数理统计复习资料情况总结

合集下载

根据数理统计知识点归纳总结(精华版)

根据数理统计知识点归纳总结(精华版)

根据数理统计知识点归纳总结(精华版)
1. 引言
本文旨在对数理统计的基本知识点进行归纳总结,帮助读者快速了解数理统计的核心概念和方法。

2. 概率论基础
- 概率的基本定义和性质
- 随机事件的运算规则
- 条件概率和独立性
- 贝叶斯定理
3. 随机变量和分布
- 随机变量的定义和分类
- 离散型随机变量和连续型随机变量
- 常见离散型分布(如伯努利分布、二项分布、泊松分布)
- 常见连续型分布(如均匀分布、正态分布、指数分布)
4. 数理统计的基本概念
- 总体和样本的概念
- 估计与抽样分布
- 统计量和抽样分布
5. 参数估计
- 点估计的定义和性质
- 常见的点估计方法(如最大似然估计、矩估计)
- 区间估计的基本原理和方法
6. 假设检验
- 假设检验的基本思想和步骤
- 单侧检验和双侧检验
- 假设检验中的错误类型和显著性水平
- 常见的假设检验方法(如正态总体均值的检验、两样本均值的检验)
7. 相关分析
- 相关系数的定义和计算方法
- 相关分析的假设检验
- 线性回归分析的基本原理和方法
8. 统计软件的应用
- 常见的统计软件介绍(如SPSS、R、Python)
- 统计软件的基本操作(如数据导入、数据处理、统计分析)
9. 结语
本文对数理统计的核心知识点进行了简要的概括,供读者参考和研究。

通过研究数理统计,读者可以更好地理解和应用统计学在实际问题中的作用,提高数据分析和决策能力。

以上是根据数理统计知识点的归纳总结,希望有助于您对数理统计的理解和学习。

如需深入了解各个知识点的具体内容,请参考相关教材或课程。

概率论与数理统计考点归纳

概率论与数理统计考点归纳

概率论与数理统计考点归纳1. 引言概率论与数理统计是数学中的两个重要分支,它们研究随机现象的规律和利用数据推断总体特征。

在实际应用中,概率论与数理统计广泛应用于自然科学、社会科学、工程技术等领域。

本文将从以下几个方面对概率论与数理统计的考点进行归纳和总结。

2. 概率论考点2.1 随机变量与概率分布•随机变量的定义、分类和常见概率分布:离散随机变量、连续随机变量、二项分布、泊松分布、正态分布等。

•期望、方差和协方差的定义和性质,以及它们与随机变量的关系。

•大数定律和中心极限定理的概念和应用。

2.2 一维随机变量的分布特征•分布函数、概率密度函数和概率质量函数的定义和性质。

•分位数和分位点的概念和计算方法。

•随机变量的矩、协方差和相关系数的定义和计算。

•常见分布的特征:均匀分布、指数分布、正态分布等。

2.3 多维随机变量的分布特征•多维随机变量的联合分布、边缘分布和条件分布的定义和性质。

•多维随机变量的矩、协方差矩阵和相关系数矩阵的定义和计算。

•多维正态分布的定义和性质,以及多维正态分布的应用。

2.4 随机变量的函数的分布特征•随机变量函数的分布:线性变换、和、积、商的分布。

•随机变量函数的期望、方差和协方差的计算方法。

3. 数理统计考点3.1 抽样与抽样分布•抽样的概念和方法:随机抽样、简单随机抽样、系统抽样、分层抽样、整群抽样等。

•抽样分布的概念和性质:样本均值的抽样分布、样本比例的抽样分布、样本方差的抽样分布等。

•中心极限定理在抽样分布中的应用。

3.2 参数估计•点估计的概念和方法:矩估计、最大似然估计等。

•点估计的性质:无偏性、有效性、一致性等。

•置信区间的定义和计算方法。

3.3 假设检验•假设检验的基本步骤:建立原假设和备择假设、选择检验统计量、确定显著性水平、计算拒绝域、做出判断。

•假设检验的错误和功效:第一类错误、第二类错误和功效的概念和计算。

•常见假设检验方法:正态总体均值的假设检验、正态总体方差的假设检验、两样本均值的假设检验等。

2024年学习概率与数理统计总结(二篇)

2024年学习概率与数理统计总结(二篇)

2024年学习概率与数理统计总结概率与数理统计是一门应用广泛且重要的学科,对于各个领域的研究和应用起着至关重要的作用。

在2024年的学习中,我对概率与数理统计有了更深入的了解和理解,下面是我对于2024年学习概率与数理统计的总结。

一、基础知识的学习在学习概率与数理统计的过程中,我首先系统地学习了该学科的基础知识。

我通过课堂上的讲解和自主学习,掌握了概率论的基本概念、条件概率与独立性、随机变量与分布函数、多维随机变量及其分布等内容,为后续的学习打下了坚实的基础。

二、概率模型与统计推断在学习概率与数理统计的过程中,我深入学习了概率模型与统计推断的理论知识。

我了解了概率模型的构建和参数估计方法,掌握了点估计和区间估计的原理和方法。

在学习统计推断时,我进一步了解了假设检验的原理和应用,以及常见的检验方法,如t检验、卡方检验等。

通过学习这些内容,我能够利用概率模型和统计推断对实际问题进行建模和分析。

三、案例分析与实践应用在学习概率与数理统计的过程中,我也参与了一些案例分析和实践应用的实践活动。

通过实际操作和应用概率与数理统计的方法,我深入了解了理论知识在实际问题中的应用。

例如,我们进行了一次市场调研,并利用统计方法对收集到的数据进行了分析和解读。

这次实践活动不仅加深了我对概率与数理统计的理解,还提高了我解决实际问题的能力。

四、思维的培养和拓展在学习概率与数理统计的过程中,我也注重培养和拓展思维能力。

概率与数理统计是一门需要逻辑思维和创造性思维相结合的学科,因此培养这些思维能力对于学习和应用概率与数理统计至关重要。

我在学习过程中注重培养自己的逻辑思维能力,通过练习题和解题过程,提高了自己的问题分析和解决能力;同时,我也注重拓展自己的创造性思维能力,通过参与一些实践活动和自主学习,提高了自己的创新能力和解决实际问题的能力。

