七年级初一数学下册5.1.1相交线导学案新版新人教版2

合集下载

人教版七年级数学下册5.1.1《相交线》教案

人教版七年级数学下册5.1.1《相交线》教案
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相交线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相交线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
其次,注重培养学生的空间想象力。在解决实际问题时,我发现部分学生难以将题目中的信息与几何图形联系起来。为了改善这一点,我计划在今后的教学中,多设计一些空间想象力训练的环节,如让学生自己动手画图、制作模型等。
再次,加强小组合作学习的引导。在小组讨论和实验操作过程中,我发现有些学生参与度不高,依赖性强。针对这个问题,我将在今后的教学中加强对小组合作学习的引导,鼓励每个学生积极参与,培养他们的团队协作能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相交线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相交线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
1.理论介绍:首先,我们要了解相交线的基本概念。相交线是两条在平面内不平行且在某一点相遇的直线。它在几何学中有着重要的作用,可以帮助我们分析图形的性质和解决实际问题。

人教版数学七年级下册5-1-1 相交线 教案

人教版数学七年级下册5-1-1  相交线 教案

5.1.1相交线教学设计课题 5.1.1 相交线单元第五单元学科初中数学年级七下学习目标1.了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.2.理解对顶角性质的推导过程,能使用该性质进行简单的计算.3.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力.4.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.重点了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.难点理解对顶角性质的推导过程,能使用该性质进行简单的计算.教学过程教学环节教师活动学生活动设计意图导入新课【观察思考】握紧剪刀的把手时,随着把手之间的角逐渐变小,剪刀刃之间的角是怎么变化的?分析:随着把手之间的角逐渐变小,剪刀刃之间的角也逐渐变小.【观察思考】如果把剪刀的构造抽象成一个几何图形,会是什么样的图形?请你在纸上画出来.分析:剪刀的构造可看作两条相交的直线,剪刀刃之间的角就是相交直线所成的角.【复习回顾】相交线的概念:如果两条直线只有一个公共点,那么我们就说这两条直线相交,它们的公共点叫做交点.观察并思考.挖掘和利用现实生活背景,让学生将理论知识与现实生活相联系.分析:如上图,AB、CD为两条直线,点O是直线AB与直线CD的交点,我们就可以说直线AB与直线CD相交.【教学建议】引导学生观察剪刀把手夹角与刀刃夹角之间的大小关系,为后续学习邻补角、对顶角做铺垫.讲授新课【合作探究】任意画两条相交的直线,形成几个角?这些角有什么位置关系?分析:任意两条相交的直线,形成4个角;这4个角有公共顶点.【观察思考】在两条相交的直线所形成的4个角中,∠1与∠2有怎样的位置关系?分析:∠1与∠2:①有一条公共边OC;②另一边互为反向延长线;③具有这种关系的两个角,互为邻补角.问题:你还能找出其它的邻补角吗?分析:∠2与∠3;∠3与∠4;∠4与∠1问题:∠1与∠2的度数有什么关系?分析:∠1+∠2=180o【观察思考】在两条相交的直线所形成的4个角中,∠1与∠3思考并回答小组交流合作,观察思考积极回答问题.让学生了解平面内两直线相交所成的4个角之间有怎样的特征.让学生经历合作探究的过程,通过观察、发现、归纳、概括得出邻补角和对顶角的概念;培养学生发现问题,解决问题和抽象概括能力.有怎样的位置关系?分析:∠1与∠3:①有一个公共顶点O;②∠1的两边分别是∠3的两边的反向延长线;③具有这种关系的两个角,互为对顶角.问题:你还能找出其它的对顶角吗?分析:∠2与∠4【合作探究】∠1与∠3的度数有什么关系?分析:∠1+∠2=180o∠2+∠3=180o∠1+∠2=∠2+∠3∠1=∠3总结:对顶角的性质:对顶角相等.【教学建议】引导学生小组合作,自主实践,教师巡回指导,随时观察学生完成情况并进行相应指导.熟悉并掌握对顶角相等.通过分析已知求证,利用平角的定义和等式的性质进行推导,培养学生逻辑推理力.【典型例题】如图,直线a、b相交,若∠1 = 40°,求∠2、∠3、∠4的度数.解:由邻补角的定义,∠1 = 40°可得∠2 = 180°-∠1= 180°-40°= 140°由对顶角相等,可得∠3 = ∠1 = 40°∠4 = ∠2 = 140°【教学建议】教师适当引导,学生自主完成.思考并积极回答.通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.【随堂练习】1.如图,直线AB、CD、EF 两两相交,图中共有___对对顶角,___对邻补角.答案:6;12.2.下列各组角中,∠1与∠2是对顶角的为( )答案:D3. 如图,直线AB、CD相交于点O,OE是射线. 则:∠BOC的对顶角是________________,∠AOC的对顶角是________________,∠AOC的邻补角是________________,∠BOE的邻补角是________________.答案:∠AOD;∠BOD;∠BOC、∠AOD;∠AOE.4. 如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,求∠BOD,∠BOC的度数.解:因为OA平分∠EOC,∠EOC = 70°所以∠AOC = 35°由对顶角相等,得∠BOD =∠AOC = 35°自主完成练习进一步巩固本节课的内容. 了解学习效果,让学生经历运用知识解决问题的过程,给学生获得成功体验的空间.通过课堂练习巩固新知,加深对顶角、余角、补角的概念和性质的理解,并学会运用它们解决一些问题.由邻补角的定义,得∠BOC = 180°-∠AOC= 180°-35°= 145°【教学建议】教师给出练习,随时观察学生完成情况并相应指导,根据学生完成情况适当分析讲解.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书1.邻补角:有一条公共边,另一边互为反向延长线的两个角,互为邻补角.邻补角互补.2.对顶角:(1)概念:有公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,这样的两个角,互为对顶角.(2)对顶角相等.。

新人教版七年级下册数学第五章5.1.1 相交线教案

新人教版七年级下册数学第五章5.1.1 相交线教案

第五章相交线与平行线5.1 相交线教学目标1.理解对顶角和邻补角的概念,能在图形中辨认.2.理解对顶角相等,并能运用它解决一些问题.3. 通过在图形中辨认对顶角和邻补角,培养学生的识图能力.教学重点邻补角、对顶角的概念,对顶角性质与应用. 教学难点理解对顶角相等的性质.教学过程(师生活动)激趣导入先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.预习定标1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

