FDTD Solutions资料集锦专题资料(二)

合集下载

ASAP and FDTD Solutions

ASAP and FDTD Solutions

ASAP-FDTD Solutions interoperability commands in ASAPIn the initial stage of development, interoperability between ASAP 2005 and FDTD Solutions is restricted to exchange of complex field information. A new import/export command, CVF, was added to the ASAP 2005 kernel for this purpose. This command serves two functions:•Writes information contained in an ASAP *.DAT to FDTD Solutions input field format *.FLD.•Reads *.FLD files of FDTD Solutions and converts the information into a *.DAT file compatible with ASAP. CVF (Complex Vector Field)SyntaxRemarks•EXPORT or IMPORT indicates the direction of data exchange, from or to ASAP, respectively.•format indicates the manner of data exchange. Currently, only LUMERICAL is supported.•dist_filespec optionally specifies a distribution file native to ASAP by either name or unit number; the filename may have a three-letter extension; if a filename is provided without an extension, .dat is assumed; if neither a name nor a unit number is provided, the bro029.dat file is used by default; preexisting files areoverwritten on output.•exch_filespec optionally specifies a file for data exchange by name; the filename may have a three-letter extension; if a filename is provided without an extension, .fld is assumed; if no filename is provided, cvf.fld is assumed.Typically in ASAP, a CVF EXPORT command is used to export a field sampled using the FIELD command. The FIELD command must precede the use of a CVF command. We therefore need to specify both the area over which the field is to be calculated by using a WINDOW command, and set spatial resolution by using a PIXELS command to avoid phase ambiguities. Autoscaling the WINDOW is not recommended.NOTE: WINDOW dimensions may have a profound impact on the run times of FDTD Solutions.The following example script excerpts illustrate a generic application of the CVF command.NOTE: At this point, the ASAP task must be temporarily suspended. The simulation continues after we make a manual transition to FDTD Solutions. When we have completed the FDTD Solutions portion of the task, the simulation resumes in ASAP by first importing the processed field then performing a Fourier decomposition.•Fourier decomposition depends upon WINDOW size, PIXELS resolution and FTSIZE set during the previous FIELD calculation and cannot be altered as part of the DECOMPOSE.•The DECOMPOSE command Fourier transforms only one component of the field at a time; for example, to decompose properly a vector field propagating mostly in the Z-direction.Support NoteBRO provides technical support for issues related only to ASAP at support@.All inquiries related to the functionality of FDTD Solutions should be directed to Lumerical at support@.ASAP-FDTD Solutions interoperability commands in FDTD SolutionsAt this stage of development, interoperability between ASAP 2005 and FDTD Solutions is restricted to exchange of complex field information. A new source type called ASAP Source has been added to FDTD Solutions for this purpose. As well, several scripting commands have been added. The purpose of the ASAP Source and scripting commands is to: •Import field data from ASAP 2005 in the *.fld format to be used as a source in FDTD Solutions•Export field data from FDTD Solutions in the *.fld format for use as a source in ASAPASAP SourceASAP sources are used to import electric field data produced with ASAP ray-tracing design environment. The ASAP source allows the user to input field profile data produced by ASAP as a radiation source within the three-dimensional FDTD Solutions design environment. ASAP sources are only available in 3D simulations. For details on all the parameters of the ASAP sources, please consult the FDTD Solutions Reference Guide.Scripting CommandsThe following scripting commands are available for exporting and importing data to the *.fld file format:Command Descriptionasapexport(“monitorname”); Exports the desired monitor to a file for interfacing withASAP 2005. These files are called fld files. The monitormust be a frequency power or a frequency profilemonitor. By default, the first frequency point is exported. asapexport(“monitorname”,f); Exports the specified frequency point.asapexport(“monitorname”,f,"filename");Exports to the specified "filename" without opening afile browser window.asapimport("sourcename"); Imports a file in the BRO/Lumerical interface format tothe desired source.asapimport("sourcename","filename"); Imports a specified file in the BRO/Lumerical interfaceformat to the desired source without opening a filebrowser window.asapload; Load data from an fld file. After loading, you can getdata using getasapdataasapload(“filename”); Loads data from an fld file called “filename” withoutopening a file browser window.getasapdata(“data”); After loading an asapfile with asapload, you can extractany desired data. Data can be•Ex, Ey, Ez, Hx, Hy, Hz, x, y, z•power, frequency, wavelength, indexFor example the commandsasapload(“testfile”);Ex = getasapdata(“Ex”);x = getasapdata(“x”);y = getasapdata(“y”);image(x,y,pinch(real(Ex)));Can be used to image the real part of the electric field inan fld file containing data over a surface in the x-y plane. For more details on using the scripting environment, please consult the FDTD Solutions Reference Guide and the examples in the FDTD Solutions Getting Started.Support NoteAll inquiries related to the functionality of FDTD Solutions should be directed to Lumerical at support@. BRO provides technical support for issues related only to ASAP at support@.Figure 1. Macroscopic optical system to be modeled with ASAPFigure 2. Microscopic optical system to be modeled with FDTD Solutions.The illumination is from the backside, where the pit appears as a “bump”.This example is separated into three steps:Step Purpose ProductASAP 20051Model the macroscopic optical system that delivers the output of a laserdiode source to the a focused spot at the surface of the DVD diskFDTD Solutions2Model the interaction of the focused beam witha. a sub-wavelength metal DVD pitb. a flat, metal DVD surface andASAP 20053Model each reflected beam through the optical collection system to a detectorsurface. Calculate the signal modulation depth due to the presence of the sub-wavelength DVD pit.Step 1: Macroscopic beam delivery to the DVD surfaceThe macroscopic optical system, shown previously in Figure 1, as modeled in ASAP, is comprised of a beamsplitter and two focusing elements, which deliver the output of a laser diode source to the DVD disk. The return beam is collected and routed by reflection in a cube beamsplitter through a focusing optic to a signal detector.The script that generates this optical system is dvd_lumerical.inr. After setting up the optical system model in ASAP, the source is traced to a dummy plane located in close proximity to the DVD surface as shown in Figure 3. Note that no microscopic DVD surface features are included in the ASAP model. A FIELD calculation stores the complex vector electric field in a cincoming.dat file, which is then exported to FDTD Solutions file format using the CVF command. The file is saved as cincoming.fld. The energy distribution at the dummy plane 140 nm above the landing is shown in Figure 4. Note that WINDOW dimensions, PIXELS setting and location of the dummy plane may require iteration in order to arrive at the conditions suitable for an accurate FDTD simulation. In this case, a 4μm × 4μm WINDOW insures all the focused energy is captured within the window. A choice of PIXELS 101 provides spatial resolution necessary to avoid phase ambiguities. After completed the export operation, the ASAP session is suspended and the user switches to FDTD Solutions to continue the simulation.Dummy SurfaceLand Surface140 nmPMMAFigure 3. Dummy plane 140 nm above the DVD land surface, where the focused beam is recorded with ASAPFigure 4. Energy distribution at the dummy plane as recorded with ASAPWe proceed by constructing the DVD surface and assigning optical properties to the geometry in FDTD Solutions.Step 2: Modeling the sub-wavelength features of the DVD surfaceFor the second step of the problem, open FDTD Solutions. Open the example file dvd_ASAP.fsp. This file can be found in the default examples directory and is used in one of the advanced examples of the FDTD Solutions Getting Started manual.The geometry consists of a landing and a ‘bump’ as shown in Figure 5. The optical properties of the entire structure are defined by a NIR dispersive model for gold immersed in PMMA.Figure 5. Sub-wavelength DVD pit or “bump”, drawn in the CAD Layout Editor of FDTD SolutionsThe source (grey box with purple arrow), the reflection monitor (yellow