总之,在2024年的学习中,概率与数理统计是我非常重要的一门学科。

通过对基础知识的学习、概率模型与统计推断的掌握、案例分析与实践应用的实践活动以及思维能力的培养和拓展,我对概率与数理统计有了更深入的了解和理解。

概率论与数理统计总结

概率论与数理统计总结

第一章随机事件与概率第一节随机事件及其运算1、随机现象:在一定条件下,并不总是出现相同结果的现象2、样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω表示基本结果,又称为样本点。

3、随机事件:随机现象的某些样本点组成的集合常用大写字母A、B、C等表示,Ω表示必然事件,∅表示不可能事件.4、随机变量:用来表示随机现象结果的变量,常用大写字母X、Y、Z等表示。

5、时间的表示有多种:(1)用集合表示,这是最基本形式(2)用准确的语言表示(3)用等号或不等号把随机变量于某些实属联结起来表示6、事件的关系(1)包含关系:如果属于A的样本点必属于事件B,即事件 A 发生必然导致事件B发生,则称A被包含于B,记为A⊂B;(2)相等关系:若A⊂B且B⊃A,则称事件A与事件B相等,记为A=B。

(3)互不相容:如果A∩B=∅,即A与B不能同时发生,则称A与B互不相容7、事件运算(1)事件A与B的并:事件A与事件B至少有一个发生,记为 A∪B。

(2)事件A与B的交:事件A与事件B同时发生,记为A∩ B或AB。

(3)事件A对B的差:事件A发生而事件B不发生,记为 A-B。

用交并补可以表示为。

(4)对立事件:事件A的对立事件(逆事件),即“A不发生”,记为.对立事件的性质:。

8、事件运算性质:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)、A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)棣莫弗公式(对偶法则):9、事件域:含有必然事件Ω,并关于对立运算和可列并运算都封闭的事件类ξ称为事件域,又称为σ代数。

