简单的三元一次方程组.4简单的三元一次方程组

合集下载

三元一次方程组ppt课件

三元一次方程组ppt课件
x y z 2.


解:③×5-①,得
y+4z=-10 . ④
③×3-②,得
2y+7z=-7 . ⑤
z=-13 .
④×2-⑤,得
把z用-13代入方程④,得 y= 42 .
把y用42,z用-13代入方程③,得
因此,
= −,
= ,
= −
x=-31 .
是原三元一次方程组的解.
x y z 51,
根据题意,得 4 x 8 y 5 z 300,

x

15


x y 2 z 67.

解得 y 20,
z 16.

答:种植水稻15公顷,种植棉花20公顷,种植蔬菜16公顷.
课堂小结
含有 3 个未知数
定义
三元一次
方程组
含未知数的项的次数都是 1
新知探究
知识点2 解三元一次方程组
5 x 3 y 2 z 15, ①
例2 解三元一次方程组:2 x y 3 z 9, ②
3 x y 5 z 14.


解:②×3-①,得
②+③,得
x+7z=-12 . ④
5x-2z=-23 . ⑤
④×5-⑤,得
37z=-37 ,

解:(1) ③×3-①,得
③×2-②,得
⑤-④×7,得
y-5z=17. ④
7y+3z=5. ⑤
z=-3.
y=2.
把z用-3代入方程④,得
把y用2,z用-3代入方程③,得 x=1.
因此,
= ,
= ,

三元一次方程组(基础)知识讲解

三元一次方程组(基础)知识讲解

三元一次方程组(基础)知识讲解【学习目标】1.理解三元一次方程(或组)的含义;2.会解简单的三元一次方程组;3. 会列三元一次方程组解决有关实际问题.【要点梳理】要点一、三元一次方程及三元一次方程组的概念1.三元一次方程的定义含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+4c=5等都是三元一次方程.要点诠释:(1)三元一次方程的条件:①是整式方程,②含有三个未知数,③含未知数的项的最高次数是1次.(2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零.2.三元一次方程组的定义一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 要点诠释:(1) 三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可.(2)在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建立三元一次方程组求解.要点二、三元一次方程组的解法解三元一次方程组的一般步骤(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元”化为“二元”.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是:(2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法.要点三、三元一次方程组的应用列三元一次方程组解应用题的一般步骤1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;2.找出能够表达应用题全部含义的相等关系;3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;4.解这个方程组,求出未知数的值;5.写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.【典型例题】类型一、三元一次方程及三元一次方程组的概念1.下列方程组中是三元一次方程组的是( )A .2102x y y z xz ⎧-=⎪+=⎨⎪=⎩B .111216y xz y x z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ C .123a b c d a c b d +++=⎧⎪-=⎨⎪-=⎩ D .18120m n n t t m +=⎧⎪+=⎨⎪+=⎩ 【答案】D【解析】A 选项中21x y -=与2xz =中未知数项的次数为2次,故A 选项不是;B 选项中1x ,1y ,1z不是整式,故B 选项不是;C 选项中有四个未知数,故C 选项不是;D 项符合三元一次方程组的定义.【总结升华】理解三元一次方程组的定义要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)一般地,如果三个一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.类型二、三元一次方程组的解法2. (韶关)解方程组275322344y x x y z x z =-⎧⎪++=⎨⎪-=⎩①②③【思路点拨】方程①是用未知数x 表示y 的式子,将①代入②可得二元一次方程组.【答案与解析】解:将①代入②得:5x+3(2x -7)+2z =2,整理得:11x+2z =23 ④由此可联立方程组34411223x z x z -=⎧⎨+=⎩③④,③+④×2得:25x =50,x =2.把x =2分别代入①③可知:y =-3,12z =.所以方程组的解为2312x y z ⎧⎪=⎪=-⎨⎪⎪=⎩.【总结升华】解三元一次方程组的思想仍是消元,是用加减消元法,还是用代入消元法,要根据方程组的特征来确定,一定要选择较简便的方法.【高清课堂:三元一次方程组 409145 例1】举一反三: 【变式】解方程组: 【答案】解:①+②得:5311x y +=④ ①×2+③得:53x y -=⑤由此可得方程组:531153x y x y +=⎧⎨-=⎩④⑤④-⑤得:48y =,2y =将2y =代入⑤知:1x =将1x =,2y =代入①得:3z =所以方程组的解为:123x y z =⎧⎪=⎨⎪=⎩【高清课堂:三元一次方程组409145 例2(2)】3. 解方程组23520x y z x y z ⎧==⎪⎨⎪++=⎩①②【答案与解析】 解法一:原方程可化为:253520x z y z x y z ⎧=⎪⎪⎪=⎨⎪⎪++=⎪⎩①②③ 由①③得:25x z =,35y z = ④ 将④代入②得:232055z z z ++=,得:10z = ⑤ 2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩①②③将⑤代入④中两式,得:2210455x z ==⨯=,3310655y z ==⨯= 所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩解法二:设235x y z t ===,则2,3,5x t y t z t ===③ 将③代入②得:23520t t t ++=,2t =将2t =代入③得:2224x t ==⨯=,3326,55210y t z t ==⨯===⨯=所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩【总结升华】对于这类特殊的方程组,可根据其方程组中方程的特点,采用一些特殊的解法(如设比例系数等)来解.举一反三:【变式】(2015秋•德州校级月考)若三元一次方程组的解使ax+2y+z=0,则a 的值为( )A .1B .0C .﹣2D .4【答案】B . 解:,①+②+③得:x+y+z=1④,把①代入④得:z=﹣4,把②代入④得:y=2,把③代入④得:x=3,把x=3,y=2,z=﹣4代入方程得:3a+4﹣4=0,解得:a=0.类型三、三元一次方程组的应用4. (2015春•黄陂区校级月考)购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支、作业本5本圆珠笔2支共需 元.【思路点拨】首先假设铅笔的单价是x 元,作业本的单价是y 元,圆珠笔的单价是z 元.购买铅笔11支,作业本5本,圆珠笔2支共需a 元.根据题目说明列出方程组,解方程组求出a 的值,即为所求结果.【答案】5.【解析】解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得:,由②﹣①得3x+y=1,④由②+①得17x+7y+2z=7,⑤由⑤﹣④×2﹣③得0=5﹣a,解得:a=5.【总结升华】本题考查了列三元一次不定方程组解实际问题的运用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.举一反三:【变式】现有面值为2元、1元和5角的人民币共24张,币值共计29元,其中面值为2元的比1元的少6张,求三种人民币各多少张?【答案】解:设面值为2元、1元和5角的人民币分别为x张、y张和z张.依题意,得24122926x y zx y zx y++=⎧⎪⎪++=⎨⎪⎪+=⎩①②③把③分别代入①和②,得21813232x zx z+=⎧⎪⎨+=⎪⎩④⑤⑤×2,得6x+z=46 ⑥⑥-④,得4x=28,x=7.把x=7代入③,得y=13.把x=7,y=13代入①,得z=4.∴方程组的解是7134xyz=⎧⎪=⎨⎪=⎩.答:面值为2元、l元和5角的人民币分别为7张、13张和4张.。