rectangle), and relevant geometry are enclosed in a simulation volume (orange cubic volume). The choice of source insertion point and simulation volume dimensions serve to minimize calculation time, while preserving the necessary attributes to accurately model the physics. NOTE: FDTD Solutions does not allow the source and monitor planes to be co-located therefore the monitor plane (and thus the plane from which the result is exported back to ASAP) and the source injection plane must be separated by at least 1 grid spacing (20 nm in this case).The following steps show how to setup, run and analyze the simulations of the sub-wavelength DVD pit, as well as export the resulting data back to an fld file to be re-imported into ASAP.2a. Set up the material properties1.If you are in analysis mode (the Analysis window is open), open the SIMULATION menu and select SWITCHTO LAYOUT EDITOR.2.Select the STRUCTURES tab and make sure that the DVD bump has the following dimensions.property valuex position 0 μmx span 0.32 μmy position 0 μmy span 8 μmz min -0.12 μmz max 0 μm3.In this example, the wavelength is 650 nm. We want to make sure that both the DVD bump and the goldsubstrate use the following material properties. Note that you can set them both by selecting both objects and editing their group properties.property valuematerial Au (gold) :: VIS 400-750nm2b. Load the field data into the ASAP Source•If there is not already an ASAP source, create one by clicking the ASAP button on the SOURCES tab. •Open the property edit window of the ASAP source, which is shown in Figure 6.Figure 6. Property edit window of an ASAP source in FDTD Solutions•Click the Read ASAP Source button and choose the file cincoming.fld, which was created from the data in cincoming.dat with the ASAP command CVF.•Try plotting the current field by clicking Plot Current Field, you will see the same plot as Figure 7.Figure 7. The electric field intensity imported from ASAP to FDTD SolutionsNotice that this spot is has an x span of approximately 1 μm and a y span of approximately 2 μm. For this spot configuration, the track length is in the y direction, and the track width is in the x direction.•Set the following properties of the ASAP source:property valuename asapx 0 μmy 0 μmz 0.02 μmdirection Backward•Verify that the ASAP source is defined to operate at a wavelength of 650 nm by selecting the FREQUENCY/WAVELENGTH tab of the ASAP source. This wavelength is the same as the wavelength defined in the file cincoming.fld when it was exported from ASAP. You can change this wavelength if you like, but it is automatically set when you load the data.•On the FREQUENCY/WAVELENGTH tab, you will notice from the SIGNAL VS TIME plot that the simulation is not long enough and truncates the source signal. To correct this, select SET TIME DOMAIN.Change the pulselength property to 3 fs and the offset to 6 fs.•Click OK to accept all the source changes.2c. Modify the simulation regionWe imported a field from ASAP that covers a 4x4 μm2 region. However, the spot is smaller than this. It is sufficient to simulate a region of approximately 3x6 μm2.•Edit the FDTD Simulation region and set the following properties:property valuex span 3 μmy span 6 μmsimulation time 25 fs•On the Advanced Options tab, make sure that the “meshing refinement” property is set to 0. For most materials it is desirable to average their physical properties near interfaces but for metals, such as gold, this is not always desirable. You can disable this feature by setting a value of zero for the “meshing refinement”. Notice that the ASAP source is larger than the simulation region. The simulation will use only the portion of the ASAP source that is within the simulation.2d. Verify the frequency monitorEdit the properties of the field monitor. You wi ll notice that this monitor has changed to record data at a frequency of 461.219 THz because the USE SOURCE LIMITS checkbox is on. In wavelength, this is 650nm. This is the desired frequency of operation with the ASAP source.2e. Run the simulationRun the simulation, which will take from 2 to 15 minutes, depending on the speed of your computer.2f. Analyze the dataPlot the Ey electric field component versus time, you will see the plot shown in Figure 8.Figure 8. Electric field component Ey as a function of timeYou can see that the signal is short and decays quickly. The simulation has been run for long enough to collect all the data.Figure 9. Electric field component Ey at a single frequency/wavelength as a function of position in the near field Use the far field projection to plot the electric field intensity in the far field, it will look like Figure 10.Figure 10. Electric field intensity at a single frequency/wavelength as a function of angle in the far field2g. Export the results back to ASAPTo bring the reflected signal back into ASAP where it can be used to optimize the collection optics, you will need toA file chooser window will appear that will allow you to select a name for your data. Choose coutgoing.fld and save the file. There are a variety of optional arguments for importing and exporting ASAP files using the two scripting commands asapexport and asapimport. Please refer to the FDTD Solutions Reference Guide for details.2h. Rerun the simulation with no bumpTo compare the modulation with and without the bump, you will need to rerun the simulation without the presence of the bump.•From the FILE menu, choose SAVE AS and save the file as dvd_ASAP_blank.fsp•From the SIMULATE menu, choose SWITCH TO LAYOUT EDITOR and click OK when prompted.•Rerun the simulation.•From the script prompt type the following command:asapexport("reflection");When the file chooser appears, select the filename cboutgoing.fld.You can now import the data from coutgoing.fld and cboutgoing.fld into ASAP.Step 3: Modeling the reflected beam to the detectorThe return beam is collected and routed by reflection in a cube beamsplitter through a focusing optic to a signal detector.The resulting *.fld files created in Step 2 can now read into ASAP by invoking a CVF command with the IMPORT option.The imported field is converted to traceable rays by means of a directional decomposition, namely DECOMPOSE DIRECTION. Since the source originates inside the PMMA material, the IMMERSE command must precede DECOMPOSE DIRECTION. Note also that the DECOMPOSE DIRECTION command operates on only one polarization component at a time. Therefore, a POLARIZ command must precede decomposition of the x-, y- and z-components of the field.A brief section of ASAP script, dvd_lumerical.inr, is shown in Figure 11 as an example of the import of the FDTD Solutions file. Here, a limiting cone angle has been specified to match the solid angle subtended by the collection optics. The minus sign on the DIRECTION option indicates the direction of propagation. Also, the sources must be IMMERSEd and shifted to the appropriate location since geometries in ASAP and FDTD Solutions are completely independent of one another.Figure 11. Excerpt from ASAP script showing how to import data from fld file created by FDTD Solutions NOTE: ASAP does not propagate evanescent fields as part of its Gaussian Beam Decomposition method. As a result, it is not necessary in this case to decompose and attempt to trace the z-polarized field component, since this field component would propagate perpendicular to the optical axis.The dvd_lumerical.inr script file calculates the signal at the detector with the bump (coutgoing.fld ) and without the bump (cboutgoing.fld ). The results of the ENERGY at the detector are shown below. Diffraction due to the presence of the bump scatters a significant portion of the incident energy out of the reflected beam that arrives at the detector surface. Results of the ENERGY at the detector are shown in the table below. Diffraction that is due to the presence of the bump has scattered a significant portion of the incident energy out of the reflected beam. As a result, the peak irradiance and the total energy at the signal detector is reduced by approximately 30 times in the presence of the bump. Blank DVD surface (no bump) DVD surface with bump ENERGY MAX 10.35034 0.3779390 ENERGY INTEGRAL 0.4438739E-04 0.1522924E-05Results at the signal detector are plotted in Figures 12 and 13.Figure 12. Cross-section of irradiance at the detector, without and with the bump.a. without the bumpb. with the bumpFigure 13. Irradiance patterns at the detector, without and with the bumpBump No bumpYou can optimize the shape and size of the DVD bump using FDTD Solutions, as well as to optimize the beam delivery and collection optics using ASAP.•For optimization in FDTD Solutions, please see the related DVD Examples in the FDTD Solutions Getting Started manual.。