具体说,事件域ξ满足:(1)Ω∈ξ;(2)若A∈ξ,则对立事件∈ξ;(3)若A n∈ξ,n=1,2,···,则可列并ξ。

考研数学数理统计基础知识点总结

考研数学数理统计基础知识点总结

考研数学数理统计基础知识点总结在准备考研数学的过程中,掌握数理统计基础知识是非常重要的。

本文将为您总结一些常见的数理统计基础知识点,帮助您更好地备考。

一、概率论基础知识1. 事件与样本空间:事件是指样本空间中的某个子集,样本空间则是指随机试验的所有可能结果的集合。

2. 概率的定义:概率是指事件发生的可能性大小,其取值范围在0到1之间。

3. 概率的运算:包括加法公式和乘法公式。

加法公式适用于互斥事件的概率计算,乘法公式则适用于独立事件的概率计算。

4. 条件概率:指在已知某一事件发生的条件下,另一事件发生的概率。

5. 贝叶斯定理:用于计算事件的后验概率,在已经得到一些信息的情况下,通过先验概率和条件概率计算出事件的后验概率。

二、随机变量与概率分布1. 随机变量的概念:随机变量是指随机试验结果的某个函数,可以是离散的或连续的。

2. 概率质量函数与概率密度函数:对于离散型随机变量,其概率可以通过概率质量函数来描述;对于连续型随机变量,则需要使用概率密度函数。

3. 常见的离散型随机变量:包括伯努利分布、二项分布、泊松分布等。

4. 常见的连续型随机变量:包括均匀分布、正态分布、指数分布等。

三、统计推断1. 抽样与抽样分布:抽样是指从总体中选取一部分个体进行研究,抽样分布则是指统计量在大量抽样下的分布情况。

2. 参数估计:根据样本数据对总体的某个参数进行估计,可以使用点估计和区间估计两种方法。

3. 假设检验:对总体参数的某个假设进行检验,包括设置原假设和备择假设,以及计算检验统计量和判断拒绝域。

4. 方差分析:一种用于比较两个或多个总体均值是否有显著差异的统计方法,适用于独立样本、配对样本和重复测量样本。

四、相关与回归分析1. 相关分析:用于判断两个变量之间的相关性强弱,包括计算相关系数和进行假设检验。

2. 简单线性回归分析:用于建立一个自变量与因变量之间的线性关系模型,通过最小二乘法来估计回归系数。

3. 多元线性回归分析:在简单线性回归的基础上,将多个自变量引入回归模型中进行分析,以探究多个变量对因变量的影响。

(完整版)自考概率论与数理统计复习资料要点总结

(完整版)自考概率论与数理统计复习资料要点总结

i《概率论与数理统计》复习提要(1) 0 P(A) 1 ( 2)P( ) 1(1) 定义:若 P(B) 0,则 P(A| B)P(AB)P(B)(2)乘法公式:P(AB) P(B)P(A| B)若B 1, B 2, B n 为完备事件组,P(B i )0,则有n(3)全概率公式: P(A) P(B i )P(A| B i )i 1(4)Bayes 公式: P(B k | A)P(Bk)P(A|B k)P(B i )P(A|BJi 17.事件的独立性:A, B 独立 P( AB) P(A)P(B)(注意独立性的应用)第二章随机变量与概率分布1 •离散随机变量:取有限或可列个值,P(X x i ) p i 满足(1) p i 0 , (2) p i =11.事件的关系 AB A B AB A B AAB2.运算规则(1)A B BA ABBA(2) (AB) CA (BC)(AB)C A(BC)(3) (AB)C (AC) (BC) (AB) C (A C)(B(4) AB ABABAB第一章随机事件与概率3•概率P(A)满足的三条公理及性质: C)(4) P() 0 (5) P(A) 1 P(A)(6) P(A B) P(A) P(AB) ,若 A B , 则P(BA) P(B) P(A) ,P(A) P(B)(7) P(A B) P(A) P(B) P(AB)(8) P(ABC) P(A) P(B) P(C)P(AB)P(AC) P(BC)P(ABC)n(3)对互不相容的事件 A l , A 2, , A n ,有P( A k )k 1k 1(n 可以取)4. 古典概型:基本事件有限且等可能5. 几何概率6. 条件概率P(A k )(3)对任意D R, P(X D) p:X i D2.连续随机变量:具有概率密度函数f (x),满足(1) f (x) 0, f(x)dx 1 ;b(2) P(a X b) f (x)dx ; ( 3)对任意a R,P(X a) 0a4.分布函数F(x) P(X x),具有以下性质(1)F( ) 0, F( ) 1 ; (2)单调非降;(3)右连续;(4)P(a X b) F(b) F(a),特别P(X a) 1 F(a);(5)对离散随机变量,F(x) P i ;i:为x(6)对连续随机变量,F(x) x'f(t)dt为连续函数,且在f (x)连续点上,F (x) f (x)5.正态分布的概率计算以(x)记标准正态分布N (0,1)的分布函数,则有(1)(0) 0.5 ; (2)(2 x x) 1 (x) ; (3)若X ~ N(,),则F(x) ((4)以u记标准正态分布N(0,1)的上侧分位数,则P(X u ) 1 (u )6.随机变量的函数Y g(X)(1)离散时,求Y的值,将相同的概率相加;(2)X连续,g(x)在X的取值范围内严格单调,且有一阶连续导数,则f Y(y) f x(g 1(y)) |(g 1(y))' |单调,先求分布函数,再求导。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率论1.随机试验和样本空间:随机试验是具有不确定性的试验,其结果有多个可能的取值。

