高考物理模拟试题专题分类汇编追击和相遇问题能力篇

合集下载

高三物理追击相遇问题试题答案及解析

高三物理追击相遇问题试题答案及解析

高三物理追击相遇问题试题答案及解析1. A、B两辆汽车从同一地点在同一直线上做匀变速直线运动,它们的速度时间图象如图所示,则在6s内A.A、B两辆汽车运动方向相反B.A车的加速度大于B车的加速度C.t=4s时,A、B两辆汽车相距最远D.t=4s时,A、B两辆汽车刚好相遇【答案】C【解析】在v-t图象中速度的正负表示物体的速度方向,即运动方向.由图可知,两物体的速度均沿正方向,所以方向相同,故A错误;由速度图象的斜率大小等于加速度大小,斜率正负表示加速度方向知,A物体的加速度大小小于B物体的加速度大小,方向相反,故B错误;由图象可知,t=4s时,A、B两物体的速度相同,之前B物体的速度比A物体的速度大,两物体相距越来越远,之后A物体的速度大于B物体的速度,两物体相距越来越近,所以t=4s时两物体相距最远,故C正确,D错误.【考点】本题考查考生对匀变速直线运动的速度随时间变化关系图象的理解和掌握.2.甲、乙两车在公路上沿同一方向做直线运动,在时,乙车在甲车前处,它们的图象如图所示,下列对汽车运动情况的描述正确的是A.甲车先做匀速运动再做反向匀减速运动B.在第20s末,甲、乙两车的加速度大小相等C.在第30s末,甲、乙两车相距100mD.在整个运动过程中,甲、乙两车可以相遇两次【答案】D【解析】由图象可知:甲车先做匀速运动再做匀减速直线运动,但是速度图象一直在时间轴的上方,没有反向,故A错误;在第20s末,甲车的加速度大小为a==1m/s2,乙车的加速度甲==m/s2,不相等,故B错误;在第30s末,甲的位移为20×10+大小为a乙×20×20m=400m,乙的位移为×30×20m=300m,所以甲乙两车相距400-300-50m=50m,故C 错误;刚开始乙在甲的前面50m处,甲的速度大于乙的速度,经过一段时间甲可以追上乙,然后甲在乙的前面,到30s末,甲停止运动,甲在乙的前面50m处,此时乙以20m/s的速度匀速运动,所以再经过2.5s乙追上甲,故在整个运动过程中,甲、乙两车可以相遇两次,故D正确.【考点】本题考查追及相遇问题。

高考物理一轮复习 专题 追及、相遇问题题型荟萃-人教版高三全册物理试题

高考物理一轮复习 专题 追及、相遇问题题型荟萃-人教版高三全册物理试题

追与、相遇问题14.1初速度为零的匀加速追同向匀速 题型特色该题型考查初速度为零的匀加速直线运动追赶匀速直线运动的问题时;考查理解、推理、分析与综合能力,以与应用数学工具解决物理问题的能力. 考点回归初速度为零的匀加速直线运动(甲)追赶匀速直线运动(乙),定能追上.追上前两者具有最大距离的条件是追赶者的速度等于被追赶者的速度.具有相等速度之前,甲速度较小,甲、乙之间的距离越拉越大,速度相等之后,甲、乙之间的距离越来越小,最终甲追上乙,并在乙前面运动. 典例精讲例1一辆汽车在十字路口等候绿灯,当绿灯亮起时,汽车以3m/s 的加速度开始行驶,恰在此时一-辆自行车以6 m/s 的速度从后边赶来并匀速驶过路口.(1)汽车从路口开动后,在追上自行车前经多长时间两车相距最远?此时距离是多少? 〔2〕什么时候汽车追上自行车?此时汽车的速度是多少? 【详解示范】 一、物理解析法〔1〕汽车开动后速度由零逐渐增大,而自行车的速度是定值,当汽车的速度小于自行车的速度时,两者的距离将越来越大,在汽车的速度增加到大于自行车的速度后,两车的距离将缩小,因此两者速度相等时两车相距最远,有v at v ==自汽,解得v t a=自最大距离为2162m x v t at m =-=自(2) 汽车追上自行车时,两者发生的位移相等,如此有212at v t =自 ,解得t=4s. 此时汽车速度为12/v at m s ==汽. 二、数学极值法(1)设汽车在追上自行车之前经时间t 两车相距最远,如此有21-2x x x v t at ==-自自汽 由二次函数求极值条件,当t=2 s 时,两者相距最远,最大距离为6m x m =. (2)汽车追上自行车时,有21-=02x x x v t at ==-自自汽,解得t=4s.此时汽车的速度为12/v at m s ==汽. 三、图像分析法.自行车和汽车的v-t 图像如下列图,图像与横坐标轴所包围的面积表示位移的大小。

01追及与相遇问题:高考物理大题突破(试题含解析)

01追及与相遇问题:高考物理大题突破(试题含解析)

专题01追及与相遇问题2.5m/s的加速度开始行驶,【例题】(2022·湖南郴州·一模)甲车在十字路口遇红灯,当绿灯亮时甲车以2恰在此时,乙车以10m/s的速度匀速驶来与甲车同向行驶。

从侧后边超过甲车,求:(1)甲车从路口开始加速起。

在追上乙车之前两车相距的最大距离;(2)甲车经过多长时间能追上乙车;(3)甲车追上乙车时甲车速度大小。

1.分析思路可概括为“一个临界条件”“两个等量关系”.(1)一个临界条件:速度相等.它往往是物体间能否追上或两者距离最大、最小的临界条件,也是分析、判断问题的切入点;(2)两个等量关系:时间等量关系和位移等量关系,通过画草图找出两物体的位移关系是解题的突破口.2.能否追上的判断方法(临界条件法)物体B追赶物体A:开始时,两个物体相距x0,当v B=v A时,若x B>x A+x0,则能追上;若x B=x A+x0,则恰好追上;若x B<x A+x0,则不能追上.3.特别提醒若被追赶的物体做匀减速直线运动,一定要注意判断被追上前该物体是否已经停止运动.4.常用分析方法(1)物理分析法:抓住“两物体能否同时到达空间某位置”这一关键,认真审题,挖掘题目中的隐含条件,建立物体运动关系的情境图.(2)二次函数法:设相遇时间为t,根据条件列方程,得到关于位移x与时间t的二次函数关系,由此判断两物体追及或相遇情况.①若Δ>0,即有两个解,说明可以相遇两次;②若Δ=0,说明刚好追上或相遇;③若Δ<0,说明追不上或不能相遇.(3)极值法设经过时间t,分别列出两物体的位移—时间关系式,得位移之差Δx与时间的二次函数,再利用数学极值法求解距离的最大(或最小)值.(4)图像法:将两个物体运动的速度—时间关系图线在同一图像中画出,然后利用图像分析、求解相关问题.【变式训练】(2023·上海徐汇·高三上海市第二中学校考期中)如图表示甲乙两个物体的速度时间图和位移时间图,其中甲物体做匀变速直线运动。

