用统计量描述数据课件

合集下载

定量的统计描述分析课件

定量的统计描述分析课件
正态QQ图:图中的点代表数据,直线代表理想的正态数据,如果各个点都 落在了直线的周围并且在平均值的部分点的分布比较均匀,这就说明是符 合正态分布的,显然这组年龄数据不符合正态分布
总结
频数分析(Frequencies ):频数分布表、条图和直方图以及 集中趋势和离散趋势的各种统计量。 描述统计(Descriptives ):描述近似正态分布定量变量的集 中趋势和离散趋势的各种统计量,对变量做标准化转换(Z 转换)。 探索分析(Explore ):未知分布类型数据的统计描述,对 数据的分布形态进行检验,功能强大。
End Thanks
中位数
各种分布类型的资料,特别是偏峰分布资料; 分布一端或两端无确切数值的资料; 分布类型不明
百分位数 各种分布类型的资料
离散趋势
指标
应用条件
极差
对资料类型没有要求
四分位数 间距
方差与标 准差
变异系数
各种分布类型的资料,特别是偏峰分布资料
对称分布,特别是正态或近似正态分布 观察指标单位不同时变异程度的比较; 均数相差较大时变异程度的比较
重点掌握 1.频数分布图和频数分布表的制作 2.定量资料统计指标的计算
离散Байду номын сангаас定量资料
下面我们打开SPSS软件自带的数据demo.sav,找到reside, 这是一组同居人数的资料,我们将结合这组数据学习离散型 定量资料频数分布表和频数分布图的绘制。
变量视图
输出结果
输出结果
连续型定量资料
输出结果
探索分析(Explore )
探索分析(Explore )主要可以分为两个部分 1.未知分布类型数据的统计描述 2.对数据的分布形态进行检验
探索分析(Explore )

最新第2讲.SPSS描述性统计分析PPT课件

最新第2讲.SPSS描述性统计分析PPT课件
一、操作(实践数据:产品的销售量.sav) 1)菜单“分析→描述统计→频率”。 2)对话框中,左侧选择一个或多个
待分析变量,移入右侧。 3)“显示频率表格”,勾选该复选
框,可输出频数分析表。
SPSS频数分析
二、几个重要的设置对话框 “统计量”按钮对应的对话框:
1)四分位数:显示25%、50%、 75%的分位数。 2)割点:勾选后可输入数值A, 将数据平分为A等分。例如,输 入5,表示输出20%、40%、 60%、80%的百分位数。 3)百分位数:选中后,可激活 右侧的文本框和列表。可输入、 更改和删除自定义的百分位数。
幂估计:对每一组数据产生一个中位数的自然对数与四 分位数的自然对数的散列点图,达到方差齐次性要求的 幂次估计;并据此散布图,来估计将各组方差转换成同 方差所需的幂次。
转换:对原始数据进行变换。可在下拉列表中选 择转换的幂值。 未转换:不对数据进行转换,产生原始数据的散 布图。注:“无”是不产生该选项的图形。
二、按钮对应的界面介绍
统计量对话框
输出前面所讲述的各个描述统计量,并可设置均值的 置信5个最大值与最小值。在输出窗 口被表明为极端值。
“选项”对话 框
输出结果显示5%,10%,25%,50%,75%,90%和95% 的百分位数。
从所有分析中,将因变量或分组变量中带有缺失值的观测 量予以剔除。 从当前分析中,将有缺失值的观测量均予以剔除。
SPSS探索性统计分析整体分析与设计的内容
二、操作
探索性数据分析过程用于计算指定变量的探索性统计量和有关的图 形。从这个过程中可以获得箱图、茎叶图、直方图、各种正态检验 图、频数表、方差齐性检验等结果,以及对非正态或正态非齐性数据 进行变换,以表明和检验连续变量的数值分布情况。