样本空间是随机试验所有可能结果的集合。

2.事件及其运算:事件是样本空间中满足一定条件的结果的集合。

事件之间可以进行并、交、补等运算。

3.概率的定义和性质:概率是描述随机事件发生可能性的数值。

概率具有非负性、规范性和可列可加性等性质。

4.条件概率和独立性:条件概率是在已知一事件发生的条件下,另一事件发生的概率。

事件独立表示两个事件之间的发生没有相互关系。

5.全概率公式和贝叶斯公式:全概率公式是一种计算事件概率的方法,将事件分解成互斥的多个事件的概率之和。

贝叶斯公式是一种用于更新事件概率的方法。

6.随机变量和分布函数:随机变量是样本空间到实数集的映射,用来描述试验结果的数值特征。

分布函数是随机变量取值在一点及其左侧的概率。

7.常用概率分布:常见的概率分布包括离散型分布(如二项分布、泊松分布)和连续型分布(如正态分布、指数分布)。

8.数学期望和方差:数学期望是随机变量的平均值,用于描述随机变量的中心位置。

方差是随机变量离均值的平均距离,用于描述随机变量的分散程度。

二、数理统计1.统计量和抽样分布:统计量是对样本数据进行总结和分析的函数。

抽样分布是统计量的概率分布,用于推断总体参数。

2.估计和点估计:估计是利用样本数据对总体参数进行推断。

点估计是利用样本数据得到总体参数的一个具体数值。

3.估计量的性质和评估方法:估计量的性质包括无偏性、有效性和一致性等。

评估方法包括最大似然估计、矩估计等。

4.区间估计:区间估计是对总体参数进行估计的区间范围。

置信区间是对总体参数真值的一个区间估计。

5.假设检验和检验方法:假设检验是在已知总体参数的条件下,对总体分布做出的统计推断。

检验方法包括参数检验和非参数检验。

6.正态总体的推断:当总体近似服从正态分布时,可以利用正态分布的性质进行推断。

7.方差分析和回归分析:方差分析用于比较两个或多个总体均值是否相等。

概率论与数理统计复习资料知识点总结

概率论与数理统计复习资料知识点总结

《概率论与数理统计》第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。

数理统计知识点梳理总结

数理统计知识点梳理总结

数理统计知识点梳理总结一、统计学简介统计学是一门研究数据收集、处理、分析和解释的学科。

在现代社会中,数据在各个领域都扮演着重要的角色,因此统计学成为了一门不可或缺的科学。

统计学的主要目的是通过对数据的分析和解释,从而得出对整体或者局部的结论。

统计学广泛应用于政治、经济、社会学、医学、环境科学、工程学等各个领域。

二、数据类型在统计学中,数据通常可以分为两种类型:定量数据和定性数据。

1. 定量数据:定量数据是可进行数值量度的数据,通常具有数值意义,可以进行数学运算。

例如,身高、体重、温度、成绩等都属于定量数据。

2. 定性数据:定性数据是指不能进行数值量度的数据,通常表示品质等性质。

例如,性别、颜色、职业等都属于定性数据。

三、描述统计描述统计是统计学中的一项重要内容,它包括了数据的整体描述和规律性分析。

描述统计的主要方法包括:中心趋势度量、离散程度度量和分布形态度量。

1. 中心趋势度量:中心趋势度量是用来描述数据集中趋势的度量。

主要包括均值、中位数和众数。

- 均值:均值是指将所有数据相加后除以数据的个数得到的平均值。

- 中位数:中位数是将数据按大小顺序排列后,处于中间位置的数值。

- 众数:众数是指数据集中出现次数最多的数值。

2. 离散程度度量:离散程度度量是用来描述数据分布的离散程度的度量。

主要包括极差、方差和标准差。

- 极差:极差是指数据的最大值和最小值之间的差距。

- 方差:方差是描述数据分布离散程度的一种度量,它是各个数据与均值之间差的平方和的平均值。

- 标准差:标准差是方差的平方根,它是用来度量数据的分布离散程度的指标。

3. 分布形态度量:分布形态度量是用来描述数据分布形态的度量。

主要包括偏态系数和峰态系数。

- 偏态系数:偏态系数是用来描述数据分布偏斜程度的指标。

- 峰态系数:峰态系数是用来描述数据分布峰态程度的指标。

四、概率概率是统计学中的一个重要概念,它用来描述事件发生的可能性。

概率可以分为主观概率和客观概率。

数理统计知识点总结(总22页)

数理统计知识点总结(总22页)

数理统计知识点总结(总22页)一、基本概念1、统计学:统计学是一门研究人群或事物特性及变化规律的学科,是应用数理统计方法研究某种规律的学科,是整理、综合和分析统计资料的学科。