FDTD Solutions 帮助 _ Quality factor calculations

FDTD Solutions 帮助 _ Quality factor calculations

知识库安装和设置入门教程参考指南用户指南应用实例天线艺术ASAPBSDF谐振腔CMOS增益材料缺陷检测光栅OLEDs材料科学超材料显微镜多层堆叠結構非线性光学镊子光子晶体太阳能电池表面等离子波导A cavity is called a low Q cavity when the electromagnetic fields decay completely from the simulation in a timeFDTD Solutions 在线帮助Quality factor calculations FDTD Solutions product page Training workshop schedule Webinar schedule Download page)SearchResonance 2:frequency = 205.814THz, or 1456.62 nmQ = 77.498 +/- 0.226738The analysis script also creates two plots. The plot shown below to the left contains one of the field components (Hz). You can see that the fields have decayed by the end of the simulation time. The second plot shows the location and relative amplitude of the resonance peaks.Note that the initial transients of the source are neglected by setting the "start time" for the time monitors to 200fs. The "start time" for the time monitors is the time at which the monitors begin recording data. This setting can be changed in the user properties for the analysis group. Also, note that in the analysis group, it is possible to use one time monitor or an array of time monitors for the Q factor calculation. The problem with using one time monitor is that if the one monitor is placed at or near a null of the cavity mode, then due to the fact that the field intensity is very low, the Q factor can have a large uncertainty (if it is even possible to obtain a meaningful result).The low_quality_factor_3D.fsp simulation file contains a 3D version of the low Q analysis object.High Q cavitiesA cavity is considered to be a high Q cavity when the electromagnetic fields cannot completely decay from the simulation in a time that can be simulated reasonably by FDTD. In this case, we cannot determine Q from the frequency spectrum because the FWHM of each resonance in the spectrum is limited by the time of simulation,Tsim , by FWHM ~ 1/Tsim. Instead, the quality factor should be determined by the slope of the envelope of thedecaying signal using the formulawhere fRis the resonant frequency of the mode, and m is the slope of the decay in SI units.Derivation of Q factor formula:The quality factor (Q) is defined aswhere wris the resonant frequency and FWHM is the full width half max of the resonance intensity spectrum. The time domain signal of the resonance is described bywhere α is the decay constant. The fourier transform of E(t) is easy to calculate.The maximum value of |E(w)|^2 is clearly 1/α^2, at w=wr. With a little more work, we can determine that thehalf max frequencies occurs at w=wr + α and w=wr- α. Therefore, FWHM = 2α. Substituting this value intothe original Q formula and solving for α givesNow that we know how to relate α to Q, we must determine how the slope of the time signal decay is related to Q. We must take the log of the time signal to make the envelope a linear function.where m is the slope of the log of the time signal envelope. Solving for Q, we get.Example:Calculation of the Q factor for high Q cavities is complicated because•separating the decay of the envelope from the underlying sinusoidal signal is difficult since the fields are typically real-valued•if there are multiple resonant modes, they will interfere with each other in the time domain, making it hard to estimate the decay rate.By opening the edit dialog box for the Q factor analysis object located in quality_factor_3D.fsp, you can see that the analysis object solves these problems by•accurately calculating the envelope of the time-domain field signal•isolating each resonance peak in the frequency domain using a Gaussian filter, and then taking the inverse Fourier transform to calculate the time decay separately for each peak. The slope of the time decay is then used to calculate the Q factor and obtain an error estimate.In addition, note that:•the Q analysis object has setup variables that allow you to choose how many time monitors to use to calculate the Q factor. It is often a good idea to add a few point monitors at different locations to reduce the chances that a monitor is placed at a node in the mode profile of a cavity mode yielding a weak signal.•in the analysis tab, there is a parameter that can be set to choose how many resonant peaks to look for •all the field components that are available are used to calculate the Q factor•it is possible to change other parameters, such as the Gaussian filter width and resolution in the frequency domain. These parameters are set in the analysis script.•in the script, only the part of the time signal lying in 40-60% of the time signal collected is used for the slope calculation. These percentages can easily be changed. However, setting the upper limit to anything greater than 90% can lead to errors due to the fact that Fourier transforms, and inverse transforms were used when the Gaussian filter was used to isolate the peak. The Fourier transforms introduce errors to the end of the time signal due to the fact that discrete Fourier transforms assume periodicity of the signal.Next, run the simulation. When the simulation is complete, choose to edit the analysis object and press RUN ANALYSIS button. The analysis script output will contain the location of the resonance frequencies and their corresponding Q factors.Resonance 1:frequency = 178.786THz, or 1676.82 nmQ = 306.279 +/- 1.41318Resonance 2:frequency = 227.307THz, or 1318.89 nmQ = 274.874 +/- 4.50921The analysis object also produces the following plots.The time decay of the field components and their envelopes. Note The spectrum and the Gaussian filtersThe spectrum of resonances. Each resonant peak appears in a The time decay of the sum of squared Other versions of this page:Events。

微纳光子学设计分析软件FDTD Solutions专题资料集锦(三)

微纳光子学设计分析软件FDTD Solutions专题资料集锦(三)

corresponding bulk materials. The influence of microstructures on
thermal conductivity has been investigated by many researchers, however their effect on radiative heat transfer is seldom studied.
application. In this paper, the conventional geometrical optics
ray-tracing method is updated by considering the effect of the interference. Two geometrical optics ray-tracing methods and a finite different time domain method are used to study the radiative properties of a one-dimensional random rough surface.
arrays for photovoltaic applications.pdf
椭圆硅纳米线阵列的宽带吸收增强光伏应用 Semiconducting nanowire arrays have emerged as a promising route
toward achieving high efficiencies in solar cells. Here we propose
originated from the split of the principal modes as well as the excitation of high order modes caused by the asymmetry ofires and the enhanced mode coupling between

FDTD介绍范文

FDTD介绍范文

FDTD介绍范文FDTD(Finite-Difference Time-Domain)是一种电磁场数值模拟方法,可以用于求解Maxwell方程组。

它是一种基于有限差分的时域方法,将时域的Maxwell方程组进行离散化,然后在离散化的网格上进行数值计算。

FDTD方法的特点是简单易实现、计算稳定、准确度高,因此在电磁学领域得到了广泛应用。

FDTD方法最早于1966年由Kane Yee提出,它的基本思想是将Maxwell方程组从连续的时域转化为离散的时域。

具体而言,FDTD方法将空间和时间均分成离散的网格,然后在这些网格上计算电磁场的演化。

根据Maxwell方程组的形式和物理意义,可以将其离散为电场和磁场的更新方程。

通过不断迭代更新电场和磁场的数值,FDTD方法可以模拟出电磁场在时域中的传播和变化过程。

FDTD方法的核心是使用差分格式对Maxwell方程组进行离散化。

一般情况下,FDTD方法采用中心差分格式,即将每个场分量的二阶导数表示为差分形式。

例如,电场的二阶导数可以近似为中心差分形式:∂^2E/∂x^2 ≈ (E(i+1,j,k) - 2E(i,j,k) + E(i-1,j,k))/(∆x)^2、这样,就可以将Maxwell方程组中的导数项用离散形式表示,然后将离散的方程用迭代逐步计算的方法求解。