spss第四章描述统计简介PPT课件

spss第四章描述统计简介PPT课件
定义:设,对样本数据集合中的所有数据的排序结果为X1≤X2≤…≤Xn,n为样本容 量,则上述排序的序列中,处于“正中间位置”上的数据,称为样本中位数。
当n 为奇数时:正中间位置号码=(n+1)/2 样本中位数=X(n+1)/2
当n为偶数时:正中间位置号码=(n+1)/2是小数,处于n/2与(n/2)+1之间。 样本中位数=(Xn/2+X(n/2)+1)/2 如5位同学的学习成绩:3,3,3,4,5。中间位置是第三位,中位数:3。 如果六位同学: 3,3,4,5,5,5。中间位置是3与4位中间的位置,中位数为: (4+5)/2=4.5
第四章 描述统计量简介
2024/10/23
第三章 样本数据特征的初步分析
1
调查杭州市居民收入情况,得到
调查顾客对产品的满意第度情四况章, 获得100个样本数据,能分
样本100统个计样本量数描据,述根据这些数据,
析出哪些信息?
你最想得到哪些信息?
调查大学生群体中对手机品牌的偏 好程度,你如何描述调查结果?
• 选择Percentile Values 栏中的 选项,输出所选变量的百分值
• Dispersion(离差)栏,用于
指定输出反映变量离散程度的 统计量
• Central Tendency (集中趋势)
栏,用于指定输出反映变量集 中趋势的统计量
• Distribution (分布特征)栏,
用于指定输出描述分布形状和
如果样本容量为n,那么,某个样本值出现 的频率=该样本值出现的频次/n
2024/10/23
第三章 样本数据特征的初步分析
9
分类数据或顺序数据描述频次与 频率的图形方法

《描述性统计量》课件

《描述性统计量》课件

要点二
详细描述
通过使用描述性统计量,企业可以对员工数据进行初步的 分析,了解员工的结构、分布和特点,为人力资源规划、 招聘、培训等工作的开展提供数据支持。
财务数据分析
总结词
在财务数据分析中,描述性统计量用于描述财务数据的 特征,如收入、支出、资产等。
详细描述
通过使用描述性统计量,企业可以对财务数据进行初步 的分析,了解财务状况的整体情况,发现财务数据的分 布规律和异常值,为财务决策和预算制定提供依据。
描述性统计量仅关注数据的表面特征,无法揭示数据之间的内在关系或模式。例如,两个变量之间的相关系数或因果 关系需要通过更复杂的统计方法来分析。
无法处理缺失数据
描述性统计量在处理缺失数据时可能会遇到困难。对于缺失的数据,可能需要采用插值、填充或删除等 方法进行处理,这些方法可能会影响结果的准确性和可靠性。
描述性统计量
• 描述性统计量的定义和作用 • 描述性统计量的种类 • 描述性统计量的计算方法 • 描述性统计量的应用场景 • 描述性统计量的优缺点分析 • 描述性统计量的未来发展趋势和展望
目录
Part
01
描述性统计量的定义和作用
定义
描述性统计量
描述数据分布特征的量数
1
,用于概括和描述数据的
集中趋势、离散程度和分
销售数据分析
总结词
在销售数据分析中,描述性统计量用于描述 销售数据的特征,如销售额、销售量、客户 数量等。
详细描述
通过对销售数据进行描述性统计量的分析, 企业可以了解销售业绩的整体情况,发现销 售数据的分布规律和异常值,为销售策略的
制定和优化提供依据。
人力资源数据分析
要点一
总结词
在人力资源数据分析中,描述性统计量用于描述员工数据 的特征,如员工数量、年龄、性别等。