2、统计资料:统计资料是从实际中收集的有关统计对象的数据,也可以称为实验资料。

3、变量:历史的发展过程中,统计中的变量可分为定量变量和定性变量。

前者是指可以用数字表示的变量,又被称为被观察变量或解释变量;后者多由文字描述,不能量化,又被称为因变量或行为变量。

4、分类变量:又称为分类统计数据,是指按照一定的范围将变量等分,主要用于描述变量的构成状况。

5、样本:样本是用于做统计分析的一部分数据,它按照一定的要求从某种群体中抽取出来,它是统计资料的简写总结。

样本本身并非具有代表性,但在发现规律方面与总体相比,它有许多独特的优势。

二、数理统计方法1、数据描述:数据描述是指用定量和定性的方式把统计对象描述出来,也就是用汇总统计和分类统计的方法研究统计资料的特征。

2、分布类型:经过研究的统计资料各变量的分布可分为三种基本形式:正态分布、对数分布和正玄分布。

3、抽样技术:抽样是指在随机或不完全随机的情况下,从一个总体中抽出一定数量的抽样单位,用它们反映整体的一般特性的科学方法。

4、统计推断:统计推断是指借助于统计技术去评价样本资料与总体资料之间的联系,并借以判断在一定概率水平上总体参数的取值情况,并对总体参数做出推断。

5、回归分析:回归分析是利用统计方法,探索两个或多个变量之间存在的关系,及掌握这种关系的参数。

三、统计推断1、假设检验:假设检验是统计推断的基本方法,是统计方法求出的取值所处位置在参数特定范围内的概率,通常用统计量在假设下把允许的概率建模出来。

2、置信区间:置信区间是统计学中定量评价事物变化范围的一种分析方法,其作用是加以比较研究结果,以及让相应的概率参数可以被确定的概率范围的压缩,使数据更有说服力。

3、方差分析:方差分析是检验研究变量之间是否存在显著的差异性的统计分析方法,其研究的是变量的变异程度。

数理统计复习总结

数理统计复习总结

1统计量与抽样分布1.1基本概念:统计量、样本矩、经验分布函数总体X 的样本X 1,X 2,…,X n ,则T(X 1,X 2,…,X n )即为统计量样本均值X =μ 样本方差212)(1∑=-=n i i n X X n S 修正样本方差212*)(11∑=--=n i i n X X n S样本k 阶原点矩,...)2,1(,11==∑=k X n A n i k i k 样本k 阶中心矩,...)2,1(,)(11=-=∑=k X X n B ni k i k经验分布函数)(,)()(+∞<<-∞=x nx v x F n n 其中V n (x)表示随机事件}{x X ≤出现的次数,显然))(,(~)(x F n B x V n ,则有)()]([x F x F E n = )](1)[(1)]([x F x F nx F D n -=补充: ⏹DX nn ES n 12-=DX ES n=2* 22)(EX DX EX += ⏹22211n ni i S X X n ==-∑● 二项分布B(n,p): ),...,1,0(,)1(}{n k p p C k X P k n kk n =-==-EX=np DX=np(1-p) ● 泊松分布)(λP :,...)1,0(,!}{===-k e k k X P kλλλ=EX λ=DX● 均匀分布U(a,b):)(,1)(b x a ab x f <<-=2b a EX +=2)(121a b DX -=● 指数分布:(),(0)()1,(0)x x f x e x F x e x λλλ--=>↔=->λ1=EX 21λ=DX● 正态分布),(2σμN :}2)(exp{21)(22σμσπ--=x x f μ=EX 2σ=DX 22221()1nnnS n E n ES n σσ-=-⇒= 224222(1)()2(1)n n nS n D n DS n σσ-=-⇒=当0=μ时,0=EX 22σ=EX 443EX σ= σπ2=X E 2)21(σπ-=X D1.2统计量:充分统计量、因子分解定理、完备统计量、指数型分布族(不重要) T 是θ的充分统计量⇔),...,,(21t T x x x f n =与θ无关 T 是θ的完备统计量⇔要使E[g(T)]=0,必有g(T)=0));,...,,((),...,,();()(21211θθθn n i ni x x x T g x x x h x f L ==∏=且h 非负⇔T 是θ的充分统计量),...,,()},...,,()(exp{)();(21211nnni ix x x h x x x T b C x f θθθ=∏=⇔T 是θ的充分完备统计量),...,,()},...,,()(),...,,()(exp{)();(21212221111nnnni ix x x h x x x T b x x x T b C x f θθθθ+=∏=⇔),(21T T 是),(21θθθ=的充分完备统计量1.3抽样分布:2χ分布,t 分布,F 分布,分位数,正态总体样本均值和方差的分布,非正态总体样本均值的分布2χ分布:)(~ (22)22212n X X X n χχ+++= )0()2(21)(1222>Γ=--x xe nx f n x nn E =2χ n D 22=χT 分布:)(~/n t nY XT =当n>2时,ET=0 2-=n n DTF 分布:),(~2121n n F n Yn XF =),(112n n F F= 补充:⏹ Z=X+Y 的概率密度⎰⎰+∞∞-+∞∞--=-=dy y y z f dx x z x f z f z ),(),()( f(x,y)是X 和Y 的联合概率密度⏹ XYZ =的概率密度dx x xz x f z f z ⎰+∞∞-=),()(⏹ )(x g y =的概率密度)]'([))(()(11y g y g f y f x y --=●Γ函数:⎰+∞--=Γ01)(dx e x x αα )()1(αααΓ=+Γ 1)1(,)!1()(=Γ-=Γn n● B 函数:⎰---=111)1(),(dx x x B βαβα )()()(),(βαβαβα+ΓΓΓ=B1.4次序统计量及其分布:次序统计量、样本中位数X 、样本极差R X (k)的分布密度:),...,2,1(),()](1[)]([)!()!1(!)(1)(n k x f x F x F k n k n x f k n k x k =---=--X (1)的分布密度:1)](1)[()()1(--=n x x F x nf x fX (n)的分布密度:1)]()[()()(-=n x x F x nf x f n2参数估计2.1点估计与优良性:概念、无偏估计、均方误差准则、相合估计(一致估计)、渐近正态估计θ的均方误差: 22(,)()()MSE E D E θθθθθθθ=-=+- 若 θ是无偏估计,则 (,)MSE D θθθ= 对于θ的任意一个无偏估计量 θ,有 *D D θθ≤,则 *θ是θ的最小方差无偏估计,记MVUE 相合估计(一致估计):lim n n E θθ→∞= lim 0n n D θ→∞= 2.2点估计量的求法:矩估计法、最大似然估计法 矩估计法:① 求出总体的k 阶原点矩:12(;,,...,)kk k m a EX x dF x θθθ+∞-∞==⎰② 解方程组11n kk i i a X n ==∑ (k=1,2,...,m),得 12(,,...,)k k nX X X θθ=即为所求 最大似然估计法:① 写出似然函数1()(;)ni i L f x θθ==∏,求出lnL 及似然方程ln 0i Lθθθ=∂=∂ i=1,2,...,m② 解似然方程得到 12(,,...,)i n x x x θ,即最大似然估计 12(,,...,)i nX X X θ i=1,2,...,m 补充:⏹ 似然方程无解时,求出θ的定义域中使得似然函数最大的值,即为最大似然估计 2.3MVUE 和有效估计:最小方差无偏估计、有效估计T 是θ的充分完备统计量, θ是θ的一个无偏估计⇔ *(|)E T θθ=为θ的惟一的MVUE 最小方差无偏估计的求解步骤:① 求出参数θ的充分完备统计量T② 求出()ET g θ=,则 1()g T θ-=是θ的一个无偏估计或求出一个无偏估计,然后改写成用T 表示的函数③ 综合,11[()]()E g T T g T --=是θ的MVUE或者:求出θ的矩估计或ML 估计,再求效率,为1则必为MVUET 是()g θ的一个无偏估计,则满足信息不等式'2[()][()]()g D T X nI θθ≥,其中2ln (;)()f X I E θθθ∂⎡⎤=⎢⎥∂⎣⎦或22ln (;)()0f X I E θθθ⎡⎤∂=->⎢⎥∂⎣⎦,(;)f X θ为样本的联合分布。

考研数学概率与数理统计考试内容总结3篇

考研数学概率与数理统计考试内容总结3篇

考研数学概率与数理统计考试内容总结3篇考研数学概率与数理统计考试内容总结3篇在进行考研的时候,数学的概率与数理统计考试内容一直是考生们十分关注的问题,下面就让小编给大家带来考研数学概率与数理统计考试内容,希望大家喜欢!下面就和小编一起来看看吧。

考研数学概率与数理统计考试内容篇1概率论与数理统计是考研数学一和数学三的必考内容,数学二的考生不考。

这部分的内容相对于高等数学而言算是较简单的部分,与线性代数一样都是考生必须要抓住的地方。

接下来跨考教育数学教研室吴方方老师就为考生归纳总结概率论与数理统计的考点,希望对考生复习有所帮助。

概率统计的考点每年都差不多,没什么大的变化。

从历年的考研真题来看,概率统计这部分的内容考查单一知识点比较少,即使是填空题和选择题都是这样。

大部分的考题都是考查考生的理解能力和综合应用能力,因此要求我们考生要能够灵活地应用所学的知识建立正确的概率模型。

要能够熟练的应用高等数学里的知识来解决我们概率统计上的问题,比如定积分和二重积分是我们同学们要必须掌握的住的知识,其在概率统计中一维和二维随机变量求概率都能用的上。

概率统计第一章的古典概型和几何概型是大部分考生所头疼的,其中古典概型更是让很多同学摸不着头脑,其实古典概型考试大都是以小题形式出现的,它并不是考试的重点,但确实是考试的难点。