FDTD方法的计算过程可以简要概括为以下几个步骤:首先,需要定义模拟区域的网格大小和时间步长。

然后,在每个时间步长内,计算电场和磁场的分量在各个网格点上的更新。

这个更新过程基于Maxwell方程组的离散形式,通过差分格式计算每个场分量在下一个时间步长的值。

在更新的过程中,还需要考虑介质的性质,比如介电常数和磁导率等。

最后,通过反复迭代,可以得到电磁场在时域中的演化过程。

FDTD方法的优点之一是简单易实现。

由于FDTD方法的数值计算是基于离散差分格式的,因此在编程实现时非常直观和容易理解。

另外,FDTD 方法的计算稳定性较好,能够模拟复杂的电磁场变化。

微纳光子学设计仿真工具-FDTD Solutions 专题资料集锦

微纳光子学设计仿真工具-FDTD Solutions 专题资料集锦

Effect of subwavelength annular aperture.pdf
Fabrication and properties of metalo-dielectric photonic crystal.pdf
Educational Software for interference and optical diffraction
SMALL AREA RIGHT ANGLE BENDS.pdf
表面等离子共振技术.pdf
表面等离子体亚波长光学.pdf
李灿光催化综述.pdf
FDTD Solutions初级技术培训(视频)
更多资料:/Home.html
FDTD Solutions 8.0 - New Features(视频)
相关阅读: 纳米光学软件 FDTD Solutions
专业的微纳光子学设计分析软件
新型纳米超材料:可见光能无限穿透
上海交大发明纳米光学质谱仪检测人体癌细胞
CMOS图像传感器的发展走向
相关下载: Can information of chemical reaction propagate with plasmonic waveguide.pdf
analysis in fresenel and fraunhofer regions based on matlab guis
and the FDTD Nethos.pdf
Fabrication of Tungsten Photonic Crystals for High.pdf
FDTD Solutions_getting_started.pdf
Application of Surface Plasmon Polaritons in CMOS Digital

fdtd讲座1125

fdtd讲座1125
n x
n 2 x
1
设置的边界条件
一维电磁波在介质中传播
n1/2 (k ) E n1/2 (k ) E x x t
r 0 0 x
t
n n 1 [H y (k 1 ) H y (k 2 )] 2
n 1 n 1 Hy (k 1 ) H y (k 2 ) 2
(1.7) (1.8)
式中,时间变量已隐含在迭代公式中, 只要给定了所有空间点上电和磁场的初值,就可以一 步一步地求出任意时刻所有空间点上的电场和磁场值。
一维边界条件
x x t 2 c0 3 c0
稳定性条件
x 距离 c0 t 2
电磁波传播距离
E 0 E
E
H
n 1/2 x
(k ) E
1 2
n 1/2 x
t n n 1 (k ) [H y (k 1 ) H y (k 2 )] 2 0 x
1 2
n 1 y
t n 1/2 n 1/2 (k ) H (k ) [ Ex (k 1) Ex (k )] 0 x
0 0 x
n1/2 (k 1) E n1/2 (k )] [E x x
Ex[k ] Ex[k ] Cb[k ]* Hy[k ] Hy[k 1]
Hy[k ] Hy[k ] 0.5 * Ex[k 1] Ex[k ]
Cb[k ] 0.5 / epsilon


媒质的非均匀性、各向异性、色散特性和 非线性等均能很容易地进行精确模拟。 • 由于在网格空间中电场和磁场分量是被交 叉放置的,而且计算中用差分代替了微商,使 得介质交界面上的边界条件能自然得到满足, 这就为模拟复杂的结构提供了极大的方便。

微纳光子学设计分析软件FDTD Solutions专题资料集锦(四)

微纳光子学设计分析软件FDTD Solutions专题资料集锦(四)

Numerical study of natural convection in porous media (metals) using Lattice Boltzmann Method (LBM).pdf 自然对流多孔介质(金属)用晶格玻尔兹曼方法加快的数值研究 A thermal lattice BGK model with doubled populations is proposed to simulate the two-dimensional natural convection flow in porous
金属/半导体核壳结构电浆子模式研究
The symmetry-broken geometry and variation of metal composition of semishells induce new plasmonic properties. A system of separated
metallic semishells embedded in a poly(dimethylsiloxane) polymer
and porosity on the natural convection are examined. Also the
effect of porous media configuration (shape) on natural convection is investigated. The results showed that the overall heat transfer
structure obtained by spinodal decomposition. Its optical response
was investigated both experimentally and theoretically. Our results show that this structure has interesting optical properties due to the existence of only short-range order and the lack of welldefined local structures.

微纳光子学设计分析软件FDTD Solutions专题资料集锦(一)

微纳光子学设计分析软件FDTD Solutions专题资料集锦(一)

FDTD案例-液晶-扭转向列型LCD.rar
FDTD案例-液晶-光电开关.rar
FDTD案例-液晶-SOI环形谐振器的调节.rar
综合性算例:
FDTD案例-偏振光.rar
FDTD案例-角度监视器.rar
FDTD案例-坡印廷矢量.rar
FDTD案例-石墨烯.rar
FDTD案例-能带.rar
FDTD案例-收敛试验.rar
微纳光子学设计分析软件 FDTD Solutions专题资料 集锦(一)
更新时间:2015-1-5
以下是小编整理的一些有关微纳光子学设计分析软件FDTD Solutions专题
资料(一),其中包括了有关FDTD Solutions相关案例文档及其文档简介、相 关视频资料。有关文档的下载,可以到研发埠网站的专题模块,输入相应的
FDTD案例-太阳能电池表面增强.rar
FDTD案例-双稳态.rar
FDTD案例-天线.rar
FDTD案例-添加表面.rar
FDTD案例-圆偏振光.rar
FDTD案例-相位差.rar
FDTD案例-自输入表面.rar
FDTD案例-远场.rar
FDTD案例-散射.rar
更多资料:/Home.html
FDTD Solutions简介(视频)
FDTD参考手册 Lumerical 2014a安装手册
Lumerical Flexnet code license安装步骤(最新).pdf
如何成功完成Lumerical注册
算例下载区:
谐振腔相关算例: FDTD案例-谐振腔-光学晶子.rar
FDTD案例-谐振腔-quality_factor.rar
专题名,搜索到相应的专题便可以找到相应的文档,或是到研发埠网站的文

微纳光子学设计分析软件FDTD Solutions专题资料集锦(二)

微纳光子学设计分析软件FDTD Solutions专题资料集锦(二)
problems without tracing their positions, and therefore provides potentials of being extended to consider more complicated mechanisms: multi-dimension and volume change.
Broadband negative refraction in stacked fishnet metamaterial.pdf
宽带负折射在渔网材料堆放 We demonstrate a scheme to utilize the stacked fishnet metamaterial for all-angle negative refraction and subwavelength imaging within a wide frequency range starting from zero frequency. The theoretical predictions are verified by the brute-force finitedifference-in-time-domain numerical simulations. The phenomena come from the negative evanescent coupling between the adjacent slab
808nmLD激发下高折射率差光纤锥_硫卤微球耦合系统的荧光回廊模.zip 用熔融淬冷法制备了0.5wt.%掺杂Nd3+:75GeS2-15Ga2S3-0CsI (0.5wt.% Nd-GGSI)硫卤玻璃。此基础上以玻璃粉料漂浮熔融法制备出粒径为50~
300μ m高折射率(n≈2.1)玻璃微球,并在显微镜下选出表面质量高的硫卤

FDTD介绍

FDTD介绍
第十四页,编辑于星期四:七点 二十九分。
差分格式
❖ 首先,在直角坐标系中将问题空间沿三个坐标轴方向分成多 个网格单元,其中 x , y , z 分别表示在x、y、z坐标方向 的网格空间步长,用Δt表示时间步长。设 f (i,j,k)代表电场或磁 场的,某一分量在时间和空间域中的离散表达式为
f (i,j,k)= f (i x ,j y ,k z )= (i,j,k)
第二十页,编辑于星期四:七点 二十九分。
数值色散和解的稳定性
❖ 由于 FDTD 方程只是原 Maxwell 旋度方程的一种近似,在计 算中存在误差。只有离散后差分方程组的解是收敛和稳定的, 这种代替才有意义。收敛性是指当离散间隔趋于零时,差分方 程的解在空间任意一点和任意时刻都一致趋于原方程的解。稳 定性是指寻求一种离散间隔所满足的条件,在此条件下差分方 程的数值解与原方程的严格解的差为有界。
第十五页,编辑于星期四:七点 二十九分。
差分格式
❖ Yee网格如图2.2所示,主要表示的是电场和磁场在空间各节 点的排布。由图可以看出每个电场的分量周围有四个磁场分量, 相应的每个磁场分量周围也有四个电场分量。这种空间的设置 方式能够实现空间坐标的差分计算,并且考虑到电磁场在空间 互相正交、铰链的关系,也满足了Maxwell方程的积分形式,能 够很好地模拟电磁场传播过程。
❖ 随着当代半导体制作工艺的发展, 电子设备越来越趋向于小 型化和复杂化,其工作环境也日益复杂,同时电磁环境效应问题 变得也越来越重要。虽然在应用电磁数值仿真技术方面做了很 多研究, 但是实际应用的数值方法仍存有挑战性,特别是如何使 用和如何发展现有的电磁场数值技术以适应电大尺寸和多尺度 问题仿真。
第三页,编辑于星期四:七点 二十九分。