新人教版七年级下5.1.1相交线学案

新人教版七年级下5.1.1相交线学案

新人教版七年级下5.1.1相交线学案一、课前自主学习: (一)选择题1、下面四个图形中,∠1与∠2是对顶角的图形是( )2.下列图形中,∠1与∠2是邻补角的是( )3.如图(1),直线a 、b 相交于点O ,若∠1等于40°,则∠2=(A.50°B.60°C.140°D.160° 4.下列选项中是邻补角的是( )A.和为180°的两个角B.有公共顶点且互补的两个角C.有一条公共边且相等的两个角D.有公共顶点且有一条公共边,另一边互为反向延长线的两个角.5.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个 (二)填空题6.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.7.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.8.已知∠A=50°,则∠A 的补角是 .9.如图(2)所示,∠1=∠2=70,那么∠COE=70°, 那么∠COB 等于 度.ABCD21212121ABCDa D10.某校初一年级在下午3:00开展―阳光体育活动‖.下午3:00这一时刻,时钟分针与时针所夹的角等于 . (三)解答题 11.如图(3),直线AB ,CD ,EF 相交于点O . (1)写出∠AOC ,∠BOE 的邻补角; (2)写出∠DOA ,∠EOC 的对顶角;(3)如果∠AOC =50°,求∠BOD ,∠COB 的度数.课前自主学习题答案:1.A ;2.D ;3.C ;4.D ;5.B ;6.对顶角;7.邻补角、对顶角;8.130°;9.145°;10.90°; 11. (1)∠AOC 的邻补角是∠AOD ,∠BOC ;∠BOE 的邻补角是∠AOE ,∠BOF.(2)∠DOA 的对顶角是∠BOC ;∠EOC 的对顶角是∠DOF. (3)∠BOD=50°,∠COB=130°.二、课堂互动探究 (1)知识要点梳理: 知识点一:邻补角:两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.知识点二:对顶角:两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为对顶角.知识点三:对顶角、邻补角的性质对顶角的性质:对顶角相等.邻补角的性质:邻补角互补注意点:(1)对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;(2)如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角(3)如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;B A反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

相交线导学案[人教版初一七年级]

相交线导学案[人教版初一七年级]

导学稿: 5.1.1 相交线一、探究活动:1、画一画:(1)在下面的空白处,请你画出直线AB 与直线CD 相交于点O 的图形。

(2)在你所画的图形中,共有几个小于平角的角,请你在图中分别表示出来。

2、分一分:用自己的话分别说说这4个角的位置关系,并分一分类: ①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。

②对顶角:有公共的顶点,而且一个角的两边分别是另一个角两边的反向延长线。

3、论一论:从图中观察,你觉得所分的两类角有什么样的数量关系?①互为邻补角的两个角度数和为 ; ②对顶角 。

4、证一证:已知直线AB 、CD 相交,如图1所示,求证31∠=∠ 证明:5、辨一辨:(1)、如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个(2)、如图2,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角 是___ _ _,∠AOC 的邻补角是___ _ ___; 若∠AOC=50°,则∠BOD=___ __,∠COB=___ _ ___. 二、例题评讲:例1、如图3,直线b a 与相交, 401=∠,求4,3,2∠∠∠的度数.练一练:如图4所示,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.三、大展身手:1、如图5,∠AOC 的对顶角是 , 邻补角是 。

2、如图5,直线AB 、CD 相交于O ,∠AOC=80°,∠1=30°,求∠2的度数。

解:因为∠DOB=∠ ,(对顶角相等 ) =80°(已知) 所以∠DOB= °(等量代换) 又因为∠1=30°(已知)所以∠2 = ∠ - ∠= - =12121221图1OF EDCBA 12图4图3OFE D CB A 图2DCBAO2 1 图5。