如何解三元一次方程组

如何解三元一次方程组

如何解三元一次方程组三元一次方程组是指包含三个未知数和三个方程的方程组。

解三元一次方程组的基本方法有两种:代入法和消元法。

以下将详细介绍两种方法。

一、代入法:代入法是指从方程组中选择一个方程,将该方程中的一个未知数用其他未知数的表达式表示,再将该表达式代入其他方程中,从而减少未知数的个数,直至得出所有未知数的值。

具体步骤如下:1.从方程组中选择一个方程,将其中一个未知数用其他未知数的表达式表示。

2.将该表达式代入其他方程中,得到一个新的方程。

3.解这个新的方程,求出一个未知数的值。

4.将此值代入原有的方程中,求解其他未知数的值。

5.最后检查解是否符合所有方程,如果符合,则为方程组的解;如果不符合,则无解。

二、消元法:消元法是指通过对方程组中的方程进行运算,使其中的一些未知数的系数为零,从而将方程组转化为含有更少未知数的方程组,最终降低问题的复杂度。

具体步骤如下:1.对方程组中的方程逐一进行消元运算,使得每个方程中最后一个未知数的系数为12.用第一个方程消去其他方程中与第一个方程中最后一个未知数系数相同的项。

3.对第二个方程进行类似操作,依此类推,直至最后一个方程。

4.得到转化后的简化方程组。

5.通过逆向代入的方法解出未知数的值。

6.最后检查解是否符合所有方程,如果符合,则为方程组的解;如果不符合,则无解。

实际解题过程中,我们可以根据具体情况选择采用代入法或消元法,或结合使用两种方法进行求解。

需要注意的是,三元一次方程组可能存在无解或无穷多解的情况,因此在解题过程中需要特别注意检查解是否满足所有方程。

如果方程组无解,则说明方程组中方程之间存在矛盾;如果方程组有无穷多解,则说明方程组中的方程不足以确定唯一解。

以上就是解三元一次方程组的基本方法。

实际解题过程中需要灵活运用这些方法,结合具体问题及方程组的特点,选择合适的方法进行求解。

人教版七年级数学下册8.4 三元一次方程组的解法

人教版七年级数学下册8.4 三元一次方程组的解法
营养标准中的要求.
(2)解该三元一次方程组,求出满足要求的A、B、C的份数.
解:(1)由该食谱中包含35单位的铁、70单位的钙和35单位 的维生素,得方程组
类似二元一次方程组的解,三元一次方程组中各个方程 的公共解,叫做这个三元一次方程组的解.
怎样解三元一次方程组呢?
x y z 23, ①
x
y
1,

2x y z 20.③
能不能像以前一样“消元”, 把“三元”化成“二元”呢?
探究新知
考点 1 三元一次方程组的解法
解三元一次方程组
3x 4z 7, ① 2x 3y z 9, ② 5x 9 y 7z 8.③
y=8,z=6. 把y=8代入④,得x=9.
x=9, 所以原方程组的解是 y=8,
z=6.
探究新知
考点 2 三元一次方程组求字母的值 在等式 y=ax2+bx+c中,当x=-1时,y=0;当x=2时,y=3;当
x=5时,y=60. 求a,b,c的值.
解:根据题意,得三元一次方程组 a-b+c= 0, ① 4a+2b+c=3, ② 25a+5b+c=60. ③
巩固练习
x 1
已知
y
2
z 3
是方程组
ax by 2 by cz 3 cx az 7
的解,则a+b+c的值是___3_________.
探究新知
考点 3 利用三元一次方程组解答实际问题 幼儿营养标准中要求每一个幼儿每天所需的营养量中应包含35 单位的铁、70单位的钙和35单位的维生素.现有一批营养师根
探究新知 知识点 1 三元一次方程组的概念
小明手头有12张面额分别是1元、2元、5元的纸币,共 计22元,其中1元纸币的数量是2元纸币数量的4倍.求1元、 2元、5元的纸币各多少张?