高中物理追击和相遇问题专题带答案

高中物理追击和相遇问题专题带答案

专题:直线运动中的追击和相遇问题一、相遇和追击问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。

二、 解相遇和追击问题的关键画出物体运动的情景图,理清三大关系 (1)时间关系 :0t t t B A ±=(2)位移关系:0A B x x x =±(3)速度关系:两者速度相等。

它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

三、追击、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追击问题中常用的临界条件:⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2):v 1< v 2时,两者距离变大;v 1= v 2时, 两者距离最大;v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。

【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少? 答案:(1) 2s 6m (2)12m/s(二).匀速运动追匀加速运动的情况(开始时v 1> v 2):v 1> v 2时,两者距离变小;v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次;③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。

高考物理《追及和相遇问题》真题练习含答案

高考物理《追及和相遇问题》真题练习含答案

高考物理《追及和相遇问题》真题练习含答案1.[2024·湖南省衡阳市月考](多选)如图,一颗松子沿倾斜冰面AB 从顶端A 由静止匀加速滑下,1 s 后,松鼠从倾斜冰面的顶端A 以1.5 m/s 的初速度、3 m/s 2的加速度匀加速追赶松子.追赶过程中,松鼠与松子相隔的最远距离为98 m ,且松鼠恰好在底端B 处追上松子,则( )A .松子沿冰面下滑的加速度大小为2 m/s 2B .冰面AB 的长度为8 mC .松鼠从顶端A 出发后,经过2 s 就追上了松子D .在松鼠与松子相隔最远时,松鼠的速度大小为2 m/s 答案:AC解析:设松子运动的加速度为a ,经过时间t ,松鼠与松子相隔最远,此时松鼠与松子的速度均为v .根据位移—时间公式有v 2 t -v +1.52 (t -1)=98m ,根据匀变速直线运动公式有v =32 +3(t -1),解得t =1.5 s ,v =3 m/s ,故a =v t =2 m/s 2,A 正确,D 错误;设松子运动的时间为t ′时,松鼠追上松子,根据12 ×2t ′2=32 (t ′-1)+12 ×3(t ′-1)2,解得t ′=3 s ,松鼠经过2 s 追上松子,C 正确;倾斜冰面AB 的长度L =12×2t ′2=9 m ,B 错误.2.如图所示,一辆轿车和一辆卡车在同一公路上均由静止开始同时相向做匀加速直线运动,加速度大小分别为7 m/s 2和3 m/s 2,刚开始运动时两车车头相距20 m ,轿车车身全长为5 m ,卡车车身全长为20 m ,则从开始运动到两车分离的时间为( )A .1.0 sB .2.0 sC .3.0 sD .3.5 s 答案:C解析:设经过时间t 后,轿车和卡车车尾分离,轿车的位移x 1=12 a 1t 2,卡车的位移x 2=12a 2t 2,x 1+x 2=45 m. 联立解得t =3.0 s . 3.[2024·广东省广州市月考](多选)某公司为了测试摩托车的性能,让两驾驶员分别驾驶摩托车在一平直路面上行驶,利用速度传感器测出摩托车A 、B 的速度随时间变化的规律并描绘在计算机中,如图所示,发现两摩托车在t =25 s 时同时到达目的地.则下列叙述正确的是( )A .摩托车B 的加速度为摩托车A 的5倍B .两辆摩托车从同一地点出发,且摩托车B 晚出发10 sC .在0~25 s 时间内,两辆摩托车间的最远距离为400 mD .在0~25 s 时间内,两辆摩托车间的最远距离为180 m 答案:AC解析:v ­t 图像的斜率表示加速度,则A 、B 两车的加速度分别为a A =ΔvΔt =0.4 m/s 2,a B =Δv ′Δt ′ =2 m/s 2,因为a B a A =20.4 =51 ,所以摩托车B 的加速度为摩托车A 的5倍,A 正确;由题图可知,在t =25 s 时两车达到相同的速度,在此之前摩托车A 速度一直大于摩托车B 速度,两辆摩托车距离一直在缩小,所以在t =0时刻,两辆摩托车距离最远,不是从同一地点出发的,B 错误;速度图像和坐标轴围成的面积代表摩托车行驶的位移,因此两辆摩托车间的最远距离Δx =x A -x B =12 ×(20+30)×25 m -12 ×30×(25-10) m =400 m ,C 正确,D 错误.4.[2024·辽宁省朝阳市建平实验中学期中考试]在某次遥控车挑战赛中,若a 、b 两个遥控车从同一地点向同一方向做直线运动,它们的v ­t 图像如图所示,则下列说法不正确的是( )A .b 车启动时,a 车在其前方2 m 处B .运动过程中,b 车落后a 车的最大距离为1.5 mC .b 车启动3 s 后恰好追上a 车D .b 车超过a 车后,两车不会再相遇答案:A解析:b 车启动时,a 车在其前方距离Δx =12 ×2×1 m =1 m ,A 错误;运动过程中,当两车速度相等时,b 车落后a 车的距离最大,最大距离为Δx m =1+32 ×1 m -12×1×1 m=1.5 m ,B 正确;b 车启动3 s 后,a 车的位移x a =12 ×2×1 m +3×1 m =4 m ,b 车的位移x b =1+32 ×2 m =4 m ,即b 车恰好追上a 车,C 正确;b 车超过a 车后,因b 车速度大于a车,则两车不会再相遇,D 正确.5.[2024·湖南省衡阳市月考](多选)如图,小球a 自地面高h 处做自由落体运动,同时位于小球a 正下方的小球b 自地面以初速度v 0竖直上抛,b 球上升到最高点时恰与a 球相遇,a 、b 均可视为质点,则( )A .a 、b 两球经过时间hv 0 相遇B .a 、b 两球相遇点距地面高度为h2C .a 、b 两球在相遇过程中速度变化量的大小不相等D .a 、b 两球在相遇过程中速度变化量的方向不相同 答案:AB解析:设两者经过时间t 相遇,对小球a ,有h 1=12 gt 2;对小球b ,有h 2=v 0t -12 gt 2,t =v 0g ,且h 1+h 2=h ,联立解得t =h v 0 ,h 1=h 2=h2 ,A 、B 正确;两球在相遇过程中,均做加速度为g 的匀变速运动,速度变化量的大小和方向均相同,C 、D 错误.6.[2024·福建省龙岩市一级校联盟联考]电子设备之间在一定距离范围内可以通过蓝牙连接进行数据交换,已经配对过的两电子设备,当距离小于某一值时,会自动连接;一旦超过该值时,蓝牙信号便会立即中断,无法正常通信.如图所示,甲、乙两辆汽车并排沿平直路面向前行驶,两车车顶O1、O2两位置都装有蓝牙设备,这两个蓝牙设备在5 m以内时能够实现通信.t=0时刻,甲、乙两车刚好位于图示位置,此时甲车的速度为5 m/s,乙车的速度为2 m/s,O1、O2的距离为3 m.从该时刻起甲车以1 m/s2的加速度做匀减速运动直至停下,乙车保持原有速度做匀速直线运动.(忽略信号传递及重新连接所需的时间)求:(1)从t=0时刻起,甲车的运动时间;(2)在甲车停下来之前,两车在前进方向上的最大距离;(3)从t=0时刻起两车能够进行蓝牙通信的总时间.答案:(1)5 s(2)4.5 m(3)6.25 s解析:(1)甲车运动到停止0=v甲+a甲t其中a甲=-1 m/s2,代入数据得t=5 s(2)两车共速时,沿前进方向的距离最大:即v乙=v甲+a甲t′t′=3 s根据位移—时间公式有x甲=v甲t′+12a甲t′2,x乙=v乙t′Δx=x甲-x乙解得Δx=4.5 m(3)根据几何知识可知,当甲车在乙车前方且O1O2=5 m时,有x甲-x乙=4 m根据运动学公式有x甲=v甲t-12at2,x乙=v乙t解得t1=2 s,t2=4 s当0<t<2 s时,有O1O2<5 m,当2 s<t<4 s时,有O1O2>5 mt=t2=4 s时,甲车的速度为v甲1=v甲-at2=1 m/s<v乙t=4 s之后,甲、乙两车的距离不断减小,且甲车能够继续行驶的距离为x甲1=v2甲12a=0.5 m根据几何关系可知,从t=4 s开始到乙车行驶至甲车前方4 m的过程中,O1O2<5 m,这段过程经历的时间为t′=2×4 m+0.5 mv乙=4.25 s所以甲、乙两车能利用蓝牙通信的时间为t总=2 s+4.25 s=6.25 s。