人教版七年级数学下册教案 5-1-1 相交线

人教版七年级数学下册教案 5-1-1 相交线

5.1.1相交线一、教学目标【知识与技能】1.借助两直线相交所形成的角初步理解邻补角、对顶角的概念.2.会根据邻补角、对顶角的性质去求一个角的度数.3.掌握邻补角与对顶角的性质,并能运用它们解决简单实际问题.【过程与方法】1.通过动手操作、推断、交流等活动,进一步发展空间观念,培养识图能力、推理能力和表达能力.2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题.【情感态度与价值观】引导学生对图形进行观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,树立学习的信心.二、课型新授课三、课时1课时四、教学重难点【教学重点】对顶角的性质【教学难点】理解对顶角相等的性质的探索.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2-5)同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行钢索,桥的侧面有许多相交钢索组成的图案;围棋棋盘的纵线相互平行,横线相互平行,纵线和横线相交.这些都给我们以相交线、平行线的形象.在我们生活中,蕴涵着大量的相交线和平行线.那么两条直线相交形成哪些角?这些角又有什么特征?(二)探索新知1.出示课件7-12,探究邻补角与对顶角的定义教师问:如图,把两根木条用钉子钉在一起,转动其中一根木条,观察两根木条所形成的角的位置及大小关系.你能动手画出两条相交直线吗?学生答:能,作图如下:教师问:两条直线相交,形成的小于平角的角有几个,是哪几个?学生答:两条直线相交,形成的小于平角的角有四个 .分别是∠1,∠2,∠3,∠4.教师问:将这些角两两相配能得到几对角?教师依次展示学生答案:学生1答:∠1 和∠2.学生2答:∠2 和∠3.学生3答:∠3 和∠4.学生4答:∠4 和∠1.教师问:为何如此分类呢?学生答:有一条边在一条直线上,角的顶点相同.教师问:还有其他分类吗?学生答:分类如下:∠1 和∠3,∠2 和∠4.教师问:这样分的标准是什么?学生答:两边分别在一条直线上,有共同的顶点.总结点拨:(出示课件9)教师问:观察∠1和∠2的顶点和两边,有怎样的位置关系?师生一起解答:如图,∠1与∠2有一条公共边OC,它们的另一边互为反向延长线(∠1与∠2 互补),具有这种位置关系的两个角,互为邻补角.教师问:类比∠1和∠2,看∠1和∠3有怎样的位置关系?学生答:这两个角的两边都在同一条直线上,有相同的顶点.教师总结:如图,∠1与∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.总结点拨:(出示课件12)考点1:对顶角的判断下列各图中,∠1与∠2是对顶角的是()(出示课件13)师生共同讨论解答如下:解析:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.答案:D.出示课件14,学生自主练习后口答,教师订正.答案:D.2.出示课件15-17,探究对顶角、邻补角的性质教师问:在上学期我们已经知道互为补角的两个角的和为180°,因而互为邻补角的两个角的和为180°.如图所示,∠1 与∠3在数量上又有什么关系呢?学生答:猜想:∠1 =∠3.教师问:你能利用学过的有关知识来验证∠1与∠3的数量关系吗?学生答:∵∠1+∠2=180°,∠3+∠2=180°,∴∠1=∠3.教师问:∠1与∠3互为什么角?学生答:互为对顶角.教师问:由此你能猜想对顶角有什么性质?学生答:猜想:对顶角相等.教师问:你能证明你的猜想吗?学生先独立思考,师生共同讨论后解答如下:师生一起解答:已知:直线AB与CD相交于O点(如图),求证:∠1=∠3,∠2=∠4.证明:∵直线AB与CD相交于O点,∴∠1+∠2=180°∠2+∠3=180°,∴∠1=∠3.同理可得∠2=∠4.教师问:您能利用几何语言描述一下对顶角的性质吗?学生答:符号语言:∵直线AB与CD相交于O点,∴∠1=∠3,∠2=∠4.教师总结点拨:(出示课件18)两直线相交分类位置关系名称数量关系∠1 和∠2,∠2 和∠3,∠3 和∠4,∠4 和∠11.有公共顶点2.有一条公共边3.另一边互为反向延长线邻补角邻补角互补∠1 和∠3,∠2 和∠4.1.有公共顶点2.没有公共边对顶角对顶角相等3.两边互为反向延长线考点1:利用对顶角、邻补角的性质求角的度数如图,直线a、b相交,∠1=40°,求∠2、∠3、∠4的度数.(出示课件19)学生独立思考后,师生共同解答.学生1解:由邻补角的定义可知∠2=180°-∠1=180°-40°=140°;学生2解:由对顶角相等可得∠3=∠1=40°,∠4=∠2=140°.教师总结。

5.1.1相交线导学案人教版数学七年级下册

5.1.1相交线导学案人教版数学七年级下册

5.1.1 相交线导学案班级姓名编写:课型:新授课 NO:1 使用时间:一、目标导学(2分钟)1.经历实际操作,通过观察讨论等活动,能在具体的情境中认识对顶角、邻补角.表述对顶角、邻补角的概念、性质,并能利用它进行简单的推理和计算;2.通过对顶角性质的推理过程,提高推理和逻辑思维能力;3.通过变式图形的识图训练,提高识图能力【学习重点】邻补角、对顶角的概念,对顶角的性质与应用.【学习难点】理解对顶角相等的性质.二、读书探究(16分钟)认真阅读课本第1—2页练习以上部分,画出重点,然后完成以下部分。

探究一:探究邻补角的概念及有关性质(4分钟)如图,任意画两条相交的直线(直线AB与直线CD相交于点O),形成四个角,∠1和∠2有怎样的位置关系以及数量关系?1.什么是邻补角?图中一共有哪些邻补角?2.邻补角在数量上有什么关系?几何语言:【自学检测】(2分钟)1.下列图形中,∠1和∠2是邻补角的是()A.B.C.D.提示:判断两个角是不是邻补角,应满足两个条件:(1)有一条公共边;(2)另一边互为反向延长线。

即邻补角相邻且互补。

2.如图,直线AB,CD相交于点O,∠AOD=140°,则∠AOC的度数是()A.40°B.50°C.60°D.70°探究二:探究对顶角的概念以及性质(5分钟)如图,任意画两条相交的直线(直线AB与直线CD相交于点O),形成四个角,∠1和∠3有怎样的位置关系以及数量关系?1.什么是对顶角?图中一共有哪些对顶角?2.∠1 与∠3在数量上又有什么关系呢?证明过程:归纳:对顶角的性质:。

几何语言:【自学检测】(2分钟)3.在下面四个图形中,∠1与∠2是对顶角的是()A. B. C. D.提示:判断两个角是不是对顶角,应满足两个条件:(1)顶点相同(2)角的两边互为反向延长线4.如图,若∠1=35°,则∠2的度数是()A.35°B.40°C.45°D.145°【典型例题】(3分钟)如图,直线a、b相交,∠2=130°,求∠1、∠3、∠4的度数.三、点拨分享(12分钟)对读书探究部分进行提问、更正、点拨、归纳。

人教版七年级下册数学5.1.1相交线(1)导学案

人教版七年级下册数学5.1.1相交线(1)导学案
∠3=______,理由是__________________ ∠4=_______.,理由是_______________
2 1
D
A
C
12 43
D
图1
B
图2Leabharlann AC12 43
D
图3 B
教 后 反 思
庙渠初中“三环四步”导学案
年级
导学 目标
课 七 科目 数

5.1.1 相交线 主备人
周次
1、经历观察、推理、交流等过程,了解邻补角和对顶角的概念,
2、掌握邻补角、对顶角的性质
重点 难点
导学 模式
掌握邻补角、对顶角的性质 自学--------展示-------反馈
教学辅助 手段
导学策略及学法指导
(师生互动设计)
∠1 和∠3, ∠__和∠__
位置关 大 小

关系
程 归纳: 有一条公共边,而且另一边互为反向延长线的两个角叫
四 合 做互为________。如图中的______和_______
步 作 如果两个角有一个公共顶点, 而且一个角的两边分别

是另一角两边的反向延长线,那么这两个角叫做互为 探 _________。如图中的_________和__________
【自主学习】
1、复习提问:若∠1 和∠2 互余,则________________