三元一次方程组解法举例

三元一次方程组解法举例
5. 将已得到的两个未知数的值代入原方程组中的任意一个方 程,求解出第三个未知数的值。
6. 写出方程组的解,并检验解的正确性。
代入法应用举例
例如,对于三元一次方程组
$\left\{ \begin{array}{l} x + y + z = 6 \ x - y + 2z = 3 \ 3x + 2y - z = 8 \end{array} \right.$可以使用代入法求解
解法选择策略与注意事项
选择策略
在面对三元一次方程组时,首先观察方程组 的系数特点,如果系数简单且易于代入,可 以选择代入法;如果存在明显可消元的变量 ,可以尝试消元法;对于复杂方程组,建议 采用矩阵法进行求解。
注意事项
在使用代入法和消元法时,要注意选择合适 的变量进行代入或消元,避免计算过于复杂 ;在使用矩阵法时,需要确保理解矩阵运算 的基本原理,正确构建系数矩阵和常数矩阵 ,以保证求解的准确性。
三元一次方程组解法 举例
汇报人: 日期:
目录
• 三元一次方程组概述 • 三元一次方程组解法——代入法 • 三元一次方程组解法——消元法 • 三元一次方程组解法——矩阵法 • 三种解法的比较与总结
01
三元一次方程组概述
三元一次方程组的定义
定义
三元一次方程组是指包含三个未知数的一次方程所组成的方程组。
杂的方程组,可以通过计算机进行高效求解。
• 缺点:需要一定的线性代数基础知识,对于初学者可能难以
03
理解。
适用范围的讨论
代入法
适用于变量系数较为简单 ,易于进行代入计算的情 况。
消元法
适用于方程组中存在较为 明显的可消元变量的情况 。
矩阵法

三元一次方程组题目50道

三元一次方程组题目50道

三元一次方程组题目50道一、购物相关1. 小明去商店买苹果、香蕉和橙子。

已知3个苹果、2根香蕉和1个橙子共15元;2个苹果、3根香蕉和2个橙子共20元;1个苹果、1根香蕉和3个橙子共18元。

问苹果、香蕉、橙子各多少钱一个?2. 小红买文具,3支铅笔、4本笔记本和2块橡皮共花了25元;2支铅笔、3本笔记本和3块橡皮共22元;4支铅笔、2本笔记本和1块橡皮共20元。

求一支铅笔、一本笔记本和一块橡皮的价格。

3. 超市里,5袋薯片、3盒巧克力和2瓶饮料共60元;3袋薯片、4盒巧克力和3瓶饮料共65元;2袋薯片、2盒巧克力和5瓶饮料共70元。

那么一袋薯片、一盒巧克力和一瓶饮料各多少元?二、动物数量与体重4. 农场里有鸡、鸭、鹅。

已知10只鸡、5只鸭和3只鹅总重100千克;8只鸡、6只鸭和4只鹅总重110千克;6只鸡、4只鸭和5只鹅总重105千克。

问一只鸡、一只鸭、一只鹅分别多重?5. 动物园里,3只猴子、2只长颈鹿和1只大象共重5吨;2只猴子、3只长颈鹿和2只大象共重7吨;1只猴子、1只长颈鹿和3只大象共重8吨。

求一只猴子、一只长颈鹿和一只大象的重量(以吨为单位)。

6. 有一群小动物,5只兔子、3只松鼠和2只狐狸的总体重为30千克;3只兔子、4只松鼠和3只狐狸的总体重为35千克;2只兔子、2只松鼠和5只狐狸的总体重为40千克。

求一只兔子、一只松鼠和一只狐狸的体重。

三、分数与成绩相关7. 某次考试,语文、数学、英语三门成绩有这样的关系:3个语文成绩分、2个数学成绩分和1个英语成绩分总和为280分;2个语文成绩分、3个数学成绩分和2个英语成绩分总和为320分;1个语文成绩分、1个数学成绩分和3个英语成绩分总和为300分。

求语文、数学、英语各多少分?8. 小辉的三次小测验成绩,第一次测验中,3个A科目分数、2个B科目分数和1个C科目分数共240分;第二次测验,2个A科目分数、3个B科目分数和2个C科目分数共260分;第三次测验,1个A科目分数、1个B科目分数和3个C科目分数共250分。

三元一次方程组的解法

三元一次方程组的解法

实例三:应用题中的方程组解决
总结词
在解决实际应用问题时,通常需要建立 相应的数学模型,并通过解方程组得到 问题的解。
VS
详细描述
以追及问题为例,可以通过建立两个方程 组来表示两个人行走的距离和时间的关系 ,然后通过解方程组得到两个人的相遇地 点和时间;再比如解决利润问题时,可以 通过建立方程组来表示商品的进价、售价 和利润之间的关系,进而求得商品的进货 量。
电磁学
在电磁学中,三元一次方程组被用来描述电流、电场和磁场之间的 关系。
在经济中的应用
供需关系
在经济学中,三元一次方程组可以用来描述商品的供应、需求和价格之间的关系。例如,在垄断市场分析中,三元一次方程组可以用来描述企业的利润、市场 的供应和需求以及商品价格之间的关系。
投资组合优化
在投资组合理论中,三元一次方程组可以用来确定最优的投资组合,即在给定风险水平下获得最大收益或在给定收益水平下风险最小。
重要性
三元一次方程组是数学中一个重要的概念,它在实际生活中 有着广泛的应用,如求解空间几何中的点坐标、解决物理问 题中等。掌握三元一次方程组的解法对于理解和应用数学知 识具有重要意义。
三元一次方程组的特点
三个未知数
三元一次方程组包含三个未知数,通常用x、y、z表示。
三个方程式
每个未知数都由一个方程式来描述,因此总共有三个方程式。每个方程式都是 一次方程,形式为Ax+By+Cz=D,其中A、B、C和D是常数。
02
解三元一次方程组的步骤
整理方程组
整理三元一次方程组,将其转化为标准形式,即每个方程都包含未知数的最高次 数为一次。
将三元一次方程组的系数矩阵用数学公式表示,并确定方程组的未知数个数。