高考物理复习专题追击和相遇问题精练5

高考物理复习专题追击和相遇问题精练5

高三物理复习专题精练1.5 追及与相遇问题一、单项选择题1.在平直道路上,甲汽车以速度v 匀速行驶。

当甲车司机发现前方距离为d 处的乙汽车时,立即以大小为a 1的加速度匀减速行驶,与此同时,乙车司机也发现了甲,立即从静止开始以大小为a 2的加速度沿甲运动的方向匀加速运动。

则A .甲、乙两车之间的距离一定不断减小B .甲、乙两车之间的距离一定不断增大C .若d a a v )(221+>,两车一定不会相撞 D .若d a a v )(221+<,两车一定不会相撞1.D2.a 、b 两物体从同一位置沿同一直线运动,其v – t 图线如图所示,下列说法正确的是( )A .a 、b 都加速时,物体a 的加速度大于物体b 的加速度B .10s 末,a 、b 两物体相距最远C .30s 末,a 、b 两物体相遇D .30s 末,a 、b 两物体速度相等,相距60m2.AD3.如图所示,为a、b两物体从同一位置沿同一直线运动的速度图象,下列说法正确的是()A.a、b加速时,物体a的加速度小于物体b的加速度B.20s时,a、b两物体相遇前相距最远C.40s时,a、b两物体相遇前相距最远D.60s时,a、b两物体相遇3.AC4.如图所示,A、B分别是甲、乙两小球从同一地点沿同一直线运动的v-t图象,根据图象可以判断( )A. 两球在t=2s时速率相等B. 两球在t=8s时相距最远C. 两球运动过程中不会相遇D.甲、乙两球做初速度方向相反的匀减速直线运动,加速度大小相同方向相反4.A5. 甲、乙两质点在同一直线上做匀加速直线运动,v-t图象如图所示,3秒末两质点在途中相遇,由图像可知()A.甲的加速度等于乙的加速度B.出发前甲在乙之前6m处C.出发前乙在甲前6m处D.相遇前甲、乙两质点的最远距离为6m5.BD6.甲、乙两车在同一水平道路上,一前一后相距s=6m,乙车在前,甲车在后,某时刻两车同时开始运动,两车运动的过程如图所示,则下列表述正确的是( )A.当t=4s时两车相遇B.当t=4s时两车间的距离最大C.两车有两次相遇D.两车有三次相遇6.D7.A、B两个物体从同一地点在同一直线上做匀变速直线运动,它们的速度图象如图所示,则()A .A 、B 两物体运动方向相反B .t =4s 时,A 、B 两物体相遇C .在相遇前,t =4s 时A 、B 两物体相距最远D .在相遇前,A 、B 两物体最远距离20m7.CD8.甲、乙两车在一平直道路上同向运动,其v t -图像如图所示,图中OPQ ∆和OQT ∆的面积分别为1s 和2s ()21s s >。

高中物理追击、追及和相遇问题

高中物理追击、追及和相遇问题

高中物理追击、追及和相遇问题一、追击问题追和被追的两物体的速度相等(同向运动)是能追上、追不上,两者距离有极值的临界条件:1、做匀减速直线运动的物体追赶同向做匀速直线运动的物体.(1)两物体的速度相等时,追赶者仍然没有追上被追者,则永远追不上,这种情况下当两者的速度相等时,它们间的距离最小.(2)两物体的速度相等时,如它们处在空间的同一位置,则追赶者追上被追者,但两者不会有第二次相遇的机会.(3)若追赶者追上被追者时,其速度大于被追者的速度,则被追者还可以再追上追赶者,两者速度相等时,它们间的距离最大.2、初速度为零的匀加速直线运动追赶同向做匀速直线运动的物体.(1)追上前,两者的速度相等时,两者间距离最大.(2)后者与前者的位移大小之差等于它们初始位置间的距离时,后者追上前者.二、相遇问题1、同向运动的两物体追及即相遇.2、相向运动的物体,当各自发生位移大小之和等于开始时两物体间的距离时即相遇.例1、两辆车同时同地同向做直线运动,甲以4m/s的速度做匀速运动,乙由静止开始以2m/s2的加速度做匀加速直线运动. 求:(1)它们经过多长时间相遇?相遇处离原出发地多远?(2)相遇前两物体何时距离最大?最大距离多少?解析:(1)经过t时间两物体相遇,位移为s,根据各自的运动规律列出方程:代入数据可得t=4s,s=16m.(2)甲乙经过时间t'它们之间的距离最大,则从上面分析可知应该满足条件为:,,解得:此时它们之间最大距离为什么当时,两车间的距离最大?这是因为在以前,两车间距离逐渐变大,当以后,,它们间的距离逐渐变小,因此当时,它们间的距离最大.例2、羚羊从静止开始奔跑,经过50m的距离能加速到最大速度为25m/s,并能保持一段较长的时间;猎豹从静止开始奔跑,经过60m的距离能加速到最大速度30m/s,以后只能维持这一速度4.0s. 设猎豹距羚羊x时开始攻击,羚羊在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑,则:(1)猎豹要在减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追到羚羊,x值应在什么范围?解析:解决这类题目,关键是要读懂题目,比如:猎豹在减速前一共用了多长时间,减速前的运动是何种运动等等.(1)由下图可知,猎豹要在减速前追到羚羊:对猎豹:,对羚羊同理可得:,即;当x≤55m时,猎豹能在减速前追上羚羊(2)猎豹要在其加速阶段追到羚羊,则:对猎豹:对羚羊:则:即:当x≤31.9m时,猎豹能在加速阶段追上羚羊.。