若∠1 和∠2 互补,则________________
主 2、画图:作直线 AB、CD 相交于点 O
学 【合作探究】
习 两直线相交

C
B

2
13
4O

A
D
所 形 成 分类 的角

人教版初中数学七年级下册5.1.1《相交线》教案

人教版初中数学七年级下册5.1.1《相交线》教案
五、教学反思
在今天的课堂上,我们探讨了相交线的概念和性质,以及它们在实际生活中的应用。我注意到,学生在理解同位角、内错角、同旁内角这些概念时,起初有些混淆。我通过反复举例和直观演示,帮助他们逐步理清了这些角的区别和联系。这也提醒我,对于这类几何基础概念的教学,直观性和重复性是非常重要的。
我尝试了一种新的教学方法,让学生在小组讨论中解决实际问题,感觉效果还不错。学生们积极参与,讨论热烈,通过合作探究,他们不仅加深了对相交线性质的理解,还学会了如何将这些知识应用到解决具体问题中。这一点让我感到很欣慰,也证明了实践活动在数学教学中的价值。
人教版初中数学七年级下册5.1.1《相交线》教案
一、教学内容
人教版初中数学七年级下册5.1.1《相交线》教案:
1.理解相交线的概念,掌握两条直线相交形成的四个角及其分类。
2.学习同位角、内错角、同旁内角的概念,并能够识别和判条直线是否垂直。
4.探索并掌握垂直的性质及其应用,如:垂直线段最短、直角三角形的性质等。
4.强化学生的数学建模能力,将相交线的性质应用于解决实际问题,培养运用数学知识解决现实问题的能力。
5.培养学生的数学运算能力,通过几何作图和计算,巩固基本的几何变换和代数运算技能。
三、教学难点与重点
1.教学重点
-两条直线相交形成的四个角的识别及其分类,特别是同位角、内错角、同旁内角的定义和特点。
-垂直的概念及其判断方法,理解两条直线垂直的条件。
-掌握垂直性质及其在实际问题中的应用,如直角三角形的性质和垂线段最短原理。
-通过几何作图和计算,运用相交线和垂直的知识解决具体问题。
举例解释:
-在讲解同位角、内错角、同旁内角时,重点强调它们在两条相交直线上的位置关系和数量关系,通过直观图示和实际操作加深学生理解。

人教版初一数学下册相交线的导学案

人教版初一数学下册相交线的导学案

巧家三中七年级数学思习思做思展七年级数学教研组主备:饶启彭2017610.5.1.1 相交线【情景导入】图片展示生活中的两条直线相交的实例。

【教学目标】知识与技能1.理解对顶角和邻补角的概念,能在图形中辨认。

2 •掌握对顶角相等的性质和它的推证过程。

过程与方法通过在图形中辨认对顶角和邻补角,培养学生的识图能力。

情感、态度与价值观从学生观察几何图形入手,培养学生的概括能力,空间想象能力。

【教学重难点】重点:邻补角和对顶角的概念及对顶角相等的性质。

难点:在较复杂的图形中准确辨认对顶角和邻补角及对顶角性质。

亠.思习【新知探究】学生自学P2和P3并做下列练习探究一、画直线ABCD相交于点O,并说出图中4个角,两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类例如:(1)_______________________________________________________________ /AOC和/ BOC有一条公共边OC它们的另一边互为 _________________________________ ,称这两个角互为 ____________。

用量角器量一量这两个角的度数,会发现它们的数量关系是______________________(2) / AOC和/ BOD (有或没有)公共边,但/ AOC的两边分别是/ BOD两边的 _________ ,称这两个角互为_______________ 。

用量角器量一量这两个角的度数,会发现它们的数量关系是 ___________ 。

探究二、根据观察和度量完成下表:两直线相交所形成的角分类宀护¥方位置大糸数量关系CXD探究三、用语言概括邻补角、对顶角概念________________________________________________________________ 的两个角叫邻补角。

的两个角叫对顶角。

七年级数学下册《相交线与平行线》导学案及课后练习

七年级数学下册《相交线与平行线》导学案及课后练习

七年级数学下册《相交线与平行线》导学案及课后练习《相交线与平行线》课后作业一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________;(2)与∠BOD 互余的角有________________________;(3)与∠EOA 互余的角有________________________;(4)若∠BOD =42°17′,则∠AOD =__________;∠EOD =______;∠AOE =______.二、选择题4.如图,直线AB 与CD 相交于点O ,若A O D A O C ∠=∠31,则∠BOD 的度数为( ).(A)30°(B)45°(C)60°(D)135°三、 解答题5.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB 的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?6.已知:如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COB ,∠AOD ∶∠DOE =4∶1.求∠AOF 的度数.《相交线与平行线》课后作业参考答案1.公共,反向延长线.2.一个公共,反向延长线.3..(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.4.B.5.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.6.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.。

人教版七年级下册数学导学案设计:5.1.1相交线(无答案)

人教版七年级下册数学导学案设计:5.1.1相交线(无答案)




5.1.1 相交线
邻补角邻补角互补

交两条直线相交
线
对顶角对顶角相等
练习1、
练习2、
尝试完成填空:
∵直线AB,CD相交于点O
∴∠1+∠2=_______(邻补角的定义)
∠3+∠2=_______( )
∴∠1=∠____ ( )
思考3:性质的应用
1、如图,直线AB、CD相交,∠1=40°,求∠2,∠3,∠4的度数。
2、如图所示,直线AB,CD,EF相交于点O,则∠AOD的对顶角是_________,∠AOC的邻补角是_________。
回顾
填空
通过复习学过知识,加深学生印象,为后面的学习做铺垫。
预 习 过 程
学生活动
设计意图
教 学 过 程
师教活动
设计意图
思考2:邻补角和对顶角的性质
1、∠1与∠2是什么关系?_______。如果改变∠1的大小, ∠1和∠2还是邻补角吗?_______,它们的大小关系是____________。
2、对顶角有什么性质?____________________ 。
跟踪练习:1、下列各图中∠1、∠2是邻补角吗?为什么?
2、如图所示,∠1和∠2是对顶角的图形有( )个。
主动参与数学活动,敢于发表个人观点。
完成定义填空
独立解决完成学习目标2
猜想、交流、归纳,符合知识的形成过程,培养学生转化的数学思想,学会将陌生的知识转化为熟悉的,将未知的知识转化为已知的。