三元一次方程组含答案

三元一次方程组含答案

三元一次方程组含答案三元一次方程组1.解方程组:�2xx +yy +3zz =113xx +2yy −2zz =114xx −3yy −2zz =4.2.解方程组:�aa +bb +cc =0aa −bb +cc =−44aa +2bb +cc =5.3.解方程组:�xx +yy +zz =26xx −yy =12xx −yy +zz =18.4.解方程组:�4xx +yy −3zz =135xx −yy +zz =7xx −2zz =4.5.解方程组:�xx +yy =3xx −3yy +zz =−2−3xx +yy +zz =−6.6.解方程组:�3xx +2yy +5zz =2xx −2yy −zz =64xx +2yy −7zz =30..7.解方程组:�xx −2yy +zz =02xx +yy −zz =13xx +2yy −zz =4..8.解方程组:�2xx +3yy =42xx −yy +2zz =−4xx +2yy −2zz =3.三元一次方程组含答案9.解方程组:�xx +yy +zz =23xx −yy =12xx +yy −zz =20.10.解方程组:�3xx −yy +zz =42xx +3yy −zz =12xx +yy +zz =6.11.解方程组:�xx +2yy +zz =13xx +yy +zz =−3xx −2zz =3.12.解方程组:�3xx +2yy +zz =13xx +yy +2zz =72xx +3yy −zz =12.13.解方程组:�xx +2yy =42xx +5yy −2zz =113xx −5yy +2zz =−1.14.解方程组:�3xx −yy +zz =42xx +3yy −zz =12xx +yy +zz =615.解方程组:�3xx +4yy +zz =14xx +5yy +2zz =172xx +2yy −zz =3.16.解方程组:�2xx −3yy +4zz =12xx −yy +3zz =44xx +yy −3zz =−2.17.解方程组:�xx −yy +zz =04xx +2yy +zz =325xx +5yy +zz =60.三元一次方程组含答案18.解方程组:�xx +yy +zz =102xx +3yy +zz =173xx +2yy −zz =8.19.解方程组:�−2xx +3yy =−63yy +2zz =04xx −3zz =5.20.解方程组:�aa −bb +cc =0aa +bb +cc =−49aa +3bb +cc =0.21.解方程组:�3xx +2yy −zz =11xx +yy +zz =62xx −yy +zz =2.22.解方程组:⎩⎨⎧xx +yy =−2xx +zz =32xx +13yy +2zz =123.解方程组:�4xx +3yy +2zz =76xx −4yy −zz =62xx −yy +zz =1.24.解方程组:�3aa −bb +cc =72aa +3bb =−2aa +bb +cc =−1.25.解方程组�xx −4yy +zz =−32xx +yy −zz =18xx −yy −zz =7.三元一次方程组含答案26.解方程组:�3xx −2yy =82yy +3zz =1xx +5yy −zz =−4.27.解方程组:�xx +yy −zz =02xx −3yy +2zz =5xx +2yy −zz =3.28.解方程组:�xx +yy +zz =26xx −yy =12xx +zz −yy =18.29.解方程组:�xx +yy +zz =62xx +yy −zz =1yy =xx +1.30.解方程组:�2xx +yy +3zz =113xx +2yy −2zz =114xx −3yy −2zz =4.31.解方程组:�xx +yy +zz =42xx −yy +zz =3−xx +2yy −zz =−1.32.解方程组:�xx −yy +zz =04xx +2yy +zz =325xx +5yy +zz =60.33.解方程组:�aa −2bb +4cc =123aa +2bb +cc =14aa −cc =7.34.解方程组:�aa +bb +cc =63aa −bb +cc =42aa +3bb −cc =12.三元一次方程组含答案35.解方程组:�3xx +4zz =72xx +3yy +zz =95xx −9yy +7zz =8.36.解方程组:�2aa +bb =4aa +bb +cc =−22aa +3bb −cc =13.37.解方程组:�xx −4yy +zz =−3,2xx +yy −zz =18,xx −yy −zz =7.38.解方程组:�2xx −yy +2zz =−34xx +5yy −zz =1xx +yy +zz =0.39.解方程组:�xx +2yy −zz =13xx −3yy +zz =22xx +3yy +zz =7.40.解方程组:�2xx −3yy +5zz =53xx +yy −2zz =95xx −2yy +zz =12.三元一次方程组含答案三元一次方程组参考答案一.解答题(共40小题) 1.�xx =3yy =2zz =1;2.�aa =1bb =2cc =−3; 3.�xx =10yy =9zz =7; 4.�xx =2yy =2zz =−1; 5.�xx =2yy =1zz =−1;6.�xx =4yy =0zz =−2;7.�xx =1yy =2zz =3;8.�xx =−1yy =2zz =0; 9.�xx =9yy =8zz =6.; 10.�xx =2yy =3zz =1;11.�xx =−1yy =2zz =−2; 12.�xx =2yy =3zz =1; 13.�xx =2yy =1zz =−1; 14.�xx =2yy =3zz =1.; 15.�xx =1yy =2zz =3;16.⎩⎪⎨⎪⎧xx =25yy =−9625zz =−225;17.�xx =3yy =−2zz =−518.�xx =3yy =2zz =5;19.�xx =2yy =−23zz =1; 20.�aa =1bb =−2cc =−3;21.�xx =2yy =3zz =1; 22.�xx =1yy =−3zz =12; 23.�xx =32yy =1zz =−1; 24.�aa =2bb =−2cc =−1; 25.�xx =7yy =2zz =−2; 26.�xx =2yy =−1zz =1; 27.�xx =2yy =3zz =5; 28.�xx =10yy =9zz =7; 29.�xx =1yy =2zz =3.; 30.�xx =3yy =2zz =1;31.�xx =1yy =1zz =2; 32.�xx =3yy =−2zz =−5; 33.�aa =2bb =−3cc =1; 34.�aa =2bb =3cc =1; 35.�xx =5yy =13zz =−2;36.�aa =1bb =2cc =−5; 37.�xx =7yy =2zz =−2; 38.�xx =−1yy =1zz =0; 39.�xx =1yy =1zz =2; 40.�xx =3yy =2zz =1;。

8.4三元一次方程组(教案)