高中物理追击和相遇问题专题(含详解).doc

高中物理追击和相遇问题专题(含详解).doc

v1.0可编辑可修改直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。

二、解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系( 1)时间关系:t A t B t0(2)位移关系:x A x B x0( 3)速度关系:v A=v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

三、追及、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质, 选择同一参照物, 列出两个物体的位移方程;B.找出两个物体在运动时间上的关系C.找出两个物体在运动位移上的数量关系D.联立方程求解 .说明 : 追及问题中常用的临界条件:⑴速度小者加速追速度大者, 速度在接近,但距离在变大。

追上前两个物体速度相等时, 有最大距离 ;⑵速度大者减速追赶速度小者 , 速度在接近,但距离在变小。

追上前在两个物体速度相等时 , 有最小距离 . 即必须在此之前追上 , 否则就不能追上 .四、典型例题分析:( 一 ) .匀加速运动追匀速运动的情况(开始时v1< v 2):1.当 v1< v 2时,两者距离变大;2.当 v1= v 2时,两者距离最大;3.v1>v2时,两者距离变小,相遇时满足x1= x 2+x,全程只相遇( 即追上 ) 一次。

【例 1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1) 小汽车从开动到追上自行车之前经过多长时间两者相距最远此时距离是多少(2)小汽车什么时候v1.0可编辑可修改( 二 ) .匀速运动追匀加速运动的情况(开始时v1> v 2):1.当 v1> v 2时,两者距离变小;2.当 v1= v 2时,①若满足x1< x 2+x,则永远追不上,此时两者距离最近;②若满足 x1=x2+x,则恰能追上,全程只相遇一次;③若满足 x1> x2+x,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。

高中物理追击和相遇问题专题训练

高中物理追击和相遇问题专题训练

【例2】一个步行者以6m/s的最大速率跑步去追赶被红灯阻停的公共汽车,当他距离公共汽车25m 时,绿灯亮了,汽车以1m/s2的加速度匀加速启动前进,问:人能否追上汽车?若能追上,则追车过程中人共跑了多少距离?若不能追上,人和车最近距离为多少?【例3】汽车正以10m/s的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s2的匀减速运动,汽车恰好不碰上自行车。

求关闭油门时汽车离自行车多远?训练1:一辆客车在平直公路以30m/s的速度行驶,突然发现正前方40m处有一货车正以20m/s的速度沿同一方向匀速行驶,于是客车立刻刹车,以2m/s2的加速度做匀减速直线运动,问此后的过程中客车能否撞到货车?训练2:列车以72km/h的速度行驶,司机突然发现一平直铁路上前方500m处,一货车正以36km/h 的速度同向行驶,为避免撞车,列车司机立即刹车,求列车刹车时加速度的最小值.【例4】当汽车B在汽车A前方7m时,A正以v A=4m/s的速度向前做匀速直线运动,而汽车B此时速度v B=10m/s,并关闭油门向前做匀减速直线运动,加速度大小为a=2m/s2。

此时开始计时,则A追上B需要的时间是多少?针对训练:1、一辆值勤的警车停在公路边,当警员发现从他旁边以8m/s的速度匀速行驶的货车有违章行为时,决定前去追赶,经2.5s,警车发动起来,以加速度2m/s2做匀加速运动。

试问:(1)警车要多长时间才能追上货车?(2)在警车追上货车之前,两车间的最大距离是多少?2、汽车的制动性能经测定,当它以标准速度20m/s在水平轨道上行驶时,制动后需40s才停下,现这列车正以20m/s的速度在水平轨道上行驶,司机发现前方180m处一货车正以6m/s的速度同向行驶,于是立即制动,问是否会发生撞车事故?3、汽车从静止开始以a = 1m/s2的加速度前进,相距汽车x0 = 25m处,与车运动方向相同的某人同时开始以v = 6m/s的速度匀速追赶汽车,问人能否追上?若追不上,求人与汽车间的最小距离.4、在平直公路上,一辆摩托车从静止出发,追赶在正前方100m处正以v0=10m/s的速度匀速前进的卡车.若摩托车的最大速度为v m=20m/s,现要求摩托车在120s内追上卡车,求摩托车的加速度应满足什么汽车正以v1=12 m/s的速度在平直的公路上匀速行驶,突然发现正前方相距x处有一辆自行车以v2 = 4 m/s的速度同方向匀速行驶,汽车立即以加速度大小a = 2 m/s2做匀减速直线运动,结果汽车恰好未追上自行车,求x的大小.5、(全国1卷)甲乙两运动员在训练交接棒的过程中发现:甲经短距离加速后能保持9 mis的速度跑完全程:乙从起跑后到接棒前的运动是匀加速的,为了确定乙起跑的时机,需在接力区前适当的位置设置标记,在某次练习中,甲在接力区前x0-13.5 m处作了标记,并以V-9 m/s的速度跑到此标记时向乙发出起跑口令,乙在接力区的前端听到口令时起跑,并恰好在速度达到与甲相同时被甲追上,完成交接棒,已知接力区的长度为L=20m.求:(1)此次练习中乙在接棒前的加速度a.(2)在完成交接棒时乙离接力区末端的距离.6、A、B两车在一条水平直线上同向匀速行驶,B车在前,车速v2=10m/s,A车在后,车速72km/h,当A、B相距100m时,A车用恒定的加速度a减速。

高三物理追击相遇问题试题答案及解析

高三物理追击相遇问题试题答案及解析

高三物理追击相遇问题试题答案及解析1.(6分)隧道是高速公路上的特殊路段也是事故多发路段之一。

某日,一货车A因故障恰停在隧道内离隧道入口d="50" m的位置。

此时另一轿车B正以v="25" m/s的速度匀速向隧道口驶来,轿车B的驾驶员在进入隧道口时,才发现停在前方的货车A并立即采取制动措施。

假设该驾驶员反应时间t="0.6" s,轿车制动时受到的阻力恒为自身重力的0.75倍,取g="10" m/s2。

(1)试通过计算说明轿车B是否会与停在前面的货车A相撞?(2)若会相撞,那么撞前瞬间轿车B速度大小为多少?若不会相撞,那么停止时与货车A的距离为多少?【答案】⑴轿车B会与停在前面的轿车A相撞⑵ v=10m/s【解析】(1)轿车B在实际制动前做匀速直线运动,设其发生的位移为s1,由题意可知 s1=vt="15" m 1 分实际制动后,f=0.75mg由牛顿第二定律可知f=ma得a="7.5" m/s2 1分设轿车B速度减为0时发生的位移为s2,有v 02=2as2代入数据得:s2=41.7m 1分而轿车A离洞口的距离为d="50" m。

因s1 +s2>d,所以轿车B会与停在前面的轿车A相撞。

1分(2)设相撞前的速度为v,则有v2=v02-2a(d-s1) 1分解得:v=10m/s 1 分【考点】追及问题2.一辆汽车在公路上做匀速直线运动,速度大小为v1=10m/s,一人骑自行车在汽车前面以v 2=4m/s的速度做匀速直线运动,汽车司机发现骑自行车的人时离自行车还有s=8m远。