FDTD入门教程

FDTD入门教程

欢迎进入FDTD Solutions 的入门教程!入门教程由四章内容组成。

第一章介绍FDTD Solutions 的基本功能,以及器件建构,程序运行和结果分析。

后面三章则针对v个实际问题,提供详细指导,帮助用户一步步地了解每一模块的功能及其使用。

文中涉及的所有模拟设计文件都可以从LUMERICAL 的相应网页上免费下载。

第一章简介第二章银质纳米线谐振腔散射教程第三章环形谐振腔教程第四章光子晶体微腔教程简介The goal of the Getting Started Guide is to introduce the Finite Difference Time Domain (FDTD) technique and explain how modeling is done with the software.The FDTD algorithm is useful for design and investigation in a wide variety of applications involving the propagation of electromagnetic radiation through complicated media. It is especially useful for describing radiation incident upon or propagating through structures with strong scattering or diffractive properties. The available alternative computational methods - often relying on approximate models - frequently provide inaccurate results. FDTD Solutions is useful for numerous engineering problems of commercial interest including:• display technologies• optical storage devices• LED design• biophotonic sensors• plasmon polariton resonance devices• optical waveguide devices• photonic crystal devices• integrated optical filters• optical micro cavity designFDTD Solutions is an accurate and easy to use, versatile design tool capable of treating this wide variety of applications. This introductory chapter of the Getting Started Guide introduces the general FDTD method and provides a basic overview of the product usage. The final sections contain examples that are accompanied by step-by-step instructions so that you can set up and run the simulations yourself.什么是时域有限差分?The Finite Difference Time Domain (FDTD) method has become the state-of-the-art method for solving Maxwell’s equations in complex geometries. It is a fully vectorialmethod that naturally gives both time domain , and frequency domain information to the user, offering unique insight into all types of problems and applications inelectromagnetics and photonics .The technique is discrete in both space and time . The electromagnetic fields and structural materials of interest are described on a discrete mesh made up of so-called Yee cells . Maxwell’s equations are solved discretely in time, where the time step used is related to the mesh size through the speed of light. This technique is an exactrepresentation of Maxwell’s equations in the limit that the mesh cell size goes to zero. Structures to be simulated can have a wide variety of electromagnetic material properties. Light sources may be added to the simulation. The FDTD method is used to calculate how the EM fields propagate from the source through the structure . Subsequent iteration results in the electromagnetic field propagation in time. Typically, the simulation is run until there are essentially no electromagnetic fields left in the simulation region.Time domain information can be recorded at any spatial point (or group of points). This data can be recorded for the duration of the simulation, or it can be recorded as a series of "snapshots" at times specified by the user.Frequency domain information at any spatial point (or group of points) may be obtained through the Fourier transform of the time domain information at that point. Thus, the frequency dependence of power flow and modal profiles may be obtained over a wide range of frequencies from a single simulation.In addition, results obtained in the near field using the FDTD technique may be transformed to the far field, in applications where scattering patterns are important.More information about the FDTD method, including references, can be found in the Physics of the FDTD Algorithm section of the reference guide.FDTD的用户界面This section discusses useful features of the FDTD Solutions Graphical User Interface (GUI).In this topicGraphical User Interface: Windows andToolbarsAdd Objects to the simulationEdit ObjectsStart a new 2D/3D simulationGraphical User Interface: Windows and ToolbarsThe graphical user interface contains useful tools for editing simulations, including• a toolbar for adding objects to the simulation• a toolbar to edit objects• a toolbar to run simulations•an objects tree to show the objects which are currently included in the simulation• a script file editor window•an object library• a window to set up parameter sweeps and optimizationsIn the default configuration some of the Windows are hidden. To open hidden windows, click the right mouse button anywhere on the main title bar or the toolbar to get the pop up window shown in the screen shot below. The visible windows/toolbars have a check mark next to their name; the hidden ones do not have check marks. A second way to obtain the pop up window is to go to the main title toolbar and select VIEW->WINDOWS.For more information about the toolbars and windows see the Layout editor section of the reference guide.Add Objects to the simulationThe Graphical User interface contains buttons to add objects to the simulation. Click on the arrow next to the image to get a pull down menu which shows all the available options in a group. The screenshot below shows what happens when we click on the arrow next to the COMPONENTS button. Note that the picture on the button is the same as the MORE CHOICES option in the list. If we click on the button itself (instead of the arrow) we will go directly to the MORE CHOICES section of the object library.Also notice that the picture for the COMPONENTS button will change depending on what the last component that was added to the simulation was. Finally, the ZOOM EXTENTbutton in the toolbar will resize the viewports to fit all the objects currently included in the simulation.Edit objectsTo edit an object, select the object and press E on the keyboard or press the EDIT buttonon the toolbar. The easiest way to select an object is to click on the name of the object in the objects tree. However, objects can also be selected by clicking on the graphical depiction of them when the SELECT button is pressed. For more information see the Layout editor section of the reference guide.When we edit objects in FDTD, we get an edit window. The edit windows have units for the settings; in the GEOMETRY tab, the x, y and z location will be in μm by default. The units can be changed to nm if we choose SETTINGS->LENGTH units in the main menu. Fields in the edit windows act like calculators, so that equations can be entered in the fields. See the y span field below for an example.Start a new 2D/3D simulationBy default FDTD Solutions opens with a blank 3D simulation. In the following Getting Started Examples, we often begin with a 2D simulation, which can be obtained as shown in the screenshot below.模拟运行与优化This section discusses important checks which should be made before running a simulation (memory requirements, material fits) and gives links to more information about running simulations and parameter sweeps or optimizations.In this topicCheck memory requirementsCheck material fitsSetup parallel optionsRun simulationRun parameter sweeps and optimizationsCheck memory requirementsTo check the memory requirements, press the CHECK button If this is not the current icon, you can find it by pressing the arrow. Note that the memory report indicates the amount of memory used by each object in the simulation project as well as the total memory requirements. This allows for judicious choice of monitor properties in large and extensive simulations.Check material fitsThe CHECK button also contains a material explorer option . Many of the materials used in FDTD Simulations come from experimental data (see the materials section of the Reference Guide for references for the material data and descriptions of the FDTD material models). Before running a simulation, FDTD Solutions automatically generates a multi-coefficient model fit to the material data in the wavelength range for the source. It is a good idea to check and optimize the material fit before running a simulation. Setup the resource configurationBefore running any simulations, the resource options must be set up. These options canbe accessed by pressing the Resources button . In most cases, the default settings should be fine. The 'number of processes' is typically set to the number of cores in your computer.Run simulationYou can run simulations by pressing the RUN button on the mail toolbar. For more details, such as how to run multiple simulations in distributed mode, please see the RunSimulations section in the online User Guide, or the Running simulations and analysis section of the Reference Guide.Run parameter sweeps and OptimizationsFDTD Solutions also has a built in parameter sweep and optimization window. This window can be seen at the top of the page, and can be opened using the instructions in the Graphical User Interface discussion just prior to this topic.Optimization Window includes buttons to add a parameter sweep and add an optimization. Parameter sweeps and optimizations can include multiple parameters, or be nested. Each optimization or sweep can be run by pressing the right-most button.仿真数据分析This section discusses the tools used to analyze simulation data: the Analysis Window, the script environment and data export to third party software such as MATLAB. For more details please see the Analysis tools and the Scripting language chapters in the Reference Guide.In this topicAnalysis windowScriptingData exportAnalysis windowThe screen shot below shows the open analysis window. The analysis window can be used to plot monitor data.A variety of monitor data can be plotted via the Analysis window, depending on the monitor type. Spatial refractive index data, field vs time, field vs frequency, fields vs spatial dimensions, and power transmission vs frequency are a few examples. The terminology 'Intensity' indicates a squared quantity. For example, 'E intensity' means |E|^2. 'Ex intensity' means |Ex|^2. Field data from frequency monitors is always plotted as an Intensity. If you want to see the real or imaginary parts of the field, or if you want to obtain phase information, the scripting language will be required.ScriptingFDTD Solutions contains a built in scripting language which can be used to obtain simulation data, and do plotting or post-processing of data. The script prompt can be used to execute a few commands, or the built in script file editor can be used to create more complex scripts.A thorough introduction to the Lumerical scripting language can be found in the Scripting section of the FDTD Solutions online user guide. Definitions for all of the script commands are given in the Scripting language chapter in the Reference Guide.Data ExportFDTD simulation data can be exported into text file format using the analysis window, into a Lumerical data file format (*.ldf) which can be loaded into another simulation, or into a Matlab data (*.mat) file. Instructions for exporting to these file formats can be found in the links under the Scripting section.银质纳米线谐振腔散射教程问题综述当光波入射到金属纳米粒子上时,光与金属表面附近的电荷密度相互作用产生的表面等离子体极化surface plasmon polaritons 扮演着重要角色。