SPSS数据统计分析实例详解ppt课件

SPSS数据统计分析实例详解ppt课件

该对话框用于定义是哪两组相比,在两个group框内分别输入1和 2,表明是变量group取值为1和2的两组相比。然后单击Continue 按钮,再单击OK按钮,系统经过计算后会弹出结果浏览窗口, 首先给出的是两组的基本情况描述,如样本量、均数等(糟糕, 刚才的半天工夫白费了),然后是t检验的结果如下:
1.5 打开其他文件格式 1.5.1 直接打开 1.5.2 使用数据库查询打开 1.5.3 使用文本导入向导读入文本文件 1.6 编辑数据文件 1.6.1 定义新变量 1.6.2 数据录入技巧 1.7 进一步整理数据文件--Data菜单 1.7.1 用于数据管理的菜单项 1.7.2 正交设计菜单项
ppt课件.
ppt课件.
18
Independent Samples Test
Levene's Test for Equality of Variances
t-test for Equality of Means
F Sig. t
95% Confidence
df
Sig. (2- Mean Std. Error tailed) Difference Difference
Levene方差齐性 检验
F值 P值
血 磷 值
假设方 差齐
假设方 差不齐
0.032
0.86
两均数是否相等的t检验
t值
自由度
P值(双 侧)
均数差值
差值的标 准误
差值的95%可信区间
下限
上限
2.524
22 0.019 0.4363 0.1729 7.78E-02 0.7948
2.524 21.353 0.02 0.4363 0.1729 7.72E-02 0.7954

社会统计学(第4章 数据的统计量描述)

社会统计学(第4章 数据的统计量描述)

三、离散性描述指标的比较
全距(四分位数) 全距(四分位数)
粗略、快捷,不稳定, 粗略、快捷,不稳定,不能用于有样本推论总体 用于定序、定距、 用于定序、定距、定比变量
标准差(方差) 标准差(方差)
精准、相对稳定, 精准、相对稳定,可以用于由样本推论总体 用于定距、 用于定距、定比变量
全距与标准差的关系
SS Σ(X − X ) 2 S = = N N
2
方差可以描述数值偏离平均值的程度。 方差可以描述数值偏离平均值的程度。 平方处理解决了绝对值的问题。 平方处理解决了绝对值的问题。 平方处理后对偏离均值的程度更加敏感。 平方处理后对偏离均值的程度更加敏感。
二、离散性的描述指标
4.标准差: 4.标准差:将方差开平方得到的数值 标准差
二、离散性的描述指标
5.分析下列4 5.分析下列4组数据的离散性 分析下列 6]、 a[6 6 6 6 6 6 6]、b[5 5 6 6 6 7 7 ] 9]、 c[3 3 4 6 8 9 9]、d[3 3 3 6 9 9 9 ]
全距=? 全距=? 四分位数=? 四分位数=? 平均离均差= 平均离均差=? 方差=? 方差=? 标准差=? 标准差=?
三、集中性描述指标的比较
1.描述不同测量等级的变量 1.描述不同测量等级的变量
定类、定序、定距、 众 数:定类、定序、定距、定比变量的描述 中位数:定序、定距、 中位数:定序、定距、定比变量的描述 平均数:定距、 平均数:定距、定比变量的描述
三、集中性描述指标的比较
2.数据的分布形状 2.数据的分布形状 中心重合
第二节 集中性的描述指标
一、数据分布的集中性 二、集中性的描述指标 三、集中性描述指标的比较
一、数据分布的集中性