汽车司机立即刹车让汽车开始做匀减速直线运动,加速度大小为a=2m/s2, 试判断骑自行车的人是否安全?()A.不安全B.安全C.有惊无险D.无法判断【答案】A【解析】据题意,车速为v1=10m/s做匀速直线运动,自行车速度为v2=4m/s,也做匀速直线运动,当汽车做匀减速运动后,要保证汽车不撞到自行车,在汽车即将追上自行车是两车速度相等,这个过程所用时间为:,这段时间内有:自行车位移与原来两车距离之和小于汽车在该段时间内的位移,故不安全。

2025高考物理专项复习专题进阶课三 追及相遇问题含答案

2025高考物理专项复习专题进阶课三 追及相遇问题含答案

2025高考物理专项复习专题进阶课三追及相遇问题含答案专题进阶课三追及相遇问题核心归纳1.几种追及相遇问题的图像比较:类型图像说明匀加速追匀速(1)t=t0以前,后面物体与前面物体间距逐渐增大;(2)t=t0时,v1=v2,两物体间距最大,为x0+Δx;(3)t=t0以后,后面物体与前面物体间距逐渐减小;(4)能追上且只能相遇一次匀速追匀减速匀加速追匀减速匀减速追匀速开始时,后面物体与前面物体间的距离在逐渐减小,当两物体速度相等时,即t=t0时刻:(1)若Δx=x0,则恰能追上,两物体只能相遇一次,这也是避免相撞的临界条件;(2)若Δx<x0,则不能追上,此时两物体有最小距离,为x0-Δx;(3)若Δx>x0,则相遇两次,设t1时刻匀速追匀加速匀减速追匀加速Δx=x0,两物体第一次相遇,则必有t2时刻两物体第二次相遇,且t2-t0=t0-t1注意:(1)v1是前面物体的速度,v2是后面物体的速度;(2)x0为开始时两物体之间的距离;(3)Δx为从开始追赶到两者速度相等时,前面或后面的物体多发生的位移2.追及相遇问题情况概述:(1)追及问题①若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度。

②若后者追不上前者,则当后者的速度与前者相等时,两者相距最近。

(2)相遇问题①同向运动的两物体追及即相遇。

②相向运动的两物体,当各自发生的位移大小之和等于开始时两物体的距离时即相遇。

提醒:(1)若被追赶的物体做匀减速直线运动,一定要注意判断被追上前该物体是否已经停止运动。

(2)仔细审题,注意抓住题目中的关键字眼(如“刚好”“恰好”“最多”“至少”等),充分挖掘题目中的隐含条件。

3.解题思路:(1)根据对两物体运动过程的分析,画出两物体运动的示意图或v-t图像,找到临界状态和临界条件。

(2)根据两物体的运动性质,分别列出两物体的位移方程,注意要将两物体运动时间的关系反映在方程中。

高中物理追击相遇问题考试卷模拟考试题.docx

高中物理追击相遇问题考试卷模拟考试题.docx

《追击相遇问题》考试时间:120分钟 考试总分:100分遵守考场纪律,维护知识尊严,杜绝违纪行为,确保考试结果公正。

1、汽车正在以10m/s 的速度在平直的公路上前进,在它的正前方x 处有一辆自行车以4m/s 的速度做同方向的运动,汽车立即关闭油门做a='-'6m/s<sup>2</sup>的匀变速运动,若汽车恰好碰不上自行车,则x 的大小为()( )A.9.67mB.3.33mC.3mD.7m2、一路人以4m/s 的速度跑去追赶被红灯阻停的公交车,在跑到距汽车10m 处时,绿灯亮了,汽车以1.0m/s<sup>2</sup>的加速度匀加速启动前进,则()( )A.人能追上公共汽车,追赶过程中人跑了32mB.人不能追上公共汽车,人、车最近距离为2mC.人能追上公共汽车,追上车前人跑了8sD.人不能追上公车,且车开动后,人、车距离越来越远3、甲、乙两辆汽车以相同的恒定速度直线前进,甲车在前,乙车在后,甲车上的人A 和乙车上的人B 各用石子瞄准对方,以相对自身为v<sub>0</sub>的初速度同时水平射击对方,若不考虑石子的竖直下落,则()( )姓名:________________ 班级:________________ 学号:________________--------------------密----------------------------------封 ----------------------------------------------线-------------------------A.A先被击中B.B先被击中C.两同时被击中D.可以击中B但不能击中A4、如图所示,在一辆表面光滑且足够长的小车上,有质量为m1、m2的两个小球(m1>m2)),原来随车一起运动,当车突然停止时,如不考虑其他阻力,则两个小球() [f2dca9f3884c3343a61131afd891a966.jpg]()A.一定相碰 B.一定不相碰 C.不一定相碰 D.无法确定,因为不知小车的运动方向5、1991年5月11日的《北京晚报》曾报道了这样一则动人的事迹:5月9日下午,一位4岁小男孩从高层塔楼的15层坠下,被同楼的一位青年在楼下接住,幸免于难.设每层楼高度是3m,这位青年从他所在地方冲到楼下需要的时间是1.3s,则该青年要接住孩子,至多允许他反应的时间是(g='10'm/s<sup>2</sup>)()()A.3.0sB.1.7sC.0.4sD.1.3s6、在某停车场,甲、乙两辆同型号的车发生了碰撞事故。