FDTD Solutions 7.0版介绍

FDTD Solutions 7.0版介绍

Lumerical Solutions公司FDTD Solutions 7.0版为微纳光学设计提供优化和共形网格化技术2010/10/29/11:27来源:MarketwireMarketwire2010年10月26日不列颠哥伦比亚省温哥华消息——全球纳米光学设计软件供应商LumericalSolutions公司今天宣布,其旗舰产品FDTDSolutions7.0版已经进行了创新性升级。

升级项目包括集成参数扫描分析与优化计算、业内首个面向纳米光学设计的共形网格和一个方便复杂器件设计的扩展仿真元器件库。

Lumerical首席技术官JamesPond博士表示:“FDTDSolutions7.0延续了Lumerical的传统:在易用的电脑辅助设计环境下整合最先进的算法,为突破性创新提供得力设计工具。

FDTDSolutions7.0与非常适用的优化算法相结合,是目前最好的工业级纳米光学设计软件。

设计人员和研究人员现在可以通过评估和优化他们的最佳设计概念来迅速取得进展。

”为优化、计算速度和精确性而设计FDTDSolutions7.0能让终端用户通过其独有的共形网格技术工具,获得更高的计算效率和精度。

在数字成像和太阳能等快速发展的行业,通过采用共形网格技术而获得更高精度的仿真结果,受到越来越多的追捧。

共形网格技术是通过麦克斯韦积分方程对不同介质之间界面的复杂描述,可达到亚晶胞精度。

与其它为低频应用(在这些应用中多数金属接近完美导体)而设计的类似技术不同的是,Lumerical的技术建立在其专有的高精度多系数材料特性拟合上,能精确模拟实际光学器件设计中任意色散介质之间的界面。

加利福尼亚州帕洛阿尔托的博世研究与技术中心高级工程师InnaKozinsky博士表示:“我们使用FDTDSolutions解决薄膜太阳能电池中的光传播问题。

现实生活中的太阳能电池器件相当复杂,包含多层材料,而FDTDSolutions7.0的共形网格使我们能够优化太阳能电池活性层的吸收,而不是手工设置非常精细的网格和分析大量的仿真结果。

微纳光子学设计分析软件FDTD Solutions专题资料集锦(二)

微纳光子学设计分析软件FDTD Solutions专题资料集锦(二)

要用高精度,等结果看起来还可以, 再用细网格作收敛试验, 因为无论如
何离散的计算都是有误差的, 当用高精度得到一个比较一致的结果时, 说明仿真设置正确, 结果可靠. 注意, 因为不同材料内的最短波长不同, 因此网格粗的精度不一定低. 最低精度是细网格的地方, 假设是其材料 内最短波长的十分之一, 其它地方的网格一定比其最短波长的十分之一 还要小, 以保证最低精度波长的十分之一
磁场脉冲全部通过器件?§检查所用网格精度或override能否分辨器件的细
节§检查结构是否有高级衍射? Transmission直接给出的是总透过率一般模 拟结果与文献结果大致类似,即表示基本设置几乎没有错误,但要得到完全
一致的结果,做收敛性试验,
关于mesh的问题,附件grating1是让软件自动生成mesh,并且将精度调整为8
要分辨细节,添加mesh是正确的选择。但是你现在选用了均匀网格,均匀网 格的划分是从某个角落开始的,而且你设定的网格大小不一定正好均分post ,当然它就不可能是对称的。如果你希望对称,你可以在FDTD/Advanced, 选force symmetric x或者Y、Z,根据你的需要。不过,看来你是需要在Z方
微纳光子学设计分析软件 FDTD Solutions专题 资料集锦(二)
更新时间:2015-1-6
以下是小编整理的一些有关微纳光子学设计分析软件FDTD Solutions专题
资料(二),其中包括了有关软件FDTD Solutions常见问题及解答。有关文档 的下载,可以到研发埠网站的专题模块,输入相应的专题名,搜索到相应的
专题便可以找到相应的文档,或是到研发埠网站的版块输入相应的文档名查找。
常见问题及解答:
使用 FDTD Solution怎么算45度和-45度的透射率?怎么计算相位差?

FDTDSolution入门

FDTDSolution入门

FDTDSolution⼊门FDTD_getting_started翻译配合FDTD_getting_started看1.介绍⽤FDTD Solutions进⾏模拟是很简单的。

⾸先,创建⼀个FDTD Simulation Project⽂件(扩展名为*.fsp)。

它包含了关于物理结构,光源,监测器,模拟参数的细节。

保存这个⼯程⽂件然后运⾏模拟。

运⾏完后,结果数据会加到fsp⽂件,⽤于分析。

模拟的通常步骤如下图所⽰。

在接下来的章节中有更详细的描述。

1.1什么是FDTD?时域有限差分⽅法已经成为⽬前最新的在复杂⼏何条件下解决麦克斯韦⽅程的⽅法。

它是⼀个完全的⽮量⽅法,既给出时域也给出频域的信息,它给电磁学和光⼦学的所有类型问题都提供了独特的视⾓。

这个⽅法在空间和时间上都是离散的。

电磁场和⽬标结构材料都在⼀种⽤所谓的Yee元胞组成的独⽴的⽹孔中来描述。

麦克斯韦⽅程在离散的时域中解决,所⽤时间步长和光通过⽹孔尺⼨所⽤时间有关。

当⽹孔⼤⼩趋于零时,这个⽅法确切的描述了麦克斯韦⽅程。

供模拟的结构可以有各种各样的电磁材料特性。

多种源可以加⼊到模拟中,连续迭代(重复)可以使电磁场随时间传播。

⼀般的,模拟运⾏后会直到在模拟区域基本上没有电磁场剩下才停⽌。

时域信息可以在任何空间点被记录。

这些数据可以在模拟的时候记录下来,也可以作为⼀系列快照在任何⽤户定义的时间记录下来。

任何空间点的频域信息可能可以通过对该点时域信息的傅⾥叶变换得到。

因⽽在⼀个简单的模拟中得到的基于能流和模型⽂件的频率可能分布在很⼴的频率范围。

另外,FDTD获取的近场结果可能被转成远场的,这对于研究散射是很重要的。

1.2第⼀步:创建物理结构版图编辑器(图略)⽤Structures列表创建⼏何结构。

他们的特性⽤EDIT编辑。

⼯具栏,在左边。

⽤Aligning按钮安排对象的位置。

材料特性:可⾃⾏定义或从数据库中选择。

1.3第⼆步:设置模拟区域和时间⽤ADD SIMULATION REGION设置:模拟区域,其⼤⼩和位置,⽹格精度,合适的边界条件。

第一章FDTD Solitions 简介

第一章FDTD Solitions 简介

第一章FDTD Sol u tions 简介使用FDTD Solutions来进行仿真设计计算简单易懂。

首先要在FDTD Solutions的CAD 编辑状态建立一个要运算的文件(文件扩展名是.fsp),它必须包含有关物理结构、光源、监视器、以及仿真运算所需要的参数。