统计知识讲座PPT课件

统计知识讲座PPT课件

图表设计原则与规范
01
02
03
04
简洁明了
图表设计应简洁明了,避免过 多的装饰和复杂的背景,突出
数据本身的特点。
一致性
在同一份报告中,应保持图表 风格、字体、颜色等要素的一
致性,提高整体美观度。
数据准确性
图表中的数据应准确无误,来 源可靠,避免误导读者。
注解清晰
对于图表中的重要信息,应提 供清晰的注解和说明,帮助读
标准差
方差的算术平方根,反映 数据波动程度,标准差越 小,数据越稳定。
数据分布形态的描述
偏态分布
正态分布
数据分布不对称,偏向某一方向,可 分为左偏和右偏。
一种对称分布,其形态由均值和标准 差决定,具有广泛的应用。
峰态分布
数据分布的尖峭或扁平程度,峰度越 高,数据分布越尖峭;峰度越低,数 据分布越扁平。
假设检验与显著性水平
假设检验
先对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程。假设 检验包括原假设和备择假设的设立、检验统计量的选择、显著性水平的确一类错误的概率。通常取0.05或0.01等小概率值作为显 著性水平,表示在原假设为真时,拒绝原假设的最大允许概率。
对收集到的数据进行预处理,包括数据筛 选、缺失值处理、异常值处理等。
数据分析
结果呈现
运用统计学方法对数据进行描述性分析和 推断性分析,如均值、方差、假设检验等 。
将分析结果以图表、报告等形式呈现,为 市场决策提供支持。
案例二:医学实验数据处理
实验设计
根据研究目的和实验条件,设计合理的实验 方案和数据收集计划。
数据可视化
Python的matplotlib、seaborn等库 提供丰富的数据可视化功能,可绘制 各种静态、动态、交互式的图表。

《统计分析方法》课件

《统计分析方法》课件

假设检验的基本原理
80%
提出假设
根据研究目的,提出一个或多个 关于参数的假设。
100%
检验统计量
根据样本数据和提出的假设,计 算一个或多个检验统计量。
80%
决策
根据检验统计量和临界值,决定 是否拒绝或接受提出的假设。
单侧检验与双侧检验
单侧检验
只考虑参数在某一方向上的变化,例如只考虑数值增大或只考虑数值减小。
VS
详细描述
非参数核密度估计通过使用核函数对数据 进行加权,并根据权重生成密度函数,能 够估计出数据的分布情况。该方法不需要 假设数据分布形式,具有较好的灵活性和 稳健性。
非参数秩次检验
总结词
非参数秩次检验是一种不依赖于数据 分布形式的统计检验方法。
详细描述
非参数秩次检验将数据按照大小进行 排序,并赋予秩次,然后根据秩次计 算统计量进行假设检验。该方法能够 处理异常值和离群点,且对数据分布 形式的要求较低。
课程目标
02
01
03
掌握各种统计分析方法的基本原理和应用。
能够根据实际需求选择合适的分析方法。
培养学生对数据的敏感性和分析能力,提高其数据处 理和分析的能力。
02
描述性统计分析
数据的收集与整理
01
02
03
04
确定研究目的
在开始数据收集之前,需要明 确研究的目的和问题,以便有 针对性地收集相关数据。
方差分析的统计模型
方差分析使用F统计量 来检验各组数据的方差 是否存在显著差异。
F统计量的计算公式为 :$F=frac{组间方差}{ 组内方差}$。
如果F统计量大于临界 值,则说明各组数据的 方差存在显著差异,即 数据来自不同总体。

统计分析方法PPT课件

统计分析方法PPT课件

05
统计分析软件介绍
Excel在统计分析中的应用
描述性统计分析
Excel提供了丰富的函数和工具,可以 进行求和、平均值、中位数、标准差 等描述性统计分析。
图表展示
数据透视表
Excel的数据透视表功能可以帮助用户 对大量数据进行分组、汇总、筛选和 聚合,从而发现数据背后的规律和趋 势。
Excel的图表功能强大,可以制作各种 类型的图表,如柱状图、折线图、饼 图等,用于数据的可视化展示。
据不同的聚类算法(如层次聚类、K-means聚类等)进行分类。
时间序列分析和预测
总结词
时间序列分析是一种统计方法,用于研究随时间变化的数据序列,并预测未来的趋势和模式。
详细描述
时间序列数据具有时间依赖性和趋势性,因此需要使用适合的方法进行分析和预测。常用的时间序列分析方法包 括指数平滑、ARIMA模型、神经网络等。这些方法可以帮助我们了解数据的变化趋势,并预测未来的走势。
总结词
通过样本数据推断总体特征。
VS
详细描述
推理性统计分析是通过样本数据来推断总 体特征的一种方法。例如,通过样本均值 和标准差来估计总体均值和标准差,通过 样本比例来估计总体比例。这种方法的前 提是样本数据能够代表总体数据,因此需 要保证样本的随机性和代表性。
高级统计分析案例
总结词
运用复杂模型和算法,揭示数据内在结构和 关系。
统计分析方法ppt课件
目录
• 引言 • 描述性统计分析 • 推理性统计分析 • 高级统计分析方法 • 统计分析软件介绍 • 案例分析
01
引言
目的和背景
01
介绍统计分析方法在各个领域的 应用,如经济学、市场营销、医 学等。
02