8.4三元一次方程组(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《三元一次方程组》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要同时解决三个未知数的问题?”(如三个朋友分摊费用等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三元一次方程组的奥秘。
1.讨论主题:学生将围绕“三元一次方程组在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
首先,关于导入新课环节,我通过提出一个与生活密切相关的问题来激发学生的兴趣,效果还不错。大家对这个问题的讨论比较积极,能够主动思考。但在今后的教学中,我还可以尝试更多有趣的导入方式,比如播放相关视频、展示实物等,让学生在轻松愉快的氛围中进入学习状态。
其次,在新课讲授环节,我发现有些学生对三元一次方程组的理解不够深入,尤其是消元法和代入法的运用。在今后的教学中,我需要更加关注这部分学生,通过设计更多典型例题,帮助他们掌握这两种方法的运用。此外,讲解过程中要尽量简洁明了,避免让学生产生混淆。
举例:在消元法中,选择合适的消元顺序可以简化计算过程,提高解题效率。
(2)在实际问题中,学生难以将问题转化为三元一次方程组,对实际问题进行分析和抽象。
举例:在应用题中,学生需要从众多信息中筛选出有用的数学信息,构建方程组。
(3)对于一些特殊的三元一次方程组,如存在一个或多个变量系数为0的情况,学生容易在求解过程中出错。

三元一次方程组解法总结与练习

三元一次方程组解法总结与练习

三元一次方程组解法总结与练习三元一次方程组一、三元一次方程组之特殊型类型一:有表达式,用代入法型. 例1:①⎧x +y +z =12⎪解方程组⎨x +2y +5z =22②⎪x =4y ③⎩分析:方程③是关于x 的表达式,因此确定“消x ”的目标。

类型二:缺某元,消某元型. 针对上例进而分析,方程组中的方程③里缺z, 因此利用①、②消z, 也能达到消元构成二元一次方程组的目的。

类型三:轮换方程组,求和作差型.分析:通过观察发现每个方程未知项的系数和相①⎧2x +y +z =15等;每一个未知数的系数之和也相等,即系数和相⎪例2:解方程组⎨x +2y +z =16②等。

具备这种特征的方程组,我们给它定义为“轮⎪x +y +2z =17③⎩换方程组”,可采取求和作差的方法较简洁地求出此类方程组的解。

⎧x +y =20, ⎪典型例题举例:解方程组⎨y +z =19,⎪x +z =21. ⎩⎧x :y :z =1:2:7⎩2x -y +3z =21①② ③分析:观察此方程组的特点是未知项间存在着比例关系,把比例式化成关系式求解类型四:遇比例式找关系式,遇比设元型. 例3:解方程组⎨①②⎧x +y +z =111①⎪典型例题举例:解方程组⎨y :x =3:2②⎪y :z =5:4③⎩二、三元一次方程组之一般型⎧3x -y +z =4, ⎪例4:解方程组⎨x +y +z =6,⎪2x +3y -z =12. ⎩①② ③分析:对于一般形式的三元一次方程组的求解,应该认清两点:一是确立消元目标——消哪个未知项;二是在消元的过程中三个方程式如何正确的使用,怎么才能做到“目标明确,消元不乱”,为此归纳出:(一)消元的选择1. 选择同一个未知项系数相同或互为相反数的那个未知数消元;2. 选择同一个未知项系数最小公倍数最小的那个未知数消元。

(二)方程式的选择采取用不同符号标明所用方程,体现出两次消元的过程选择。

⎧3x -y +=4⎪解方程组:⎨x +y +=6⎪2x +3y -=12⎩典型例题举例①∨②∆③∨∆⎧2x +4 y +3z =9, ⎪⎪解方程组⎨3x -2 y +5z =11,⎪y ⎪ +7z =13. ⎩5x -6①∨②∨③∆∆分析:通过比较发现未知项y 的系数的最小公倍数最小,因此确定消y 。

三元一次方程组解法

三元一次方程组解法

三元一次方程组解法
一、知识点
1.三元一次方程的概念:
三元一次方程就是含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1, 2a-3b+c=0等都是三元一次方程.
2.三元一次方程组的概念:
一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 例如,等都是三元一次方程组.
三元一次方程组的一般形式是:
3.三元一次方程组的解法
(1)解三元一次方程组的基本思想
解二元一次方程组的基本思想是消元,即把二元一次方程转化为一元一次方程求解,由此可以联想解三元一次方程组的基本思想也是消元,一般地,应利用代入法或加减法消去一个未知数,从而变三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.
(2)怎样解三元一次方程组?
二、经典例题
1.解方程组
2.解方程组
3.解方程组
4.解方程组
三、总结:解三元一次方程组的一般步骤:
1.利用代入法或加减法,把方程组中的某一个未知数消去,得到关于另外两个未知
数的二元一次方程组;
2.解这个二元一次方程组,求出这两个未知数的值;
3.将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个
一元一次方程;
4.解这个一元一次方程,求出最后一个未知数的值;
5.将求得的三个未知数的值用“{”合写在一起,即可.
练习:
1.解方程组
2.解方程组
3.已知方程组的解使代数式x-2y+3z的值等于-10,求a的值.。

三元一次方程组及其解法

三元一次方程组及其解法

解三元一次方程组转化为解 二元一次方程组 ,进而再转
化为解 一元一次方程 .
三元一次方程组
消元
二元一次方程组
消元
一元一次方程
针对练习
1.在等式 y=ax2+bx+c中,当x=-1时,y=0;当x=2时,y=3;当x=5时,
y=60. 求a,b,c的值.
-+ = 0,

解:根据题意,得三元一次方程组൞4+2+ = 3, ②
代入消元法和加减消元法
消元法
2.解二元一次方程组的基本思路是什么?
代入
二元一次方程组
消元
一元一次方程
加减
化二元为一元
化归转化思想
思考:若含有3个未知数的方程组如何求解?
知识精讲
知识点一 三元一次方程组的概念
小明手头有12张面额分别是1元、2元、5元的纸币,
共计22元,其中1元纸币的数量是2元纸币数量的4倍.求1
10
5
(1)如果设食谱中A、B、C三种食物各为x、y、z份,请列
出方程组,使得A、B、C三种食物中所含的营养量刚好满足幼
儿营养标准中的要求.
(2)解该三元一次方程组,求出满足要求的A、B、C的份数
.
解:(1)由该食谱中包含35单位的铁、70单位的钙和35单位的维
生素,得方程组
5 x 5 y 10 z 35,
第八章 二元一次方程组
8.4 三元一次方程组及其解法
七年级数学·人教版
学习目标:
1.了解三元一次方程组的概念.
2.能解简单的三元一次方程组,在解的过程中进一步体会“消
元”思想.
3.会解较复杂的次方程组的概念.
2.能解简单的三元一次方程组.