合作探究
五、盘点收获
通过本节课的学习,你有什么收获?还有什么疑问?
6、布置作业

人教版七年级下数学:5.1《相交线》导学案

人教版七年级下数学:5.1《相交线》导学案

《相交线》导学案教学目标1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力.2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.重点、难点重点:邻补角、对顶角的概念,对顶角性质与应用.难点:理解对顶角相等的性质的探索.教学过程一、读一读,看一看教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.学生欣赏图片,阅读其中的文字.师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.二、观察剪刀剪布的过程,引入两条相交直线所成的角教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?学生观察、思想、回答,得出:握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.教师点评:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.三、认识邻补角和对顶角,探索对顶角性质1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?(1)O DCB A学生思考并在小组内交流,全班交流.当学生直观地感知角有“相邻”、“对顶”关系时, 教师引导学生用几何语言准确地表达,如:∠AOC 和∠BOC 有一条公共边OC,它们的另一边互为反向延长线.∠AOC 和∠BOD 有公共的顶点O,而是∠AOC 的两边分别是∠BOD 两边的反向延长线.2.学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.3.学生根据观察和度量完成下表:教师再提问:如果改变∠AOC 的大小, 会改变它与其它角的位置关系和数量关系吗?4.概括形成邻补角、对顶角概念. (1)师生共同定义邻补角、对顶角.有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角. (2)初步应用.练习1:下列说法,你同意吗?如果错误,如何订正.①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上.②邻补角可看成是平角被过它顶点的一条射线分成的两个角. ③邻补角是互补的两个角,互补的两个角也是邻补角?5.对顶角性质.(1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由.(2)教师把说理过程,规范地板书:在图1中,∠AOC 的邻补角是∠BOC 和∠AOD,所以∠AOC 与∠BOC 互补,∠AOC 与∠AOD 互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.教师板书对顶角性质:对顶角相等.强调对顶角概念与对顶角性质不能混淆: 对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.(3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象. 四、巩固运用1.例:如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.ba4321教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程. 2.练习:(1)课本P5练习.(2)补充:判断下列图中是否存在对顶角.21212121五、作业1.课本P9.1,2,P10.7,8.2.选用课时作业设计. 课时作业设计 一、判断题:1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( ) 二、填空题:1.如图1,直线AB 、CD 、EF 相交于点O,∠BOE 的对顶角是_______,∠COF 的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.F E OD CBA FEOD C B A(1) (2)2.如图2,直线AB 、CD 相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________. 三、解答题:1.如图,直线AB 、CD 相交于点O.(1)若∠AOC+∠BOD=100°,求各角的度数.(2)若∠BOC 比∠AOC 的2倍多33°,求各角的度数.O D CBA2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?。

(新课标人教版)七年级(下)数学第五章《相交线与平行线》全章导学案(共9课时)

(新课标人教版)七年级(下)数学第五章《相交线与平行线》全章导学案(共9课时)

导学案(七年级数学下册)主备人:§5.1 相交线(第 1 课时)学习目标:1知识与技能:(1)理解邻补角与对顶角的概念,能从图中辨认对顶角与邻补角。

(2)掌握对顶角相等的性质,理解对顶角相等的说理过程。

2过程与方法:经历观察、讨论等活动,在具体情境中认识邻不角、对顶角3情感、态度、价值观:(1)通过对对顶角的探究,初步认识数学与现实生活的联系(2)培养合作交流、主动参与的意识,在独立思考的同时能够认同他人。

一、预习检查:1 平面上不重合的两条直线的位置关系:_____与 _______2 邻补角的特点是 :3 对顶角的特点是 :二、自主探究:自学指导一:观察课本P1 找出图中的相交线。

自学指导二 : 邻补角、对顶角的认识任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类。

分别量一下各个角的度数,各类角的度数有什么关系?为什么?所形成的分类位置关大小关系画图:角系有公共顶点,一条公共边∠1 与∠2有公共顶点,无公共边交流总结 :自学指导三:探究对顶角的关系A D2如图∠ 1 与∠ 2 互补,∠3 与∠ 2 互补,∠ 1 与∠ 3 相等吗?13试说明理由4C B 应用拓展:如上图,直线A B,CD相交,∠ 1=50°,求∠ 2、∠ 3、∠ 4 的度数。

三、巩固练习: 1如图所示,∠ 1 与∠ 2 是对顶角的是12 112D221BA2 如图所示,直线a,b 相交于点 O,若∠ 1=27°,12则∠ 2=____EDOb 3 已知直线 AB,CD相交于点 O,OA平分∠ EOC,∠EOC=100°则∠ BOD的度数是 ________A B a4 课本 P3练习O四、自主学习达标检测题C1 如图已知直线 AB,CD相交于点 O,且∠ AOD+BOC=220°, 那么∠ AOC=_______B CA EO C DDOAF B2 直线 AB,CD,EF相交于一点 O,(1) ∠EOB的对顶角是 _______(2)___________是∠ COF的邻补角( 3)若∠ EOA=60°, 则∠ BOF=∠AOF=_________五、自主园地:六、课下练习:课本 P8习题 5.1 的 1、2、7、8 题七、下节课课前预习指导:1什么是垂直,用符号如何表示?2什么叫点到直线的距离?3垂线有哪些性质?§5.1 相交线(第 2 课时)学习目标:1 知识与技能:(1)理解垂线的定义,点到直线的距离(2)掌握垂线的性质,会过一点画已知直线的垂线。

新版人教版七年级下册初一数学全册导学案

新版人教版七年级下册初一数学全册导学案

课题:5.1.1 相交线【学习目标】1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。

2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。

3.通过辨别对顶角与邻补角,培养识图的能力。

【学习重点】邻补角和对顶角的概念及对顶角相等的性质。

【学习难点】在较复杂的图形中准确辨认对顶角和邻补角。

【自主学习】1.阅读课本P 1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习惯? ,2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化? . 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化? .3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题, 阅读课本P 2内容,探讨两条相交线所成的角有哪些?各有什么特征? 【合作探究】1.画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类? 例如:(1)∠AOC 和∠BOC 有一条公共边.....OC ,它们的另一边互为 ,称这两个角互为 。