而几何概型就是一个事件发生的概率等于这个事件的度量与整个样本空间度量的比,这个度量可以是长度、面积、体积。

相对于古典概型,几何概型是重要的。

接下来,就是随机变量的内容了。

我们主要考的是离散和连续两种随机变量,一维随机变量和二维随机变量主要考点包括:分布函数,概率密度,分布律,联合分布函数,联合概率密度,联合分布律,边缘分布函数,边缘概率密度,边缘分布律,条件分布律,条件概率密度,以及一维和二维随机变量的函数的分布。

其中随机变量函数的分布是考试的重点,一般是与第四章数字特征(期望、方差、协方差以及相关系数)结合来考大题。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。

- 样本空间:所有可能事件发生的集合。

- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。

- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。

- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。

- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。

- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。

2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。

- 离散随机变量:取值为有限或可数无限的随机变量。

- 连续随机变量:可以在某个区间内取任意值的随机变量。

- 概率分布函数:描述随机变量取值的概率。

- 概率密度函数:连续随机变量的概率分布函数的导数。

- 累积分布函数:随机变量取小于或等于某个值的概率。

- 期望值:随机变量的长期平均值。

- 方差:衡量随机变量取值的离散程度。

3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。

- 边缘分布:通过联合分布求得的单个随机变量的分布。

- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。

- 协方差:衡量两个随机变量之间的线性关系。

- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。

4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。

- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。

5. 数理统计基础- 样本:从总体中抽取的一部分个体。

- 总体:研究对象的全体。

- 参数估计:用样本统计量来估计总体参数。

- 点估计:给出总体参数的一个具体估计值。

- 区间估计:给出一个包含总体参数可能值的区间。

- 假设检验:对总体分布的某些假设进行检验。

- 显著性水平:拒绝正确假设的最大概率。

数理统计考研知识点总结

数理统计考研知识点总结

数理统计考研知识点总结一、描述统计1. 基本概念:数据、变量、统计资料、频数、频率、累积频数、累积频率、平均数、中位数、众数、标准差、分位数、几个概念的含义和计算方法;2. 统计图和图表:直方图、饼图、条形图、线图、散点图的绘制和含义,表格的制作和解读;3. 相对位置和波动程度:标准差、变异系数、分位数(位数和分位数秩),说明统计描述时给出的数据规律有多准确、有多平均、有多稳定。

二、概率论基础1. 基本概念:概率空间、随机试验、样本点、样本空间、事件、概率的定义、基本性质;2. 条件概率和独立性:条件概率、乘法法则、全概率和贝叶斯定理、独立性与互斥性;3. 随机变量及其分布:随机变量的定义、离散型随机变量、连续型随机变量、随机变量的分布函数;4. 数学期望和方差:数学期望的定义、性质和计算方法、方差的定义、性质和计算方法;5. 大数定律和中心极限定理:伯努利大数定律、切比雪夫不等式、中心极限定理的基本概念及其应用。

三、参数估计和假设检验1. 参数估计:点估计、区间估计、样本容量对估计精度的影响、均值和方差的区间估计;2. 假设检验:假设检验的基本思想、基本步骤、假设检验的原理、拒绝域和p值的概念;3. 正态总体均值和方差的检验:单个正态总体均值和方差的假设检验问题、两个正态总体均值和方差的假设检验问题。

四、方差分析、相关分析和回归分析1. 方差分析:方差分析的基本原理、单因素方差分析、多因素方差分析;2. 相关分析:相关系数的概念及其计算、相关系数的性质、假设检验问题、相关系数的显著性检验、线性相关的检验;3. 回归分析:回归分析概念及其应用、简单线性回归模型的参数估计、残差分析和回归模型选择。

五、非参数统计1. 秩和秩次统计量:秩和检验及其应用、秩次统计量的定义和性质;2. 符号检验:符号检验的概念、假设检验问题的符号检验;3. 秩和检验:两独立样本的秩和检验、两相关样本的秩和检验、多样本的秩和检验。

数理统计自考复习资料

数理统计自考复习资料

复习资料(资料总结,仅供参考)判断题1.研究人员测量了100例患者外周血的红细胞数,所得资料为计数资料。

X 2.统计分析包括统计描述和统计推断。

3.计量资料、计数资料和等级资料可根据分析需要相互转化。

4.均数总是大于中位数。

X 5.均数总是比标准差大。

X 6.变异系数的量纲和原量纲相同。

X 7.样本均数大时,标准差也一定会大。

X 8.样本量增大时,极差会增大。

9.若两样本均数比较的假设检验结果P 值远远小于,则说明差异非常大。

X 10.对同一参数的估计,99%可信区间比90%可信区间好。

X 11.均数的标准误越小,则对总体均数的估计越精密。

12. 四个样本率做比较,2)3(05.02χχ> ,可认为各总体率均不相等。

X 13.统计资料符合参数检验应用条件,但数据量很大,可以采用非参数方法进行初步分析。

14.对同一资料和同一研究目的,应用参数检验方法,所得出的结论更为可靠。

X 15.等级资料差别的假设检验只能采用秩和检验,而不能采用列联表χ2检验等检验方法X 。

16.非参数统计方法是用于检验总体中位数、极差等总体参数的方法。

X 17.剩余平方和SS 剩1=SS 剩2,则r 1必然等于r 2。

X 18.直线回归反映两变量间的依存关系,而直线相关反映两变量间的相互直线关系。

19.两变量关系越密切r 值越大。

X 20.一个绘制合理的统计图可直观的反映事物间的正确数量关系。

21.在一个统计表中,如果某处数字为“0”,就填“0”,如果数字暂缺则填“…”,如果该处没 有数字,则不填。

X 22.备注不是统计表的必要组成部分,不必设专栏,必要时,可在表的下方加以说明。

23.散点图是描写原始观察值在各个对比组分布情况的图形,常用于例数不是很多的间断性分组资料的比较。

24.百分条图表示事物各组成部分在总体中所占比重,以长条的全长为100%,按资料的原始顺序依次进行绘制,其他置于最后。

X 25.用元参钩藤汤治疗80名高血压患者,服用半月后比服用前血压下降了,故认为该药有效( X )。

《概率论与数理统计》复习总结(已完成)