将此文件SAVE后就可以运行。

运行结束后,计算所得数据添加在原文件之内,然后就可以进行分析。

进行仿真设计计算这一简单过程一般需要如下图所示的步骤。

在随后的章节中将会详细讲解这些步骤。

1.1什么是FDTD?FDTD是F inite -D ifference T ime-D omain 的简写。

现在该方法已经成为求解复杂结构中麦克斯韦方程的最常用方法。

它是一种全矢量法,因此很自然地就会给出用户所需要的时域和频域信息。

这是该方法在电磁学和光子学所有应用中所拥有的独特优点。

FDTD技术在时间和空间都是离散的。

因此电磁场和所感兴趣结构材料必须在由所谓的YEE元胞构成的网格上予以描述。

麦克斯韦方程的求解在时间上是离散的,所用的时间步长通过光速与网格尺寸紧密相关。

在网格尺寸趋于零的极限情况下,这项技术准确无误地描述麦克斯韦方程。

所要仿真计算的结构可以具有各种各样的多种电磁材料特性。

根据需要,可以同时使用多个光源。

典型情况下,程序一直运行,直到电磁场能量几乎全部离开整个仿真计算区为止。

时域信息可以在任何一个或多个空间点上予以记录。

这些数据的纪录可以贯穿整个计算过程,也可以仅在用户设立的时间点上进行。

频域信息也可以在任何一个或多个空间点或面上予以记录,它们是通过对时域信息进行傅立叶变换获得的。

正因为如此,一次运行就可以获得能流和模式结构的频率依赖关系。

此外,应用FDTD技术获得的近场结果也可以变换到远场。

这种近场-远场变换在诸如散射研究等应用方面是非常重要的。

1.2 第一步:创建器件的物理结构打开FDTD Solutions 后,一个有三维视窗的外形编辑器(Layout Editor,简称编辑状态)就呈现在眼前。

(完整版)FDTD_Solutions高级培训

(完整版)FDTD_Solutions高级培训
> y=exp(-x^2/9)*sin(10*x); > plot(x,y,”x”,”y”,”exp(-x^2/9)*sin(10*x)”);
> ?size(x);
© 2009 Lumerical Solutions, Inc.
Scripting: Mathematics
Simple Mathematics (plot a 2D gaussian) > x=linspace(-10,10,500); > y=linspace(-10,10,500); > X = meshgridx(x,y); > Y = meshgridy(x,y); > ?size(x); > ?size(X); > E = exp(-X^2/9 – Y^2/4); > image(x,y,E,”x”,”y”,”test 2D image”);
▪E = exp(-X^2/9 – Y^2/4); ▪E has size n by m
x1 x2 x3 … xn
y
x1 x2 x3 … xn x1 x2 x3 … xn ……………
x1 x2 x3 … xn
y ym ym ym … ym
……………
y3 y3 y3 … y3 y2 y2 y2 … y2 y1 y1 y1 … y1
▪ Understand how to obtain incoherent, unpolarized results with FDTD ▪ Understand the capabilities of parallel FDTD Solutions ▪ Learn how to setup a parallel simulation ▪ Study a CMOS image sensor design

FDTD Solutions资料集锦专题资料(一)

FDTD Solutions资料集锦专题资料(一)

纳米光学软件 FDTD Solutions
FDTD Solutions软件由加拿大Lumerical Solutions公司出品。通过向研究和 产品开发专业人士提供基于计算技术最新发展的高性能光学设计软件, Lumerical帮助光学设计者达到挑战性设计目标,满足严格的设计期限要求。 Lumerical的设计软件已在 30多个国家应用,全球科技领先厂商,如安捷伦 、ASML、博世、佳能、Harris、Northrop Grumman、奥林巴斯、飞利浦、三 星和意法半导体,以及众多卓越研究机构,如哈佛大学、加州理工学院、马源自更多资料:/Home.html
FDTD案例-相位差.rar
FDTD案例-自输入表面.rar
FDTD案例-远场.rar
FDTD案例-散射.rar
精品文献下载:
Nd_3+_掺杂硫系玻璃微球荧光腔量子电动力学增强效应.zip
采用粉料漂浮高温熔融法自制Nd3+掺杂硫系玻璃微球,研究了腔量子电动力 学增强效应对稀土掺杂硫系玻璃微球荧光光谱的影响。把直径90.53μ m的硫 系玻璃微球与锥腰直径1.02μ m的石英光纤锥耦合,将808nm抽运激光导入微 球,荧光光谱存在分立的共振峰。根据米氏散射理论公式,计算得到TE偏振 态下基模的三个共振峰位置,确定了这三个共振峰的模式序数。增强因子 η ≈1122,这表明微球荧光自发辐射速率增强幅度为1122倍。在基模条件下 对原增强因子公式进行近似化简,并利用近似公式进行估算得到η ≈1167, 误差为4%。
FDTD案例-谐振腔-型腔赛尔系数.rar
液晶显示相关算例:
FDTD案例-液晶-光学相位阵列.rar
FDTD案例-液晶-简单的LCD.rar
FDTD案例-液晶-扭转向列型LCD.rar

微纳光子学设计分析软件FDTD Solutions专题资料集锦(三)

微纳光子学设计分析软件FDTD Solutions专题资料集锦(三)

菱形金属纳米粒子光学性质的研究.rar
金属纳米粒子的光学性质与金属纳米粒子的组成、形状、尺寸及周围的介电 常数有关。利用时域有限差分法研究菱形纳米粒子的尺寸与其消光特性关系, 发现粒子尺寸的大小对其消光谱共振峰有较大影响, 随着粒子尺寸的增大, 消光谱共振峰可分裂成两个或多个共振峰。
磁光光纤光栅滤波器的全光时钟提取性能研究.rar
微纳光子学设计分析软件 FDTD Solutions专题
资料集锦(三)
更新时间:2015-1-6
以下是小编整理的一些有关微纳光子学设计分析软件FDTD Solutions专题 资料(三),其中包括了有关软件FDTD Solutions相关文档下载。有关文档的 下载,可以到研发埠网站的专题模块,输入相应的专题名,搜索到相应的专 题米颗粒的制备及其光散射特性.rar
采用热蒸发的方法在玻璃衬底上蒸镀厚度为 32 nm 的银薄膜,在氮气中退火 形成银纳米颗粒)利用 X 射线衍射仪(XRD)L扫描电子显微镜(SEM)和原子 力显微镜(AFM)研究了不同退火温度对银纳米颗粒的结晶特性和形貌的影响 ,并用光散射仪研究了其光散射特性)结果表明,随着退火温度的升高,银薄 膜从连续状逐渐变为分离状)在退火温度为 400 -时形成完全分离的半球颗粒 ,颗粒大小集中在 360 nm 左右,平均高度约为 250 nm,在散射角大于 252 时,银纳米颗粒对光的散射较强.
三角结构三芯光子晶体光纤中的模式耦合特性分析.rar
基于耦合模理论,得出了三角结构三芯光子晶体光纤( TTC-PCF) 的耦合模方 程. 数值模拟研究了该结构中纤芯间的定向耦合特性,分析了光纤结构及入 射波长对耦合系数的影响以及入射光振幅比对纤芯间能量耦合特性的 影响. 结果表明,通过调节入射光振幅比实现对纤芯间耦合强度的连续调节. 对比了耦合模理论与束传播法得到的结果,两者表现出很好的一致性. 结合 TTC-PC展现的独特耦合传输性能,讨论了其在耦合强度连续可调光纤定向耦 合器和大模场光纤激光器的研究.rar