用量角器量一量这两个角的度数,会发现它们的数量关系是 (2)∠AOC 和∠BOD (有或没有)公共边,但∠AOC 的两边分别是∠BOD 两边的 ,称这两个角互为 。

用量角器量一量这两个角的度数,会发现它们的数量关系是 。

3.用语言概括邻补角、对顶角概念.的两个角叫邻补角。

的两个角叫对顶角。

4.探究对顶角性质.在图1中,∠AOC 的邻补角有两个,是 和 ,根据“同角的补角相等”,可以得出 = ,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等...... 注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角_O_D_C _B _A性质是确定为对顶角的两角的数量关系.你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗? 【巩固运用】1.例题:如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.提示:未知角与已知角有什么关系?通过什么途径去求这些未知角的度数?,规范地写出求解过程.2.练习:完成课本P 3练习. 【反思总结】本节课你学到了什么?有什么收获和体会?还有什么困惑?(小组交流,互助解决) 【达标测评】1.如图所示,∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2.如图(1),三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。

2019-2020年新人教版初中数学七年级下册5.1.1 相交线导学案.doc

2019-2020年新人教版初中数学七年级下册5.1.1 相交线导学案.doc

第五章相交线与平行线∠2=180°,3=180°,∠11和∠3的位置特征相同的角还有2自主归纳:(1)邻补角、对顶角的定义:两条直线相交所成的四个角中,如果两个角有 ,它们的另一边 ,具有这种关系的两个角叫做互为邻补角;如果两个角有 ,它们的两边 ,具有这种位置的两个角叫做互为邻补角(2)邻补角、对顶角的性质:互为邻补角的两个角 ,互为对顶角的两个角 三、自学自测1如图所示的各对角中,∠1和∠2互为对顶角的是( )2以下说法正确的是( )A 一个角的邻补角只有一个B 相等的两个角是对顶角 对顶角一定是相等的两个角 D 互为邻补角的两个角相等四、我的疑惑______________________________________________________________________________________________________________________________________________________一、要点探究探究点1:邻补角与对顶角的概念 【找一找】(1)∠1的邻补角是什么?一个角的邻补角一般有几个?(2)∠3的对顶角是什么?图中有几组对顶角?分别把它们找出课堂探究教学备注 配套PPT 讲授1情景引入 (见幻灯片3)2探究点1新知讲授(见幻灯片8-12)3探究点2新知讲授(见幻灯片13-21)典例精析例1下列各图中,∠1与∠2是对顶角的是( )方法总结对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.探究点2:邻补角与对顶角的性质 问题1:互为邻补角的两个角和是多少度?问题2:你能否利用问题1中的结论推导出互为对顶角的两个角之间具有相等关系? 已知:直线AB 与D 相交于O 点(如图)试说明∠1=∠3, ∠2=∠4 解:典例精析例2(教材P3例1变式)如图,直线a ,b 相交于点O(1)若∠1+∠3= 60º ,则∠1∠2∠3∠4各个角的度数分别为__________________;(2)若∠2是∠1的 3倍,则∠1∠2∠3∠4各个角的度数分别为________________________;(3)若12 = 2 7 ,则∠1∠2∠3∠4各个角的度数分别为教学备注 配套PPT 讲授3探究点2新知讲授(见幻灯片13-21)4课堂小结__________________方法总结:关键是找出图中隐含的角之间的关系,然后利用方程思想解决例3如图,直线AB、D,EF相交于点O,∠1=40°,∠BO=110°,求∠2的度数1如图,直线AB、D、EF相交,若∠1 +∠5=180°,找出图中与∠1 相等的角2如图,直线AB、D、EF、MN相交,若∠2=∠5,找出图中与∠2 互补的角∠1和∠2、∠2和∠3、∠3和∠4、∠4和∠1 1有公共顶点 2有一条公共边 3另一边互为反向延长线邻补角邻补 角互 补∠1和∠3、∠2和∠4 1有公共顶点 2没有公共边3两边互为反向延长线对顶角 对顶 角相 等1下列各图中, ∠1 ,∠2是对顶角吗?2找出图中∠AOE 的邻补角及对顶角若没有请画出3如图直线AB ,D ,EF 相交于点O (1)写出∠AO ∠BOE 的邻补角; (2)写出∠DOA ∠EO 的对顶角;(3)如果∠AO =50°求∠BOD ,∠OB 的度数4 (应用题)在下图中,花坛转角按图纸要求这个角(红色标注的角)为135°;施工结束后,要求你检测它是否合格?请你设计检测的方法5如图直线ABD 相交于点O , ∠EO=70°,OA 平分∠EO ,求∠BOD 的度数6【拓展题】观察下列各图,寻找对顶角(不含平角)当堂检测教学备注 配套PPT 讲授 5当堂检测 (见幻灯片22-27)A BCD Oa b c A A B B CCD DO OEFG H⑴ 如图a ,图中共有 对对顶角; ⑵ 如图b ,图中共有 对对顶角; ⑶ 如图c ,图中共有 对对顶角;⑷ 研究⑴~⑶小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成 对对顶角;⑸ 若有10条直线相交于一点,则可形成 对对顶角或网站下载:wwwyuyi100c(无须注册,直接下载)。

相交线导学案 人教版七年级下册数学

相交线导学案 人教版七年级下册数学

课题5.1.1相交线(第 1课时)学案编写者:审校者:使用时间学生姓名:班级:学号:【学习目标】1、知识与能力:了解对顶角与邻补角的概念,能从图中辨认对顶角与邻补角。

理解对顶角相等,并能运用它解决一些问题.2、过程与方法:通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力.3、情感、态度:体会数学与生活实际的联系及应用。