《概率论与数理统计》复习总结(已完成)

大学教案总结之《概率论与数理统计》期末复习目录第一章 (4)定义:一般的,称试验E 的样本空间Ω的子集为E 的随机事件。

.......................... 4 事件间的关系与运算 ....................................................................................................... 4 定义: ............................................................................................................................... 4 概率的性质: ................................................................................................................... 4 古典概率 ................................................................................................................................... 4 条件概率 .. (4)定义: (4)⑴条件概率的乘法公式:()()()A P A B P AB P |= (5)⑵全概率公式 ................................................................................................................... 5 ⑶贝叶斯公式 ................................................................................................................... 5 随机事件的独立性 ................................................................................................................... 5 第二章 一维随机变量及其分布 .. (6)定义:一维随机变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1统计量与抽样分布1.1基本概念:统计量、样本矩、经验分布函数总体X 的样本X 1,X 2,…,X n ,则T(X 1,X 2,…,X n )即为统计量 样本均值X =μ样本方差212)(1∑=-=n i i n X X n S修正样本方差212*)(11∑=--=n i i nX X n S样本k 阶原点矩,...)2,1(,11==∑=k X n A n i ki k样本k 阶中心矩,...)2,1(,)(11=-=∑=k X X n B n i ki k经验分布函数)(,)()(+∞<<-∞=x nx v x F n n 其中V n (x)表示随机事件}{x X ≤出现的次数,显然))(,(~)(x F n B x V n ,则有)()]([x F x F E n = )](1)[(1)]([x F x F nx F D n -=补充: ⏹DX nn ES n 12-=DX ES n =2* 22)(EX DX EX += ⏹22211n ni i S X X n ==-∑● 二项分布B(n,p): ),...,1,0(,)1(}{n k p p C k X P kn k k n =-==-EX=np DX=np(1-p) ● 泊松分布)(λP :,...)1,0(,!}{===-k e k k X P kλλλ=EX λ=DX● 均匀分布U(a,b):)(,1)(b x a ab x f <<-=2b a EX +=2)(121a b DX -=● 指数分布:(),(0)()1,(0)x x f x e x F x e x λλλ--=>↔=->λ1=EX 21λ=DX● 正态分布),(2σμN :}2)(ex p{21)(22σμσπ--=x x f μ=EX 2σ=DX 22221()1nnnS n E n ES n σσ-=-⇒= 224222(1)()2(1)n n nS n D n DS n σσ-=-⇒= 当0=μ时,0=EX 22σ=EX 443EX σ= σπ2=X E 2)21(σπ-=X D1.2统计量:充分统计量、因子分解定理、完备统计量、指数型分布族 T 是θ的充分统计量⇔),...,,(21t T x x x f n =与θ无关 T 是θ的完备统计量⇔要使E[g(T)]=0,必有g(T)=0));,...,,((),...,,();()(21211θθθn n i ni x x x T g x x x h x f L ==∏=且h 非负⇔T 是θ的充分统计量),...,,()},...,,()(ex p{)();(21211nnni ix x x h x x x T b C x f θθθ=∏=⇔T 是θ的充分完备统计量),...,,()},...,,()(),...,,()(ex p{)();(21212221111n n nni ix x x h x x x Tb x x x T b C x f θθθθ+=∏=⇔),(21T T 是),(21θθθ=的充分完备统计量1.3抽样分布:2χ分布,t 分布,F 分布,分位数,正态总体样本均值和方差的分布,非正态总体样本均值的分布2χ分布:)(~ (2)222212n X X X nχχ+++= )0()2(21)(1222>Γ=--x xe n xf n x nn E =2χ n D 22=χT 分布:)(~/n t nY X T =当n>2时,ET=0 2-=n nDTF 分布:),(~2121n n F n Yn XF =),(112n n F F= 补充:⏹ Z=X+Y 的概率密度⎰⎰+∞∞-+∞∞--=-=dy y y z f dx x z x f z f z ),(),()( f(x,y)是X 和Y 的联合概率密度⏹ XYZ =的概率密度dx x xz x f z f z ⎰+∞∞-=),()(⏹ )(x g y =的概率密度)]'([))(()(11y g y g f y f x y --=●Γ函数:⎰+∞--=Γ01)(dx e x x αα )()1(αααΓ=+Γ 1)1(,)!1()(=Γ-=Γn n● B 函数:⎰---=111)1(),(dx x x B βαβα )()()(),(βαβαβα+ΓΓΓ=B1.4次序统计量及其分布:次序统计量、样本中位数°X 、样本极差R X (k)的分布密度:),...,2,1(),()](1[)]([)!()!1(!)(1)(n k x f x F x F k n k n x f k n k x k =---=--X (1)的分布密度:1)](1)[()()1(--=n x x F x nf x f X (n)的分布密度:1)]()[()()(-=n x x F x nf x f n2参数估计2.1点估计与优良性:概念、无偏估计、均方误差准则、相合估计(一致估计)、渐近正态估计$θ的均方误差:$$$$22(,)()()MSE E D E θθθθθθθ=-=+- 若$θ是无偏估计,则$$(,)MSE D θθθ= 对于θ的任意一个无偏估计量$θ,有$$*D D θθ≤,则$*θ是θ的最小方差无偏估计,记MVUE相合估计(一致估计):lim n n E θθ→∞= $lim 0n n D θ→∞=2.2点估计量的求法:矩估计法、最大似然估计法 矩估计法:① 求出总体的k 阶原点矩:12(;,,...,)kk k m a EX x dF x θθθ+∞-∞==⎰② 解方程组11n kk i i a X n ==∑ (k=1,2,...,m),得$$12(,,...,)k k n X X X θθ=即为所求最大似然估计法:① 写出似然函数1()(;)ni i L f x θθ==∏,求出lnL 及似然方程$ln 0i Lθθθ=∂=∂ i=1,2,...,m② 解似然方程得到$12(,,...,)i n x x x θ,即最大似然估计$12(,,...,)i n X X X θ i=1,2,...,m补充:似然方程无解时,求出θ的定义域中使得似然函数最大的值,即为最大似然估计 2.3MVUE 和有效估计:最小方差无偏估计、有效估计T 是θ的充分完备统计量,$θ是θ的一个无偏估计⇔$$*(|)E T θθ=为θ的惟一的MVUE最小方差无偏估计的求解步骤:① 求出参数θ的充分完备统计量T② 求出()ET g θ=,则$1()g T θ-=是θ的一个无偏估计 或求出一个无偏估计,然后改写成用T 表示的函数 ③ 综合,11[()]()E g T T g T --=是θ的MVUE或者:求出θ的矩估计或ML 估计,再求效率,为1则必为MVUET 是()g θ的一个无偏估计,则满足信息不等式'2[()][()]()g D T X nI θθ≥,其中2ln (;)()f X I E θθθ∂⎡⎤=⎢⎥∂⎣⎦或22ln (;)()0f X I E θθθ⎡⎤∂=->⎢⎥∂⎣⎦,(;)f X θ为样本的联合分布。

