择滤波器的频域响应,使得滤波后的输出信号满足设计性能要求,就是滤波器的滤波原理。

2.IIR数字滤波器传输特性IIR数字滤波器的系统函数可以表示为:H(Z)=,式中H(Z)称为N阶IIR滤波器函数。

3..数字滤波器的技术要求.我们通常设计的数字滤波器一般属于选频滤波器,。

我们的目的是要设计一个因果可实现的滤波器,另外买也要考虑到本钱和复杂性问题,因此实用中通带和阻带都允许一定的误差容限,即通带不一定是完全水平的,阻带也不可能完全衰减到零。

而且,通带和阻带之间还要设置一定带宽的过渡带。

如如下图表示低通滤波器的技术要求:图中,分别表示通带截止频率和阻带截止频率,通带频率范围为0≤w≤,通带中要求〔1-δ1〕≤|H≤1,阻带截止频率范围≤w≤Π,再阻带中要求≤δ2,从p w 到s w 称为过渡带,在这个频带内,幅度响应从通带平滑的下落到阻带。

数字信号处理试题(1)班

数字信号处理试题(1)班

1.设h(n)是一个线性非移变系统的单位取样响应,若系统又是因果的,则h(n)应该满足当n<0时,h(n)=0;若该系统又是稳定的,则h(n)应该满足∑|h(n)|<∞。

2设x(n)是一实序列,X(k)=DFT[x(n)],则X(k)的模是周期性偶序列,X(k)的幅度是周期性奇序列。

3用脉冲响应不变法设计IIR数字滤波器,S平面的S=jπ/T点映射为Z平面的z=-1点。

4.线性非时变因果系统是稳定系统的充分必要条件是其系统函数H(z)的所有极点都在z平面的单位圆内。

5.FIR数字滤波器的单位取样响应为h(n),0≤n≤N-1,则其系统函数H(z)的极点在z=0,是N-1阶的。

6.线性相位FIR滤波器的单位取样响应h(n)是偶对称或奇对称的。

设h(n)之长度为N(0≤n≤N-1),则当N为奇数时,对称中心位于N+1/2;当N为偶数时,对称中心位于N-1/2.7.已知序列:x(n),0≤n≤15;g(n),0≤n≤19,X(k)、G(k)分别是它们的32点DFT,令y(n)=IDFT[X(k)G(k)],0≤n≤31,则y(n)中相等于x(n)与g(n)线性卷积中的点有29点,其序号是从3到31.8.DFT是利用W N mk的对称性、可约性和周期性三个固有特性来实现FFT快速运算的。

9.IIR数字滤波器设计指标一般由Wp、Ws、Ap、As等四项组成。

10.IIR数字滤波器有窗函数法和频率抽样设计法两种设计方法,其结构有直接型、级联型和并联型三种基本结构。

11.两个有限长序列x1(n),0≤n≤33和x2(n),0≤n≤36,做线性卷积后结果的长度是70,若对这两个序列做64点圆周卷积,则圆周卷积结果中有n=6至63为线性卷积结果。

12.请写出三种常用低通原型模拟滤波器:巴特沃什滤波器、切比雪夫滤波器、椭圆滤波器。

13.用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Ω=W/T。

数字信号处理课程设计IIR.

数字信号处理课程设计IIR.

吉林建筑工程学院电气与电子信息工程学院数字信号处理课程设计报告设计题目:IIR数字滤波器的设计专业班级:信工102学生姓名:丁航学号:10210211指导教师:杨佳吴贺君设计时间:2013.01.07-2013.01.11IIR 数字滤波器设计报告一、设计的作用、目的目的:课程设计是理论学习的延伸,是掌握所学知识的一种重要手段,对于贯彻理论联系实际、提高学习质量、塑造自身能力等于有特殊作用。