统计量及其分布ppt课件

统计量及其分布ppt课件

图5.1.1 SONY彩电彩色浓度分布图q
表5.1.1 各等级彩电的比例(%)
等级
I
|X-m|<5/3
II
III
5/3<|X-m|<10/3 10/3 <|X-m|<5
IV
|X-m|>5
美产 33.3 33.3 33.3
0
日产 68.3 27.1 4.3
0.3
抽样 :
5.1.2 样本
要了解总体的分布规律,在统计分析工作中,往往 是从总体中抽取一部分个体进行观测,这个过程称为抽 样。样本
x 344 344 x 347 347 x 351 351 x 355
x 355
由伯努里大数定律:
第25页
两点分布,只要 n 相当大,Fn(x)依概率收敛于F(x) 。
更深刻的结论:格里纹科定理
定理5.2.1 设 x1,x2,L,xn 是取自总体分布函数为F(x) 的样本F,n ( x ) 为其经验分布函数,当n 时,有
若以 p 表示这堆数中1的比例(不合格品率), 则该总体可由一个二点分布表示:
X01 P 1p p
比如:两个生产同类产品的工厂的产品 的总体分布:
例5.1.2 在二十世纪七十年代后期,美国消费者购买
日产SONY彩电的热情高于购买美产 SONY彩电,原因何在?
原因在于总体的差异上!
➢ 1979年4月17日日本《朝日新闻》刊登调查报 告指出N(m, (5/3)2),日产SONY彩电的彩色浓 度服从正态分布,而美产SONY彩电的彩色浓 度服从(m5 , m+5)上的均匀分布。
元件数 4 8 6 5 3 4 5 4
寿命范围 (192 216] (216 240] (240 264] (264 288] (288 312] (312 336] (336 360] (360 184]

第三章 描述性统计量

第三章 描述性统计量
2020/6/24
第一节 刻画数据集中程度的特征量
▪ 依据各种统计指标的具体代表意义和计算方 式的不同,可以将其归纳为数值平均数和位 置平均数两大类。
▪ 数值平均数就是对所有各项数据计算的平均 数。因此它能够概括反映所有各项数据的平 均水平。
▪ 常用的数值平均数有算术平均数、调和平均 数和几何平均数。
2020/6/24
第一节 刻画数据集中程度的特征量
▪ 位置平均数是根据数据集中处于特殊位置的 个别单位或部分单位的数据来确定的代表值, 因此数据集中某些数据的变动,不一定会影 响到位置平均数的水平,尽管如此,位置平 均数对于整个数据集仍具有非常直观的代表 性。
▪ 常用的位置平均数有众数、中位数和其他分 位数等。
2020/6/24
第一节 刻画数据集中程度的特征量
▪ 一、算术平均数(均值)、中位数和众数 ▪ (一)算术平均数(均值)(Mean)(Average)
在刻画数据的“平均”特性的特征值中,最普遍最 常用的是算术平均数,在统计上称为均值。 均值的计算:
2020/6/24
x
1 n
xi
fi
第一节 刻画数据集中程度的特征量
2020/6/24
第一节 刻画数据集中程度的特征量
▪ 例16(P21)关于工人月薪的调查见下表
2020/6/24
每月收入 ≤400
(400,500】 (500,600 】 (600,700 】
﹥700 合计
分类平均 280 460 550 670 850
工人数 10 28 42 50 20 150
位数的近似值。 计算公式为: m = I +i(n/2-F)/f (下限公式) 其中: I表示中位数所在区间的下限值