重点:对顶角的概念,对顶角相等的性质与应用。

难点: 理解对顶角相等的性质的探索。

【自主阅读】阅读教材第2-3页,(10分钟)注重领会概念中的要点,尝试看懂例题,做会书后习题。

3.教学前测:让学生尝试完成下面的习题填空题:(每小题2分,共16分)1.如图4所示,AB与CD相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.34D CBA 12OFED CB A OE D CBA(4) (5) (6) 2.如图4所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.3.如图5所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.4.如图6所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠BOD=•______.5.对顶角的性质是______________________.6.如图7所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.ODC BA 12OE D CBA OE DCBA(7) (8) (9)7.如图8所示,直线AB,CD 相交于点O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•则∠EOB=______________.8.如图9所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部分,• 且∠BOE:∠EOD=2:3,则∠EOD=________.【师生共研】【练习检测】教学后测:让学生尝试完成下面的习题(自评或互评出分) A 组:选择题:(每小题3分,共15分)1.如图所示,∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )A.150°B.180°C.210°D.120°OFE D CB A O DCBA 60︒30︒34l 3l 2l 112(1) (2) (3) 3.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个4.如图2所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数为( ) A.62° B.118° C.72° D.59°5.如图3所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( ) A.∠1=90°,∠2=30°,∠3=∠4=60°; B.∠1=∠3=90°,∠2=∠4=30C.∠1=∠3=90°,∠2=∠4=60°;D.∠1=∠3=90°,∠2=60°,∠4=30°B 组:训练平台:(每小题10分,共20分)1. 如图所示,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.OF EDCBA 122.如图所示,L1,L2,L3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.3 4l3l2l1 12【课堂小结】1、你的收获:知识:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1.1 相交线一、目标导学1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。

2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。

3.通过辨别对顶角与邻补角,培养识图的能力。

重点:邻补角和对顶角的概念及对顶角相等的性质。

难点:在较复杂的图形中准确辨认对顶角和邻补角。

二、自学质疑1.阅读课本P 1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好学习习惯? ,2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化? . 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化? .3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题, 阅读课本P 2内容,探讨两条相交线所成的角有哪些?各有什么特征? 三、互助探究1.画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类? 例如:(1)∠AOC 和∠BOC 有一条公共边.....OC ,它们的另一边互为 ,称这两个角互为 。

用量角器量一量这两个角的度数,会发现它们的数量关系是(2)∠AOC 和∠BOD (有或没有)公共边,但∠AOC 的两边分别是∠BOD 两边的 ,称这两个角互为 。

用量角器量一量这两个角的度数,会发现它们的数量关系是 。

2.根据观察和度量完成下表:两直线相交所形成的角分类 位置关系 数量关系 4321ODC BA3.用语言概括邻补角、对顶角概念._O_D _C_B_A的两个角叫邻补角。

的两个角叫对顶角 4.探究对顶角性质.在图1中,∠AOC 的邻补角有两个,是 和 ,根据“同角的补角相等”,可以得出 = ,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等...... 注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗? 四、展示点评(学生展示成果,学生点评,教师引导) 五、达标巩固(1、2、3、4题必做,5题选做) 1.如图所示,∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2.如图(1),三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。

OFE D CB A (2) OE D CBA(3) cba3412(4)3.如图,直线AB,CD 相交于O,OE 平分∠AOC,若∠AOD -∠DOB=50°, 求∠EOB 的度数.4.如图,直线a,b,c 两两相交,∠1=2∠3,∠2=68°,求∠4的度数5.若4条不同的直线相交于一点,共有几对对顶角?若n 条不同的直线相交于一点呢?六、归结反思通过学习这节课,我的收获和困惑分别是:七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,下列条件中不能使a∥b的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°【答案】C【解析】根据平行线的判定方法即可判断.【详解】A. ∠1=∠3,同位角相等,可判定a∥b;B. ∠2=∠3,内错角相等,可判定a∥b;C. ∠4=∠5,互为邻补角,不能判定a∥b;D. ∠2+∠4=180°,同旁内角互补,可判定a∥b;故选C.【点睛】此题主要考查平行线的判定方法,解题的关键是熟知平行线的判定定理.的度数等于()2.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则3A.50°B.30°C.20°D.15°【答案】C【解析】根据平行和三角形外角性质可得∠2=∠4=∠1+∠1,代入数据即可求∠1.【详解】如图所示,∵AB∥CD∴∠2=∠4=∠1+∠1=50°,∴∠1=∠4-10°=20°,故选C.3.对于“若a是任意实数,则”,这一事件是A.必然事件B.不确定事件C.不可能事件D.确定事件【答案】C【解析】首先对该事件进行分析,若a是任意实数,则,然后可判定题干中事件为不可能事件. 【详解】解:∵a是任意实数,∴又∵题干中,∴该事件为不可能事件.故答案为C.【点睛】此题主要考查对不可能事件概念的理解,熟练掌握即可解题.4.能使分式4723xx+-值为整数的整数x有()个.A.1 B.2 C.3 D.4 【答案】D【解析】首先把分式转化为13223x+-,则原式的值是整数,即可转化为讨论1323x-的整数值有几个的问题.【详解】474613132 23232323 x xx x x x+-=+=+----,当2x-3=±1或±13时,4723xx+-是整数,即原式是整数.解得:x=2或1或8或-5;4个,故选D.【点睛】此题主要考查了分式的值,正确化简分式是解题关键.5.下列解不等式22135x x+-的过程中,出现错误的一步是()①去分母,得5(x+2)>3(2x-1).②去括号,得5x+10>6x-3.③移项,得5x-6x>-10-3.④系数化为1,得x>13.A.①B.②C.③D.④【答案】D【解析】去分母,去括号,移项,合并同类项,系数化成1即可.【详解】去分母:5(x+2)>3(2x-1);去括号:5x+10>6x-3;移项:5x-6x>-10-3;合并同类项,得:-x>-1,系数化为1得:x<1.故选D.【点睛】.本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变6.郑奶奶提着篮子去农贸市场买鸡蛋,摊主按郑奶奶的要求,用电子秤称了5千克鸡蛋,郑奶奶怀疑重量不对,把鸡蛋放入自带的质量为0.6千克的篮子中(篮子质量准确),要求放在电子秤上再称一遍,称得为5.75千克,老板客气地说:“除去篮子后为5.15千克,老顾客啦,多0.15千克就算了”,郑奶奶高兴地付了钱,满意地回家了。