本次课程设计一方面通过MATLAB 仿真设计内容,使我们加深对理论知识的理解,同时增强其逻辑思维能力,另一方面对课堂所学理论知识作一个总结和补充。

作用:加深对脉冲响应不变法和双线性变换法设计IIR 滤波器数字滤波器基本方法的了解,熟悉这一设计的计算机编程。

观察用脉冲响应不变法和双线性变换法设计的数字滤波器和响应模拟滤波器的时域特性和频域特性,比较所涉及的数字滤波器和响应的模拟滤波器的频域特性,观察脉冲响应不变法设计中产生的频域混淆现象。

学会MATLAB 的使用,掌握运用MATLAB 设计IIR 低通滤波器。

熟悉Butterworth 滤波器、Chebyshev 滤波器和椭圆滤波器的频率特性。

二、设计任务及要求通过课程设计各环节的实践,应使学生达到如下要求:1.掌握双线性变换法及脉冲响应不变法设计IIR 数字滤波器以及窗函数法设计FIR 数字滤波器的原理、具体方法及计算机编程2.观察双线性变换法、脉冲响应不变法及窗函数法设计的滤波器的频域特性,了解各种方法的特点3.用MATLAB 画出三种方法设计数字滤波器的幅频特性曲线,记录带宽和衰减量,检查结果是否满足要求。

三、设计内容已知通带截止频率kHz f p 2.0=,通带最大衰减dB P 1=α,阻带截止频率kHz f s 3.0=,阻带最小衰减dB s 25=α,T=1ms ,按照以上技术要求,用脉冲响应不变法和双线性变换法设计巴特沃斯数字低通滤波器,并观察所设计数字滤波器的幅频特性曲线。

fir、iir数字滤波器的设计与实现

fir、iir数字滤波器的设计与实现

一、概述数字滤波器是数字信号处理中的重要部分,它可以对数字信号进行滤波、去噪、平滑等处理,广泛应用于通信、音频处理、图像处理等领域。

在数字滤波器中,fir和iir是两种常见的结构,它们各自具有不同的特点和适用场景。

本文将围绕fir和iir数字滤波器的设计与实现展开讨论,介绍它们的原理、设计方法和实际应用。

二、fir数字滤波器的设计与实现1. fir数字滤波器的原理fir数字滤波器是一种有限冲激响应滤波器,它的输出仅依赖于输入信号的有限个先前值。

fir数字滤波器的传递函数可以表示为:H(z) = b0 + b1 * z^(-1) + b2 * z^(-2) + ... + bn * z^(-n)其中,b0、b1、...、bn为滤波器的系数,n为滤波器的阶数。

fir数字滤波器的特点是稳定性好、易于设计、相位线性等。

2. fir数字滤波器的设计方法fir数字滤波器的设计通常采用频率采样法、窗函数法、最小均方误差法等。

其中,频率采样法是一种常用的设计方法,它可以通过指定频率响应的要求来确定fir数字滤波器的系数,然后利用离散傅立叶变换将频率响应转换为时域的脉冲响应。

3. fir数字滤波器的实现fir数字滤波器的实现通常采用直接型、级联型、并行型等结构。

其中,直接型fir数字滤波器是最简单的实现方式,它直接利用fir数字滤波器的时域脉冲响应进行卷积计算。

另外,还可以利用快速傅立叶变换等算法加速fir数字滤波器的实现。

三、iir数字滤波器的设计与实现1. iir数字滤波器的原理iir数字滤波器是一种无限冲激响应滤波器,它的输出不仅依赖于输入信号的有限个先前值,还依赖于输出信号的先前值。

iir数字滤波器的传递函数可以表示为:H(z) = (b0 + b1 * z^(-1) + b2 * z^(-2) + ... + bn * z^(-n)) / (1 +a1 * z^(-1) + a2 * z^(-2) + ... + am * z^(-m))其中,b0、b1、...、bn为前向系数,a1、a2、...、am为反馈系数,n为前向路径的阶数,m为反馈路径的阶数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档