三元一次方程组的解法

三元一次方程组的解法

三元一次方程组的解法三元一次方程组的解法(三元一次方程组的解法公式)--藕池网一般三元一次方程有三个未知数,三个方程:x,y,z,首先简化题目,消去一个未知数。

首先,平衡第一个和第二个方程并减去它们,然后消除第一个未知数。

然后,将其简化,成为一个新的二元线性方程。

然后,在平衡第二个和第三个方程后,我们想对它们进行约简,然后消去一个未知数,得到一个新的二元线性方程。

然后我们用消元法平衡两个二元线性方程组的约化,然后就可以求解其中一个未知数了。

然后将答案代入其中一个二元线性方程组得到另一个未知量,再将求解的两个未知量代入其中一个三元线性方程组得到最后一个未知量。

例如:①5x-4y+4z = 13②2x+7y-3z = 19③3x+2y-z =18②*①-5 *②:(10x-8y+8z)-(10x+35y-15z)= 26-95④43y-2333y。

④-43 *⑤:(731y-391 z)-(731y-301 z)= 1173-903 z =-3 .这是⑤的第一个替代:17y-7(-3)=21 y=0。

这是把z =-3,y=0代入①的第二种解法。

三元一次方程怎么解?所谓三元,就是有三个未知数,比如a,b,c,或者x,y,z等等。

三元一次方程只能用三个方程组成的方程组求解。

第一步用换元法消除一个未知数,第二步用换元法消除另一个未知数,即求一个未知数的值,然后解二元线性方程组,同样的方法求第二个和第三个未知数的值。

这是解决方案的结尾。

知道如何解三元线性方程组。

通过学习解三元线性方程组,提高逻辑思维能力。

培养抽象概括的数学能力。

重点难点:三元线性方程组的求解。

解决问题的技巧。

重点难点分析:1。

三元线性方程组的概念。

三元一次方程是三个未知数的积分方程,每个未知数的次数为1。

比如x+y-z=1,2a-3b+c=0等。

都是三元线性方程组。

2.三元线性方程组的概念。

一般情况下,由几个三元一次方程组成的方程组称为三元一次方程组。

三元一次方程组的解法教学设计

三元一次方程组的解法教学设计

8.4 三元一次方程组的解法1.理解三元一次方程(组)的概念;2.能解简单的三元一次方程组.一、情境导入《九章算术》分为9章,并因此而得名.其中第8章为“方程”,里面有这样一道题目(用现代汉语表述):3束上等的稻,2束中等的稻,1束下等的稻,共出谷39斗;2束上等的稻,3束中等的稻,1束下等的稻,共出谷34斗;1束上等的稻,2束中等的稻,3束下等的稻,共出谷26斗.问:上、中、下三种稻,每束的出谷量各是多少斗?二、合作探究探究点一:三元一次方程组的概念下列方程组中,是三元一次方程组的是( )A.⎩⎪⎨⎪⎧x 2-y =1,y +z =0,xz =2B.⎩⎪⎨⎪⎧1x+1=1,1y +z =2,1z +x =6 C.⎩⎪⎨⎪⎧a +b +c +d =1,a -c =2,b -d =3 D.⎩⎪⎨⎪⎧m +n =18,n +t =12,t +m =0解析:A 选项中,方程x 2-y =1与xz =2中含未知数的项的次数为2,不符合三元一次方程组的定义,故A 选项不是;B 选项中1x ,1y ,1z不是整式,故B 选项不是;C 选项中方程组含有四个未知数,故C 选项不是;D 选项符合三元一次方程组的定义.故答案为D.方法总结:满足三元一次方程组的条件:(1)方程组中一共含有三个未知数;(2)每个方程中含未知数的次数都是1;(3)方程组中共有三个整式方程.变式训练:见《学练优》本课时练习“课堂达标训练”第1题探究点二:三元一次方程组的解法解下列三元一次方程组:(1)⎩⎪⎨⎪⎧z =y +x ,①2x -3y +2z =5,②x +2y +z =13;③(2)⎩⎪⎨⎪⎧2x +3y +z =11,①x +y +z =0,②3x -y -z =-2.③解析:(1)观察各个方程的特点,可以考虑用代入法求解,将①分别代入②和③中,消去z 可得到关于x 、y 的二元一次方程组;(2)观察各个方程的特点,可以考虑用加减法求解,用①减去②可消去z ,用①加上③也可消去z ,进而得到关于x 、y 的二元一次方程组.解:(1)将①代入②、③,消去z ,得⎩⎪⎨⎪⎧4x -y =5,2x +3y =13.解得⎩⎪⎨⎪⎧x =2,y =3.把x =2,y =3代入①,得z =5.所以原方程组的解为⎩⎪⎨⎪⎧x =2,y =3,z =5;(2)①-②,得x +2y =11.④①+③,得5x +2y =9.⑤④与⑤组成方程组⎩⎪⎨⎪⎧x +2y =11,5x +2y =9. 解得⎩⎨⎧x =-12,y =234.把x =-12,y =234代入②,得z =-214.所以原方程组的解是⎩⎪⎨⎪⎧x =-12,y =234,z =-214.方法总结:解三元一次方程组的难点在于根据方程组中方程的系数特点选择较简便的方法.(1)一般地,若某一方程的系数比较简单,可选用代入法;(2)若方程组三个方程中某个未知数的系数的绝对值相等或成倍数时,可选用加减消元法,但要注意必须消去同一个未知数,否则所得的两个新方程虽然都含两个未知数,但由它们组成的方程组仍含三个未知数,并未达到消元的目的.变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点三:三元一次方程组的应用【类型一】 三元一次方程组在非负数中的应用若|a -b -1|+(b -2a +c )2+|2c -b |=0,求a ,b ,c 的值.