统计数据描述性分析PPT课件

统计数据描述性分析PPT课件

识别异常值
描述性统计可以帮助我们 识别异常值,即远离数据 集中心的值,这些值可能 会对数据分析产生影响。
提供决策依据
通过描述性统计,我们可 以了解数据的总体情况, 为进一步的数据分析提供 决策依据。
描述性统计的常用指标
01
02
03
04
均值
均值是数据集中所有数值的和 除以数值的数量,用于表示数
据的集中趋势。
通过实地观察记录数据, 适用于难以通过问卷等
方式获取的数据。
通过实验设计获取数据, 适用于需要控制变量的
实验研究。
通过查阅文献资料获取 数据,适用于历史数据 或无法直接获取的数据。
数据整理的步骤
数据清洗
去除重复、错误或不完整的数 据,确保数据质量。
数据分类
将数据按照一定的标准进行分 类,便于后续分析。
散点图
总结词
用于展示两个变量之间的关系,体现变量之间的关联程度
详细描述
散点图通过将数据点在坐标系上标出并连接成线来展示两个 变量之间的关系,能够反映变量之间的关联程度和趋势。适 用于展示两个变量之间的相关性分析。
05 数据的数值描述
数据的集中趋势描述
平均数
表示数据的集中趋势,计算所有数值的和除以数 值的数量。
样本代表性
在选择样本时,要确保样本具有代表性,能 够反映总体情况。
结论的可信度
在分析过程中,要注意排除偶然因素和误差 的影响,确保结论的可信度。
07 案例分析
案例一:销售数据描述性分析
总结词
通过销售数据的描述性分析,了解销 售情况,发现潜在问题,为决策提供 依据。
01
02
收集销售数据
收集一定时间段内的销售数据,包括 销售额、销售量、销售渠道、客户信 息等。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
x甲
xi
i 1
n
01 2011008 10
82(分)
n
x乙
xi
i 1
n
0 8 20 1 100 1 12(分) 10
3 - 14
3.1 水平的度量 3.1.2 分位数
统计学
STATISTICS (第 7 版)
中位数
(median)
1. 排序后处于中间位置上的值。不受极端值影响
50%
76 76 54 77 85 78 78 79 61 83 93 86 91 71
计算30名学生统计学考试分数的中位数。
3 - 17
统计学
STATISTICS (第 7 版)
中位数的计算
(例题分析)
54 59 60 61 63 64 65 66 67 67 69 70 71 73 75 76 76 77 77 78 78 79 80 83 85 86 88 91 93 97
➢ 由此可见,在射击比赛中,运动员能否取得好的成绩, 发挥的稳定性至关重要。那么,怎样评价一名运动员 的发挥是否稳定呢?通过本章内容的学习就能很容易 回答这样的问题
3-6
统计学
STATISTICS (第 7 版)
数据水平 (位置)
数据差异 (分散程度)
分布形状 (偏态和峰态)
3-7
数据分布的特征
第 3 章 用统计量描述数据
——Andrew Lang
3-2
第 3 章 用统计量描述数据
3.1 水平的度量 3.2 差异的度量 3.3 分布形状的度量
统计学
STATISTICS (第 7 版)
学习目标
度量水平的统计量 度量差异的统计量 度量分布形状的统计量 各统计量的的特点及应用场合 用Excel和SPSS计算描述统计量
3-5
统计学
STATISTICS (第 7 版)
哪名运动员的发挥更稳定?
➢ 最会的比赛结果是,中国运动员郭文珺凭借决赛的稳 定发挥,以总成绩492.3环夺得金牌,预赛排在第1名 的俄罗斯运动员纳塔利娅·帕杰林娜以总成绩498.1环 获得银牌,预赛排在第4名的格鲁吉亚运动员妮诺·萨 卢克瓦泽以总成绩487.4环的成绩获得铜牌,而预赛 排在第3名的蒙古运动员卓格巴德拉赫·蒙赫珠勒仅以 479.6环的成绩名列第8名
统计学
统 计 学 STATISTICS (第 7 版)
(第7版)