高中物理必修一追及和相遇问题专题练习及答案解析

高中物理必修一追及和相遇问题专题练习及答案解析

追击和相遇问题一、追击问题的分析方法:A. 根据追逐的两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;⎭⎬⎫;.;.的数量关系找出两个物体在位移上间上的关系找出两个物体在运动时C B 相关量的确定D.联立议程求解.说明:追击问题中常用的临界条件:⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.1.一车处于静止状态,车后距车S0=25处有一个人,当车以1的加速度开始起动时,人以6的速度匀速追车,能否追上?若追不上,人车之间最小距离是多少?答案.S 人-S 车=S 0 ∴ v 人t-at 2/2=S0即t 2-12t+50=0Δ=b 2-4ac=122-4×50=-56<0方程无解.人追不上车 当v 人=v 车at 时,人车距离最小 t=6/1=6s ΔS min =S 0+S 车-S 人=25+1×62/2-6×6=7m2.质点乙由B 点向东以10的速度做匀速运动,同时质点甲从距乙12远处西侧A 点以4的加速度做初速度为零的匀加速直线运动.求: ⑴当甲、乙速度相等时,甲离乙多远?⑵甲追上乙需要多长时间?此时甲通过的位移是多大? 答案.⑴v 甲=v 乙=at 时, t=2.5sΔS=S 乙-S 甲+S AB=10×2.5-4×2.52/2+12=24.5m⑵S 甲=S 乙+S ABat 2/2=v 2t+S AB t 2-5t-6=0t=6sS 甲=at 2/2=4×62/2=72m3.在平直公路上,一辆摩托车从静止出发,追赶在正前方100m 处正以v 0=10m/s 的速度匀速前进的卡车.若摩托车的最大速度为v m =20m/s,现要求摩托车在120s 内追上卡车,求摩托车的加速度应满足什么 答案.摩托车 S 1=at 12/2+v m t 2v m =at 1=20卡车 S 2=v o t=10t S 1=S 2+100 T=t 1+t 2t ≤120s a ≥0.18m/s 24.汽车正以10m/s 的速度在平直公路上前进,发现正前方有一辆自行车以4m/s 的速度同方向做匀速直线运动,汽车应在距离自行车多远时关闭油门,做加速度为6m/s 2的匀减速运动,汽车才不至于撞上自行车? 答案.S 汽车≤S 自行车+d当v 汽车=v 自行车时,有最小距离 v 汽车=v 汽车0-at t=1sd 0=S 汽车-S 自行车=v 汽车0t-at 2/2-v 自行车=3m 故d ≥3m 解二: ΔS=S 自行车+d-S 汽车=(v 自行车t+d)-(v 汽车 0t-at 2/2)=d-6t+3t2=d-3+3(t-1)2当t=1s时, ΔS有极小值ΔS1=d-3 ΔS1≥0d≥3m二、相遇问题的分析方法:A.根据两物体的运动性质,列出两物体的运动位移方程;B.找出两个物体的运动时间之间的关系;C.利用两个物体相遇时必须处于同一位置,找出两个物体位移之间的关系;D.联立方程求解.5.高为h的电梯正以加速度a匀加速上升,忽然天花板上一螺钉脱落,求螺钉落到底板上的时间.答案.S梯-S钉=h∴ h=vt+at2/2-(vt-gt2/2)=(a+g)t2/26.小球1从高H处自由落下,同时球2从其正下方以速度v0竖直上抛,两球可在空中相遇.试就下列两种情况讨论的取值范围.⑴在小球2上升过程两球在空中相遇;⑵在小球2下降过程两球在空中相遇.答案.h1+h2=Hh1=gt2/2 h2=v0t-gt2/2∴ t=h/v0⑴上升相遇 t<v0/g∴ H/v0>v0/g v02>gH⑵下降相遇 t>v0/g t′<2v0/g∴ H/v0>v0/g v02<gHH/v0<2v0/g v02>gH/2即Hg>v02>Hg/27.从同一抛点以30m/s初速度先后竖直上抛两物体,抛出时刻相差2s,不计空气阻力,取g=10m/s2,两个物体何时何处相遇?答案.S1=v0(t+2)-g(t+2)2/2S2=v0t-gt2/2当S1=S2时相遇t=2s (第二个物体抛出2s)S1=S2=40m8.在地面上以2v0竖直上抛一物体后,又以初速度v0在同一地点竖直上抛另一物体,若要使两物体在空中相遇,则两物体抛出的时间间隔必须满足什么条件?(不计空气阻力)答案.第二个物体抛出时及第一个物体相遇Δt1=2×2v0/g第二个物体落地时及第一个物体相遇Δt2=2×2v0/g-2v0/g=2v0/g∴ 2v0/g≤Δt≤4v0/g追及相遇专题练习1.如图所示是A、B两物体从同一地点出发,沿相同的方向做直线运动的v-t图象,由图象可知 ( )图5A.A比B早出发5 s B.第15 s末A、B速度相等C.前15 s内A的位移比B的位移大50 m D.第20 s末A、B位移之差为25 m2.a、b两物体从同一位置沿同一直线运动,它们的速度图像如图所示,下列说法正确的是 ( )A.a、b加速时,物体a的加速度大于物体b的加速度B .20秒时,a 、b 两物体相距最远C .60秒时,物体a 在物体b 的前方D .40秒时,a 、b 两物体速度相等,相距200 m3.公共汽车从车站开出以4 m/s 的速度沿平直公路行驶,2 s 后一辆摩托车从同一车站开出匀加速追赶,加速度为2 m/s 2,试问:(1)摩托车出发后,经多少时间追上汽车? (2)摩托车追上汽车时,离出发处多远? (3)摩托车追上汽车前,两者最大距离是多少?4.汽车A 在红绿灯前停住,绿灯亮起时起动,以0.4 m/s 2的加速度做匀加速运动,经过30 s 后以该时刻的速度做匀速直线运动.设在绿灯亮的同时,汽车B 以8 m/s 的速度从A 车旁边驶过,且一直以相同的速度做匀速直线运动,运动方向及A 车相同,则从绿灯亮时开始 ( )A.A 车在加速过程中及B 车相遇B.A 、B 相遇时速度相同C.相遇时A 车做匀速运动D.两车不可能再次相遇5.同一直线上的A 、B 两质点,相距s ,它们向同一方向沿直线运动(相遇时互不影响各自的运动),A 做速度为v 的匀速直线运动,B 从此时刻起做加速度为a 、初速度为零的匀加速直线运动.若A 在B 前,两者可相遇几次?若B 在A 前,两者最多可相遇几次?6.一列货车以28.8 km/h 的速度在平直铁路上运行,由于调度失误,在后面600 m 处有一列快车以72 km/h 的速度向它靠近.快车司机发觉后立即合上制动器,但快车要滑行2000 m 才停止.试判断两车是否会相碰7.一列火车以v 1的速度直线行驶,司机忽然发现在正前方同一轨道上距车为s 处有另一辆火车正沿着同一方向以较小速度v 2做匀速运动,于是他立即刹车,为使两车不致相撞,则a 应满足什么8.A 、B 两车沿同一直线向同一方向运动,A 车的速度v A =4 m/s,B 车的速度v B =10 m/s.当B 车运动至A 车前方7 m 处时,B 车以a =2 m/s 2的加速度开始做匀减速运动,从该时刻开始计时,则A 车追上B 车需要多长时间?在A 车追上B 车之前,二者之间的最大距离是多少?9.从同一地点以30 m/s 的速度先后竖直上抛两个物体,抛出时间相差2 s,不计空气阻力,两物体将在何处何时相遇? 10.汽车正以10 m/s 的速度在平直公路上匀速直线运动,突然发现正前方有一辆自行车以4 m/s 的速度同方向做匀速直线运动,汽车立即关闭油门,做加速度为6 m/s 2的匀减速运动,求汽车开始减速时,他们间距离为多大时恰好不相撞?参考答案1. 【答案】D【解析】首先应理解速度-时间图象中横轴和纵轴的物理含义,其次知道图线的斜率表示加速度的大小,图线及时间轴围成的面积表示该时间内通过的位移的大小.两图线的交点则表示某时刻两物体运动的速度相等.由图象可知,B 物体比A 物体早出发5 s ,故A 选项错;10 s 末A 、B 速度相等,故B 选项错;由于位移的数值等于图线及时间轴所围“面积”,所以前15 s 内B 的位移为150 m ,A 的位移为100 m ,故C 选项错;将图线延伸可得,前20 s 内A 的位移为225 m ,B 的位移为200 m ,故D 选项正确. 2.【答案】C【解析】υ—t 图像中,图像的斜率表示加速度,图线和时间轴所夹的面积表示位移.当两物体的速度相等时,距离最大.据此得出正确的答案为C 。