解析:本题考查非负数性质的综合应用,要使等式成立必须使每个非负数都为0.解:因为三个非负数的和等于0,所以每个非负数都为0.可得方程组⎩⎪⎨⎪⎧a -b -1=0,b -2a +c =0,2c -b =0.解得⎩⎪⎨⎪⎧a =-3,b =-4,c =-2.方法总结:非负数之和为0,隐含着每个非负数都为0,从而可列方程组求解.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型二】 利用三元一次方程组求数字问题一个三位数,十位上的数字是个位上的数字的34,百位上的数字与十位上的数字之和比个位上的数字大1.将百位与个位上的数字对调后得到的新三位数比原三位数大495,求原三位数.解析:设原三位数百位、十位、个位上的数字分别为x ,y ,z ,则原三位数可表示为100x +10y +z .解:设原三位数百位、十位、个位上的数字分别为x 、y 、z .由题意,得⎩⎪⎨⎪⎧y =34z ,x +y =z +1,100z +10y +x =100x +10y +z +495,解得⎩⎪⎨⎪⎧x =3,y =6,z =8.答:原三位数是368.方法总结:解数字问题的关键是正确地用代数式表示数.如果一个两位数的十位上的数字为a ,个位上的数字为b ,那么这个两位数可表示为10a +b .如果一个三位数的百位上的数字为a ,十位上的数字为b ,个位上的数字为c ,那么这个三位数可表示为100a +10b +c ,依此类推.变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型三】 列三元一次方程组解决实际问题某汽车在相距70km 的甲、乙两地往返行驶,因途中有一坡度均匀的小山.该汽车从甲地到乙地需要2.5h ,而从乙地到甲地需要2.3h.假设汽车在平路、上坡路、下坡路的时速分别是30km 、20km 、40km ,则从甲地到乙地的过程中,上坡路、平路、下坡路的长度各是多少?解析:题中有三个等量关系:①上坡路长度+平路长度+下坡路长度=70km ;②从甲地到乙地的过程中,上坡时间+平路时间+下坡时间=2.5h ;③从乙地到甲地的过程中,上坡时间+平路时间+下坡时间=2.3h.解:设从甲地到乙地的过程中,上坡路、平路、下坡路的长度分别是x km ,y km 和z km. 由题意,得⎩⎪⎨⎪⎧x +y +z =70,x 20+y 30+z 40=2.5,z 20+y 30+x 40=2.3.解得⎩⎪⎨⎪⎧x =12,y =54,z =4. 答:从甲地到乙地的过程中,上坡路是12km ,平路是54km ,下坡路是4km.方法总结:解此题的关键是理解汽车在往返行驶的过程中,如果从甲地到乙地是上坡路段,那么从乙地到甲地时就变成了下坡路段.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计三元一次方程组⎩⎪⎨⎪⎧三元一次方程组的概念三元一次方程组的解法三元一次方程组的应用通过对二元一次方程组的类比学习,让学生感受把新知转化为已知,把不会的问题转化为学过的问题,把难度大的问题转化为难度较小的问题这一化归思想.感受数学知识之间的密切联系,增强学生的数学应用意识,初步培养学生建立数学模型解决问题的良好思维习惯。

解三元一次方程组的常见方法与技巧

解三元一次方程组的常见方法与技巧

解三元一次方程组的常见方法与技巧在数学中,三元一次方程组是由三个未知数及其对应的线性方程组成的。

解决这类方程组是基础中的基础,因为它们涉及到许多实际问题的解决。

本文将介绍一些解三元一次方程组的常见方法和技巧,帮助读者在解题过程中更加便捷和准确。

一、代入法代入法是解三元一次方程组的最基本且常用的方法之一。

它的基本思想是将方程组中的一个未知数(通常选取其中一个不含有系数的方程)表示成其他未知数的函数,然后代入到其他方程中,最终得到一个二元方程组,从而求解出未知数的值。

例如,考虑以下方程组:```2x - 3y + z = 7 (1)3x + y - 2z = -5 (2)x + 2y - 3z = 1 (3)```我们可以从第一个方程中将 z 表示出来:```z = 7 - 2x + 3y```然后代入到第二个和第三个方程中,得到一个二元方程组:```3x + y - 2(7 - 2x + 3y) = -5 (4)x + 2y - 3(7 - 2x + 3y) = 1 (5)```通过解这个二元方程组,我们可以得到 x 和 y 的值。

最后再将求得的 x、y 值代入到第一个方程中,求得 z 的值,从而得到方程组的解。

二、消元法消元法是解三元一次方程组的另一种常见方法。

它的基本思想是通过适当的加减运算将方程组转化成一个简化的形式,从而降低问题的复杂度。

消元法有多种具体的实现方式,如高斯消元法和克拉默法则等。

这里我们以高斯消元法为例进行说明。

考虑以下方程组:```2x + 3y - z = 7 (6)4x - 2y + 3z = -9 (7)x + 2y + 3z = 18 (8)```我们通过将第一个方程的两倍加到第二个方程中,以及第一个方程的十倍减去第三个方程,可以将方程组化为如下形式:```2x + 3y - z = 7 (6)-8y + 5z = -25 (9)-19y + 13z = -53 (10)```然后,我们可以通过类似的运算,进一步消去 y 变量。