课程内容 描述统计、推断统计、其他常用方法
使用软件 SPSS、Excel
学分与课时 3学分,1~17周,每周3课时
1-1
统计学
STATISTICS (第 7 版)
统计名言
一些人使用统计就像喝醉酒的人 使用街灯柱—支撑的功能多于照 明。
3-4
统计学
STATISTICS (第 7 版)
哪名运动员的发挥更稳定?
➢ 在奥运会女子10米气手枪比赛中,每个运动员首先进行 每组10抢共4组的预赛,然后根据预赛总成绩确定进入决 赛的8名运动员。决赛时8名运动员再进行10枪射击,再 将预赛成绩加上决赛成绩确定最后的名次
➢ 在2008年8月10日举行的第29届北京奥运会女子10米气 手枪决赛中,进入决赛的8名运动员的预赛成绩和最后10 枪的决赛成绩如下表
STATISTICS (第 7 版)
加权平均数
(Weighted mean)
设各组的组中值为:M1 ,M2 ,… ,Mk 相应的频数为: f1 , f2 ,… ,fk
k
样本加权平均: x
M1 f1 M 2 f2 M k fk f1 f2 fk
Mi fi
i 1
n
k
总体加权平均:
3.1 水平的度量
3.1.1 平均数 3.1.2 分位数 3.1.3 用哪个值代表一组数据?
3.1 水平的度量 3.1.1 平均数
统计学
STATISTICS (第 7 版)
平均数
(mean)
1. 也称为均值,常用的统计量之一
2. 消除了观测值的随机波动
3. 易受极端值的影响
4. 根据总体数据计算的,称为平均数,记为; 根据样本数据计算的,称为样本平均数, 记为x
x
x
3 - 10
统计学
STATISTICS (第 7 版)
简单算数平均
(Simple mean)
设一组数据为:x1 ,x2 ,… ,xn (总体数据xN)
样本平均数 总体平均数
n
x
x1 x2
xn
xi
i 1
n
n
N
x1 x2 xN
xi
i 1
N
N
统计函数—AVERAGE
3 - 11
统计学
50%
Me
2. 位置确定 中位数位置 n 1 2
3. 数值确定
Me
x
n1 2
1 2
x
n 2
x
n 2
1
n为奇数 n为偶数Biblioteka 3 - 16统计学
STATISTICS (第 7 版)
中位数的计算
(例题分析)
【例3—3】随机抽取30名大学生,得到统计学的考 试分数数据如下:
59 77 97 60 88 63 64 65 75 67 67 69 73 70
合计
组中值(Mi) 145 155 165 175 185 195 205 215 225 235

频数(fi) 4 9
16 27 20 17 10
8 4 5
120
Mi fi 580 1395 2640 4725 3700 3315 2050 1720 900 1175
22200
k
Mi fi
x i1 n
22200 185 120
3 - 13
统计学
STATISTICS (第 7 版)
加权平均数
(权数对均值的影响)
【例】甲乙两组各有10名学生,他们的考试成绩及其分布数 据如下
甲组: 考试成绩(x ): 0 20 100
人数分布(f ):1 1 8
乙组: 考试成绩(x): 0 20 100
人数分布(f ):8 1 1
3 - 18
统计学
STATISTICS (第 7 版)
四分位数—用3个点等分数据
(quartile)
1. 排序后处于25%和75%位置上的值
25% 25% 25% 25%
QL
QM
QU
2. 不受极端值的影响
3 - 19
M1 f1 M 2 f2 M k f1 f2 fk
fk
Mi fi
i 1
N
3 - 12
统计学
STATISTICS (第 7 版)
加权平均数
(例题分析)
某电脑公司销售额数据分组表
按销售额分组
140~150 150~160 160~170 170~180 180~190 190~200 200~210 210~220 220~230 230~240
相关文档
最新文档