以下说法正确的是()A.郑奶奶赚了,鸡蛋的实际质量为5.15千克B.郑奶奶亏了,鸡蛋的实际质量为4千克C.郑奶奶亏了,鸡蛋的实际质量为4.85千克D.郑奶奶不亏也不赚,鸡蛋的实际质量为5千克【答案】B【解析】设摊主称得鸡蛋的重量为x斤,鸡蛋的实际重量为y斤,不难发现鸡蛋的实际重量y和摊主称得的重量成正比例函数,从而可知道鸡蛋的实际重量.【详解】设摊主称得鸡蛋的重量为x斤,鸡蛋的实际重量为y斤,∵篮子的实际重量为0.6千克,鸡蛋放入篮子后一起称,增量为5.75−5=0.75千克,∴y=0.6 0.75x当x=5时,y=4故鸡蛋的实际重量是4千克.故选B.【点睛】此题考查应用类问题,解题关键在于理解题意列出方程.7.△ABC的两边分别为方程组102x yx y+=⎧⎨-=⎩的解,第三边能被4整除.这样的三角形有()个A.1 B.2 C.3 D.4【答案】B【解析】首先求出x,y的值,再根据三角形三边关系:①任意两边之和大于第三边;②任意两边之差小于第三边,即可得出第三边的取值范围,即可得出答案.【详解】∵△ABC的两边分别为方程组102x yx y+=⎧⎨-=⎩的解,∴64 xy=⎧⎨=⎩,∴设第三边长为x,则2<x<10,∵第三边能被4整除,∴x=4或8,故这样的三角形有2个.故选:B.【点睛】此题主要考查了二元一次方程组的求解及三角形三边关系,熟练掌握三角形的三边关系定理是解决问题的关键.8.某生产车间共90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使1个螺栓配套2个螺帽,应如何分配工人才能使每天生产的螺栓和螺帽刚好配套,设生产螺栓x人,生产螺帽y人,由题意列方程组()A.901524x yx y+=⎧⎨=⎩B.9022415x yy x=-⎧⎨⨯=⎩C.9021524x yx y+=⎧⎨⨯=⎩D.9015242x yxy=+⎧⎪⎨=⎪⎩【答案】C【解析】等量关系为:生产螺栓的工人数+生产螺帽的工人数=90;螺栓总数×2=螺帽总数,把相关数值代入即可.【详解】解:设生产螺栓x人,生产螺帽y人,根据总人数可得方程x+y=90;根据生产的零件个数可得方程2×15x=24y,可得方程组:90 21524x yx y+=⎧⎨⨯=⎩.故选:C.【点睛】本题考查了由实际问题抽象出二元一次方程组,难点在于理解第二个等量关系:若要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.9.为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的50亩杂交水稻的产量进行了检测,在这个问题中,数字50是()A.个体B.总体C.样本容量D.总体的样本【答案】C【解析】根据总体:我们把所要考察的对象的全体叫做总体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量可得答案.【详解】解:为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的50亩杂交水稻的产量进行了检测,在这个问题中,数字50是样本容量,故选C.【点睛】此题主要考查了总体、个体、样本、样本容量,关键是掌握定义. 10. (-2)2的平方根是( ) A .2 B .-2 C .±2D .2【答案】C【解析】∵2(2)4-=,而4的平方根是±2, ∴2(2)-的平方根是±2. 故选C. 二、填空题题11.如图,三角形纸片中,AB=5cm ,AC=7cm ,BC=9cm.沿过点B 的直线折叠这个三角形,使点A 落在BC 边上的点E 处,折痕为BD,则△DEC 的周长是________cm.【答案】11【解析】根据折叠的性质可知ED=AD 、BE=BA ,结合AB=5cm 、BC=9cm 、AC=7cm 可得出CE=4cm 、AC=CD+AD ,再套用三角形的周长公式即可得出△CED 的周长. 【详解】∵△BDA 与△BDE 关于BD 对称, ∴△BDA ≌△BDE , ∴DA=DE ,BA=BE. ∴CE=CB−BE =CB−BA. ∵BC=9cm ,AB=5cm , ∴CE=4cm.∴△CDE 的周长=CE+DE+CD=CE+AC ∵AC=7cm ,∴△CED 的周长=7+4=11cm. 【点睛】本题考查翻转问题,解题关键在于熟练掌握折叠的性质. 12.不等式组339m -<<的整数解是_______. 【答案】0,1,2.【解析】先求得不等式组的解集,再确定解集中的整数即可.【详解】解:解不等式组339m -<<,得13m -<<,所以不等式组的整数解为0,1,2. 故答案为0,1,2. 【点睛】本题考查了一元一次不等式组的解法和不等式的整数解,正确求出不等式组的解集是解题的关键. 13.命题“如果两个角是直角,那么它们相等”的逆命题是 ;逆命题是 命题(填“真”或“假”).【答案】如果两个角相等,那么它们是直角;假.【解析】先交换原命题的题设与结论部分得到其逆命题,然后根据直角的定义判断逆命题的真假. 【详解】解:命题“如果两个角是直角,那么它们相等”的逆命题是如果两个角相等,那么它们是直角,此逆命题是假命题.故答案为:如果两个角相等,那么它们是直角;假. 【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题. 14.已知m 为整数,且分式2331m m -+-的值为整数,则m 可取的值为________. 【答案】0或2或2-或4- 【解析】先化简得到原式=31m -+,然后利用整数的整除性得到−3只能被−1,1,3,−3这几个整数整除,从而得到m 的值. 【详解】解析:2333(1)31(1)(1)1m m m m m m -+---==-+-+.m 为整数,且31m -+的值为整数, 11m ∴+=±,3±.当11m +=时,0m =; 当11+=-m 时,2m =-; 当13m +=时,2m =; 当13m +=-时,4m =-. 故答案为:0或2或−2或−1.【点睛】此题主要考查了分式的化简求值问题,注意化简时不能跨度太大,而缺少必要的步骤,解答此题的关键是判断出m−1可以取的值有哪些.15.如果关于x,y的二元一次方程组的解是,那么关于x,y的二元一次方程组的解是_________。

相关文档
最新文档