三元一次方程组解法大全

三元一次方程组解法大全

.三元一次方程组的概念: 含有三个未知数,每个方程的未知项的次数都是1,并且共有三个方程,这样的方程组叫做三元一次方程组. 例如: 都叫做三元一次方程组. 注意:每个方程不一定都含有三个未知数,但方程组整体上要含有三个未知数. 熟练掌握简单的三元一次方程组的解法会叙述简单的三元一次方程组的解法思路及步骤. 思路:解三元一次方程组的基本思想仍是消元,其基本方法是代入法和加减法.步骤:①利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;②解这个二元一次方程组,求得两个未知数的值; ③将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起的就是所求的三元一次方程组的解. 灵活运用加减消元法,代入消元法解简单的三元一次方程组. (如果真的不会做,那就一定要学会消元法。

)例如:解下列三元一次方程组分析:此方程组可用代入法先消去y,把①代入②,得,5x+3(2x-7)+2z=2 5x+6x-21+2z=2 解二元一次方程组,得: 把x=2代入①得,y=-3 ∴例2. 分析:解三元一次方程组同解二元一次方程组类似,消元时,选择系数较简单的未知数较好.上述三元一次方程组中从三个方程的未知数的系数特点来考虑,先消z比较简单. 解:①+②得,5x+y=26④①+③得,3x+5y=42⑤④与⑤组成方程组: 解这个方程组,得把代入便于计算的方程③,得z=8 ∴注意:为把三元一次方程组转化为二元一次方程组,原方程组中的每个方程至少要用一次. 能够选择简便,特殊的解法解特殊的三元一次方程组. 例如:解下列三元一次方程组分析:此方程组中x,y,z出现的次数相同,系数也相同.根据这个特点,将三个方程的两边分别相加解决较简便. 解:①+②+③得:2(x+y+z)=30 x+y+z=15④再④-①得:z=5 ④-②得:y=9 ④-③得:x=1 ∴分析:根据方程组特点,方程①和②给出了比例关系,可先设x=3k,y=2k,由②得:z=y,∴z=×2k=k,再把x=3k,y=2k,z=k代入③,可求出k值,进而求出x,y,z 的值. 解:由①设x=3k,y=2k 由②设z=y=×2k=k 把x=3k,y=2k,z=k分别代入③,得3k+2k+k=66,得k=10 ∴x=3k=30 y=2k=20 z=k=16。

行列式解三元一次方程组

行列式解三元一次方程组

行列式解三元一次方程组1. 引言哎,大家好!今天咱们聊聊一个看似高大上的数学话题——行列式解三元一次方程组。

别急,这个名字听起来挺复杂,其实我们可以用简单的语言把它搞明白。

就像是烹饪一样,虽然有很多调料,但只要我们掌握了基本步骤,做出美味的菜肴就不成问题。

好了,咱们现在就开始吧!1.1 三元一次方程组是什么?首先,让我们来捋一捋,什么是三元一次方程组。

简单来说,它就是由三个未知数的方程组成,比如说,x、y和z。

就像一个家庭的成员,三个人必须协调配合,才能找到一个合适的解决方案。

这三个方程就像是他们的对话,每个人都在说自己的想法,最终得出一个大家都能接受的结果。

1.2 行列式的魅力接下来,我们得聊聊行列式。

这玩意儿可神奇了,它能帮助我们解决这些方程。

想象一下,你在一家餐馆,菜单上有各种各样的菜品,你得从中选出几道来搭配一顿丰盛的晚餐。

行列式就是帮你决定哪些菜肴搭配最好的那个厨师,让你在众多选择中找到最佳答案。

2. 行列式的计算说到行列式的计算,很多小伙伴可能就开始皱眉头了,觉得这又是个“高深莫测”的概念。

其实,行列式的计算就像是解决谜题,咱们只需一步一步来。

首先,你得准备一个矩阵,把方程的系数整理成一个方阵。

记得,矩阵就像是你的家,所有的家具(也就是系数)都得整整齐齐地摆放好。

2.1 计算二阶行列式如果你的方程组只有两个变量,比如x和y,那就很简单。

你只需要用一个2x2的矩阵,把这两个方程的系数放进去,然后按照行列式的规则计算。

公式是这样的:|A| = ad bc。

这就像在拼图,拼好后就能看到全貌,真是简单明了。

2.2 计算三阶行列式可要是三元一次方程组,那就稍微复杂一点了。

你得用3x3的矩阵,别急,过程其实和二阶行列式类似。

记得要用到“对角线法”,先算主对角线的乘积,再减去反对角线的乘积,最后再整理一下,就能得到行列式的值。

这就像是调味料,比例得掌握好,才能做出一碗好汤。

3. 解方程组行列式算完后,接下来就要用它来解方程组了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.4简单的三元一次方程组
1. 类比二元一次方程、二元一次方程组的定义, 你能总结出三元一次方程、三元一次方程组和 三元一次方程组的解的定义吗?
2. 通过预习课本第20、21页:说说这两个三元一 次方程组的求解过程;从中你能总结出如何求解一 个三元一次方程组吗?
1:三元一次方程、三元一次方程组的定义 2:课本第20页:观察与思考;第21页例题思路
2月25日 数学作业 1.课本23页B组第1题、第2题写在作 业本上。
2.项目书6.4完成。
要求: 展示者:声音洪亮展示①此题错误原因②解决 方法 ③正确答案及注意点。
其他同学:认真倾听,对讲解内容及提出的问 题进行组的基本思想:
先消去同一个未知数,把三元转 化为二元,
再进一步消元,使二元转化为一 元
最后得解
解三元一次方程组
1.动手做一做: 课本第22页练习(1)(2)
2.项目书第21页项目设置:
项目书第21页探究二:
已知代数式 ax2 bx c ,当x=-1时,其
值为4;当x=1时,其值为8;当x=2时,其值为 25;则当x=3时,其值为_______.
求二次函数y = ax2 bx c
的解析式,就是确定a、b、c 的过程,就是解方程组
谈谈本节课你收获了什么? 还有别的疑问吗?
相关文档
最新文档