最小方差无偏估计⇐达到罗-克拉姆下界⇔有效估计量⇔效率为1无偏估计$θ的效率:$$1()()e D nI θθθ= $θ是θ的最大似然估计,且$θ是θ的充分统计量⇔$θ是θ的有效估计 2.4区间估计:概念、正态总体区间估计(期望、方差、均值差、方差比)及单侧估计、非正态总体参数和区间估计 一个总体的情况:2~(,)X N μσ2σ已知,求μ02~(0,1)X N X αμ⇒-<2σ未知,求μ*02~(1)(1)t n X n αμ-⇒-<-μ已知,求2σ的置信区间:22222111222122()()()~()()()nnniiii i i XXXn n n ααμμμχσσχχ===----⇒<<∑∑∑μ未知,求2σ的置信区间:22222111222122()()()~(1)(1)(1)nnniiii i i XX XX XX n n n ααχσσχχ===-----⇒<<--∑∑∑两个总体的情况:211~(,)X N μσ,222~(,)Y N μσ 2212,σσ均已知时,求12μμ-的区间估计:122~(0,1)()X Y N X Y αμμ⇒---<22212σσσ==未知时,求12μμ-的区间估计:12~(2)t n n +-12,μμ未知时,求2122σσ:222211222122*2**2211112121212*2**12221222~(1,1)(1,1)(1,1)n n n n n n S S S F n n F n n F n n S S S σσσσ∂∂---⇒--<<-- 非正态总体的区间估计:当n →∞2(0,1)LX N X αμ⇒-<1lim 1nn n S S →∞-⎛⎫= ⎪⎝⎭,故用S n 代替S n -1~(0,1)m X m N n -⎛⇒± ⎝ 3统计决策与贝叶斯估计3.1统计决策的基本概念:三要素、统计决策函数及风险函数三要素:样本空间和分布族、行动空间(判决空间)、损失函数(,)L d θ 统计决策函数d(X):本质上是一个统计量,可用来估计未知参数 风险函数:(,)[(,())]R d E L d X θθθ=是关于θ的函数3.2贝叶斯估计:先验分布与后验分布、贝叶斯风险、贝叶斯估计① 求样本X=(X 1,X 2,...,X n )的分布:1(|)(|)nii q x f x θθ==∏② 样本X 与θ的联合概率分布:(,)(|)()(|)()f x h x m x q x θθθπθ==③ 求(,)f x θ关于x 的边缘密度()(,)m x f x d θθΘ=⎰④θ的后验密度为:(,)(|)()f x h x m x θθ=取2(,)()L d d θθ=-时θ的贝叶斯估计为:$(|)(|)E x h x d θθθθθΘ==⎰贝叶斯风险为:22(,)()()[(,)]()(|)B R d E d R d E R d E d h x d θθθθθθθθΘ⎧=-⎪⎨==-⎪⎩⎰取2(,)()()L d d θλθθ=-时,贝叶斯估计为:$[()|][()|]E x E x λθθθλθ=补充: ⏹()C θ的贝叶斯估计:取损失函数2(,)(())L d C d θθ=-,则贝叶斯估计为·()[()|]()(|)C E C x C h x d θθθθθΘ==⎰⏹$(,)(,)(|)(|)()(,)f x d f x E x h x d d m x f x d θθθθθθθθθθθθΘΘΘΘ====⎰⎰⎰⎰3.3minimax 估计对决策空间中的决策函数d 1(X),d 2(X),...,分别求出在Θ上的最大风险值max (,)R d θθ∈Θ在所有的最大风险值中选取相对最小值,此值对应的决策函数就是最小最大决策函数。

相关文档
最新文档