高考物理80考点最新模拟题分类解析专题03-追击与相遇问题

高考物理80考点最新模拟题分类解析专题03-追击与相遇问题

专题三追击与相遇问题1.(2013湖北省孝感市二模)在一大雾天,一辆小汽车以30m/s的速度行驶在高速公路上,突然发现正前方30m处有一辆大卡车以10m/s的速度同方向匀速行驶,小汽车紧急刹车,刹车过程中刹车失灵.如图a、b分别为小汽车和大卡车的tv图象,以下说法正确的是A.因刹车失灵前小汽车已减速,不会追尾B.在t=5s时追尾C.在t=3s时追尾D.由于初始距离太近,即使刹车不失灵也会追尾2.(2013山东省诸城市调研)某时刻,两车从同一地点、沿同一方向做直线运动,下列关于两车的位移x、速度v随时间t变化的图象,能反映t1时刻两车相遇的是3. (2013吉林省质检)如图所示为甲乙两物体沿同一条直线运动的速度—时间图象,若t=0时两者相向运动,且运动过程中不会相撞,下列有关说法中正确的是A、在t=0时相距15m,则两物体相遇两次B、在t=0时相距25m,则两物体相遇一次C、若t=1s时两者相遇,则两者不会再相遇D、若t=2s时两者第一次相遇,则两者还会再相遇4.(2013西安名校质检)如右图所示,I,II分别是甲、乙两小球从同一地点沿同一直线运动的v-t图线,根据图线可以判断A.甲、乙两小球做的是初速度方向相反的匀变速直线运动,加速度大小相同,方向相同B.两球在t=8s时相距最远C.两球在t=2s时刻速率相等D.两球在t=8s时相遇5.(2013福建惠安月考)甲、乙两质点同时开始做直线运动,它们的位移s与时间t 的图象如图所示,则()A.乙物体做减速运动B.甲、乙两物体从同一地点出发C.当甲、乙两物体速度相同时,二者之间的距离为零D.当甲、乙两物体两次相遇时,二者的速度大小不相等6. (2013年5月天津市压轴卷)据中新社北京2月26日电,中国军队2013年将举行近40场军事演习,以提高信息化条件下威慑和实战能力。

若在某次军事演习中,一跳伞队员从静止的直升机上跳下,先做自由落体运动,在t 1时刻,速度达到v 1时打开降落伞,做减速运动,在t 2时刻以速度v 2着地.他的速度—时间图象如图所示.下列有关该跳伞队员运动过程的分析正确的是( )A .在t 1~t 2时间内,其平均速度12>2v v vB .降落伞打开后降落伞和跳伞队员所受的阻力越来越小C .若第一个跳伞队员跳下后,经过时间t 1,第二个跳伞队员跳下,则他们在空中的距离越来越大D .若第一个跳伞队员跳下后,经过时间t 1,第二个跳伞队员跳下,则他们在空中的距离越来越小7、(2013云南玉溪一中质检)从地面竖直上抛一物体A ,同时在离地面某一高度处有一物体B 自由下落,两物体在空中同时到达同一高度时速度大小均为v ,则下列说法正确的是 ( )A .A 上抛的初速度与B 落地时速度大小相等,都是2vB .两物体在空中运动的时间相等C .A 上升的最大高度与B 开始下落时的高度相同D .两物体在空中同时达到的同一高度处一定是B 开始下落时高度的中点8.(2013四川省宜宾市一诊)如图3所示,是从同一地点同时开始沿同一直线运动的两个质量相等的物体I 、II 的v-t 图象.在0〜t 2时间内,下列说法中正确的是A. 物体I 所受的合外力不断增大,物体II 所受的合外力不断减小B. I 、II 两个物体的平均速度大小都是122v v C. 在第一次相遇之前,t1时刻两物体相距最远D. 物体II 所受的合外力所做的功大于物体I 所受的合外力所做的功9.(14分)(2013贵州六校联考)如图是一个十字路口的示意图,每条停车线到十字路中心O的距离均为20m。

高中物理运动学中的《追及相遇》专题复习和典型例题

高中物理运动学中的《追及相遇》专题复习和典型例题

高中物理直线运动中的追及相遇问题专题复习一、涉及到的计算公式: at v v +=0 at v v +=02021at t v x += 若初速度为零,则 2021at t v x += ax v v 2202=- ax v v 2202=-二、甲、乙两物体在同一直线上的追及相遇问题中,甲、乙两物体的运动情况分类(6种模型):1、甲(匀速)+乙(匀速);有1中模型;2、甲(匀速)+乙(匀变速);共有2种模型:匀变速可能是匀加速或者匀减速;3、甲(匀变速)+乙(匀变速);共有3种模型:即匀加+匀加,匀减+匀减,匀加+匀减三、甲、乙两物体的运动过程分类:1、“1+1模型”:甲只做单一过程的运动;乙只做单一过程运动。