FDTD

FDTD

Yee把E 和H 在时间长相差半个步长计算(为了满足精度的要求)。
FDTD基本原理(续)
9
根据这一原则可以写出六个差分方程:
其余的也如法可以写出,每个网格点上的个场分两的新值依赖于该点在前 一时间步长时刻的值机该点周围的临近点上另一场量在早半个时间步长时的值。 因此任一时刻可一次算出一个点,并行算法可计算出多个点。通过这些运算可 以交替算出电场磁场在各个时间步的值。
FDTD算法
李波 2006.12.1
议程
FDTD简介 简介 差分运算基本概念 FDTD基本原理 基本原理 解的稳定性 数值色散 吸收边界条件
2
FDTD简介
3
时域有限差分法 (FDTD, Finite-Difference Time-Domain)
– 是1966年K.S.Yee发表在AP上的一篇论文建立起来的,后被称为Yee网格 空间离散方式 – 核心思想是把带时间变量的Maxwell旋度方程转化为差分形式,模拟出电 子脉冲和理想导体作用的时域响应 – 号称目前计算电磁学界最受关注,最时髦的算法,但还在发展完善之中 – 国外已有多种基于FDTD算法的电磁场计算的软件:XFDTD,等等
FDTD基本原理(续)
7
Yee首先在空间上建立矩形差分网格,在时刻n△t时刻,F(x,y,z)可 以写成 F n (i, j,k)= F(iDx,iDy,iDz) 用中心差分取二阶精度: 对空间离散: (1)
对时间离散:
(2)
FDTD基本原理(续)
8
为了满足(1)式空间精度的要求,并满足(2)式,Yee 把空间任一网格上的E和H的六个分量,如下图放置:
16
Nt=120
Ey
△x
自由空间中,一维FDTD,采用一阶Mur吸收边界条件,时间步长为:t = 2c 高斯激励源,激励源的位置在中心网格的中心位置。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FDTD Solutions资料集锦 专题资料(二)
更新时间:2015-2-4
以下是小编整理的一些FDTD Solutions资料集锦,其中包括了有关FDTD
Solutions 应用算例和相关外文文献。有关文档的下载,可以到研发埠 网站的专题模块,输入相应的专题名,搜索到相应的专题便可以找umerical investigation of heat transfer in phase change
materials (PCMs).pdf The effects of metal foams on heat transfer enhancement in Phase Change Materials (PCMs) are investigated.The numerical investigation is based on the two-equation non-equilibrium heat transfer model,in which the coupled heat conduction and natural convection are considered at phase transition and liquid zones. The numerical results are validated by experimental data.
toward achieving high efficiencies in solar cells. Here we propose
a perpendicular elliptical silicon nanowire (PEE-SiNW) array for broadband light absorption in thin film silicon solar cells.
Storage (LTES) system. A phase field model deals with free boundary
problems without tracing their positions, and therefore provides potentials of being extended to consider more complicated mechanisms: multi-dimension and volume change.
Simulation results reveal that light absorption enhancement is
originated from the split of the principal modes as well as the excitation of high order modes caused by the asymmetry of the
精品文献下载:
808nmLD激发下高折射率差光纤锥_硫卤微球耦合系统的荧光回廊模.zip 用熔融淬冷法制备了0.5wt.%掺杂Nd3+:75GeS2-15Ga2S3-0CsI (0.5wt.% Nd-GGSI)硫卤玻璃。此基础上以玻璃粉料.1)玻璃微球,并在显微镜下选出表面质量高的硫卤
Experimental Investigation of First Hyperpolarizability by a Prism
Coupling Waveguide Method.pdf The complex first hyperpolarizability of chromophore for electrooptic effect has been determined by a prism coupling waveguide method. By measuring the field-induced changes in the reflected intensity of the prism–waveguide coupling system at different guided wave resonance dips,the real and imaginary parts of the first hyperpolarizability of the chromophore are simultaneously obtained without using the Kramers–Kronig transformation.
elliptical nanowires and the enhanced mode coupling between
adjacent elliptical nanowires attained by the appropriate arrangement of nanowires.
更多资料:/Home.html
Broadband absorption enhancement in elliptical silicon nanowire
arrays for photovoltaic applications.pdf Semiconducting nanowire arrays have emerged as a promising route
特性,适合于中红外非线性应用领域。
用于产生超连续谱的硫系光子晶体光纤的色散特性.zip 光子晶体光纤具备的无截止单模、模场面积可调和色散可控的特性,使其在 超连续谱的产生中具有独特的优势。超连续谱的产生条件之一,是所使用的 光纤须具有高的非线性,而硫系玻璃非线性系数极高,因此利用硫系玻璃光 子晶体光纤产生超连续谱的研究备受关注。采用熔融-淬冷法制备 Ge23Sb12S65 硫系玻璃,并以此为基质设计了用于超连续谱产生的高非线性 光子晶体光纤。采用多极法分析光纤孔间距Λ 、孔径比d/Λ 等对光纤的色散
零点位移、色散平坦调控、损耗及模场面积的影响,最终得到当Λ =2 μ m,
d/Λ =0.43 时,可获得2~4 μ m 平坦色散的高非线性光子晶体光纤结构。
相关外文文献:
Analytical considerations of light transport in nanostructured.pdf 纳米的光传输研究分析
polarizers. In order to minimize the influence of the standingwave electric field on the laserinduced damage threshold of the polarizers, a crucial optimization parameter, the maximum
结果与微球腔回音壁模式谐振的理论模型有较高的符合度。
Ge_30_Sb_8Se_62硫系玻璃的制备及其10.6μ m低损耗空芯光子带隙光纤的设 计.zip 硫系玻璃光子晶体光纤在中远红外激光传输领域具有广阔的应用前景。制备
了红外波段具有优良透过特性的 Ge30Sb8Se62硫系玻璃,并以此为基质材料
An effectiveness study of enhanced heat transfer in phase change
materials (PCMs).pdf
A phase field model is for the first time employed to solve the phase change problem in a metal foamembeddedLatent Thermal Energy
Automated method for optimization of electric field
distributions and optical parameters in thin-film polarizers.pdf An efficient method based on the modified needle optimization technique is proposed to design high-power laser thin-film
electric field intensity in the high-refractive-index layers,
is included in the proposed merit function.
Broadband negative refraction in stacked fishnet metamaterial.pdf We demonstrate a scheme to utilize the stacked fishnet metamaterial for all-angle negative refraction and subwavelength imaging within a wide frequency range starting from zero frequency. The theoretical predictions are verified by the brute-force finite-difference-in-timedomain numerical simulations. The phenomena come from the negative evanescent coupling between the adjacent slab waveguides through the breathing air holes perforated on metal layers.
设计了一种适合于高功率中红外激光传输的带隙型光子晶体光纤。利用平面 波展开法和有限元法分析了不同结 构下该光纤的光子带隙、模场面积和限制
损耗特性。通过优化光纤的结构参数,获得了在10.6μ m处限制损耗小于
0.1dB/m的大模场(模场面积大于 100μ m2)光子晶体光纤。
中红外色散平坦硫系光子晶体光纤设计及性能研究.zip 以自制Ge20Sb15Se65 硫系玻璃为基质材料设计,一种正八边形结构色散平坦 型中红外硫系光子晶体光纤,并采用多极法对其中红外色散和传输特性进行 数值研究。结果表明:控制该光纤 占空比(d/Λ ) 在0.323—0.367之间,其 色散及传输特性在3—5m范围内可调。当孔间距Λ = 3.4μ m,孔直径d = 1.1μ m时,光纤在4.1—4.9μ m波段的色散值在-0.8—0.8 psnm-1km-1 波动 ,且具备单模低损耗传输(Loss<0.049dB/m),小模场面积(Aeff < 8.46 m2)
相关文档
最新文档