2、“2+1模型”;3、“3+1模型”;4、“n+m 模型”四、追及相遇问题的大前提下的分类讨论:1、同时同地出发;2、同时不同地出发;①甲前乙后模型;②乙前甲后模型;五、相遇次数的可能情况讨论:1、不相遇;2、相遇1次(注意恰好相遇1次的情况,即临界状态时候);3、相遇2次;六、解题思路:1、根据题意确定甲、乙两物体的运动情况,最好能画出相应的运动草图和v-t 图象;2、分析速度的相同点和运动的转折点,确定时间关系,判断位移关系;3、利用位移的等量关系建立方程,求解方程;4、注意:一定要在速度的相同点或者运动的转折点做个简单的判断,分析是否满足题意;5、特别注意:汽车刹车到停下的情况,需判断甲、乙两车是在停下前还是停下后相遇;七、例题分享(一)“1+1”模型1、匀速+匀速情况:例1、甲和乙两物体在东西方向上做直线运动,甲向东做匀速直线运动,速度为v1=5m/s,乙向西做匀速直线运动,速度为v2=8m/s,甲、乙同时出发,试求:①若甲、乙从同一地点出发,经过多长时间,甲、乙相距78m;②若甲在乙的正西方向130m的位置出发,则经过多长时间甲、乙相遇;③若甲在乙的正东方向78m的位置出发,则经过多长时间甲、乙相距208m;④若甲在乙的正东方向52m的位置出发,且乙运动了5s后碰到障碍物,并原速返回运动,则从出发到相遇,共经历多长时间;2、匀速+匀变速情况:例1、(匀速+匀加速)某物体甲沿水平方向向右做匀速直线运动,速度为v1=10m/s,物体乙在同一直线上做以初速度为v0=2m/s,加速度为2m/s2向右做匀加速直线运动,甲、乙同时出发,试求:①若甲、乙两物体从同一地点出发,则经过多长时间,甲乙相遇;②若出发时乙在甲的左侧20m位置,则经过多长时间,甲乙相遇;③若出发时甲在乙的左侧,要想甲能追上乙,则出发时甲、乙相距的最大距离;④若出发时甲在乙的左侧15m的位置,则当甲追上乙时,乙的位移为多少;例2、(匀速+匀减速)甲、乙两汽车在同一直线上运动,甲做速度为v1=8m/s的匀速直线运动,乙做初速度为14m/s,加速度大小为2m/s2的匀减速直线运动,甲、乙同时出发,试求:①若甲、乙两汽车从同一地点出发,则经过多长时间,甲乙相遇;②若甲、乙两汽车从同一地点出发,且乙的初速度的为20m/s,加速度大小仍为2m/s2,则经过多长时间,甲乙相遇;③若出发时甲在乙的前方,要想乙不遇上甲车,则出发时甲、乙两车至少保持多大的距离;④若出发时乙车在甲车的正后方4m位置,则经过多长时间,甲乙相遇;⑤若出发时乙在甲的前方20m位置,则经过多长时间,甲乙相遇;3、匀变速+匀变速情况:例1、(匀加速+匀加速)已知甲、乙两物体在同一直线上运动,甲物体从静止开始,以4m/s2的加速度向正方向做匀加速直线运动,乙物体以2m/s的初速度,2m/s2的加速度向正方向做匀加速直线运动,两物体同时出发,试求:①若甲、乙两物体从同一地点出发,当甲、乙相遇时,经历的时间是多少;②若出发时甲物体在乙物体的负方向3m的位置,则经过多长时间甲追上乙;③若出发时甲物体在乙物体的正方向0.5m的位置,则甲乙相遇的地方距离甲出发点多远;④若出发时甲物体在乙物体的正方向,想要乙能追上甲,出发时甲、乙相距的最大距离多远;例2、(匀加速+匀减速)甲乙两汽车在同一直线上做匀变速直线运动,甲车从静止开始,以4m/s2的加速度向正方向做匀加速直线运动,乙车以18m/s的初速度、2m/s2的加速度开始刹车,,甲乙两车同时开始运动,试求:①若甲、乙两车从同一地点出发,则经过多长时间甲、乙两车再一次相遇;②若甲车的加速度为1m/s2,则经过多长时间甲、乙两车再一次相遇;③若出发时甲车在乙车的后方84m的位置,则甲乙相遇时,乙车的位移是多少;④若出发时甲车在乙车的前方,想要乙能追上甲,出发时甲、乙相距的最大距离多远;⑤若出发时甲车在乙车的前方15m的位置出发,则经历多长时间甲、乙相遇;例3、(匀减速+匀减速)甲、乙两辆跑车在一直线高速公路上的两条并排的车道上飙车,某时刻甲、乙两跑车同时刹车,刹车前甲的速度为50m/s,刹车时加速度为10m/s2,刹车前乙的速度为40m/s,刹车时加速度为5m/s2,不考虑车手的反应时间,试求:①若刹车时甲、乙刚好在同一位置,则经历多长时间,甲、乙再一次相遇;②若刹车时甲车在乙车的后,想要甲车能追上乙车,则刹车时甲、乙相距的最大距离多远;③若刹车时甲车在乙车的后面6.5m,则经历多长时间,甲、乙相遇;④若刹车时乙车在甲车的后面6.625m,则经历多长时间,甲、乙再一次相遇;⑤若刹车时乙车在甲车的后面26m,则经历多长时间,甲、乙再一次相遇;(二)、“2+1”模型例1、(匀加@匀加+匀速)如图所示为甲、乙两物体的运动v-t图象,试求:①若甲、乙同时同地出发,经多长时间相遇?②若甲在乙后方8m位置出发,则经过多久时间甲、乙相遇?③若甲在乙前方,甲乙相距多远时,乙无法追上甲?④若甲在乙前方20m位置出发,则经过多长时间甲、乙相遇?(27m呢?)例2、(匀加@匀速+匀速)如图所示为甲、乙两物体的运动v-t图象,尝试根据例1提出4个问题,并解答:①;②;③;④;(三)、“3+1”模型例1、甲乙两物体在同一直线上做直线运动,甲以8m/s 的速度向正方向做匀速直线运动,乙从静止开始,以2m/s 2的加速度向正方向做匀加速直线运动,经过6s 后达到最大速度,然后匀速行驶了3s 后立即做匀减速直线运动,加速度的大小是加速时的两倍,最终减速到速度为零时停止运动,甲、乙同时出发,试求:①若甲、乙从同一地点出发,经历多长时间甲、乙相遇;②若出发时甲在乙的后方8m 位置,则甲、乙相遇时距离甲出发点多远;③若出发时甲在乙的前方1.5m 位置,经历多长时间甲、乙相遇;例2、如图所示为一固定斜面,斜面足够长,在斜面的底端放置一小球A ,且给A 一沿斜面向上的初速度s m v AO /8=,小球A 向上做匀减速直线运动,加速度大小恒为21/2s m a =,同时在距离斜面底端xm 处给另一小球B 一初速度s m v BO /8=,小球B 先向上做匀减速直线运动,加速度大小22/10s m a =,若能减到速度为零后下滑,下滑过程做加速度大小23/2s m a =匀加速直线运动,若B 球能回到抛出点,则继续向下加速,加速度大小为24/6s m a =,试求:①若x=1m ,则多长时间后A 、B 两球相遇;②若x=13.44m ,则多长时间后A 、B 两球相遇;③若m x )16.45524(+=,则多长时间后A 、B 两球相遇;(四)、“2+2”模型例1、如图所示为一固定斜面,斜面足够长,斜面底端A 点,某时刻在A 点释放一物块甲,速度大小为8m/s ,方向沿斜面向上,物块甲向上做匀减速直线运动,同时在距离A 点xm 的B 点处释放物块乙,速度大小为6m/s ,方向沿斜面向上,甲、乙向上减速到速度为零后均下滑,且甲、乙在上滑和下滑的加速度都恒为6m/s 2,试求: ①若x=1m ,则多长时间后甲、乙相遇;②若x=2.25m ,则相遇时距A 点多远;③若x=3m ,则多长时间后甲、乙相遇;④若甲、乙上滑的加速度不变,下滑的速度变为3m/s 2,则当x=2.25m 或x=3m 时,则多长时间后甲、乙相遇;。

高考物理-专题1.20 追击和相遇问题(能力篇)(解析版)

高考物理-专题1.20 追击和相遇问题(能力篇)(解析版)

2021年高考物理100考点最新模拟题千题精练第一部分直线运动专题1.20.追击和相遇问题(能力篇)一、选择题1. (2020河南洛阳一模)甲乙两物体从同一地点开始沿同一方向运动,用某测速仪描绘出两物体的v-t图象如图所示,已知甲物体的图象是两段半径相同的圆弧,乙物体的图象是一倾斜直线,t4=2t2,甲的初速度末速度均等于乙的末速度。

已知则下列说法正确的()A. 0~t1时间内,甲乙两物体距离越来越小B. t1时刻,甲乙两物体的加速度大小可能相等C. t3~t4时间内,乙车在甲车后方D. 0~t4时间内,两物体的平均速度相等【参考答案】BD【名师解析】甲乙两物体从同一地点开始沿同一方向运动,0~t1时间内,甲的速度比乙的大,则甲在乙的前面,甲乙两物体距离越来越大,故A错误。

根据速度时间图线的斜率表示加速度,可知,t1时刻,甲乙两物体的加速度大小可能相等,故B正确。

根据“面积”表示位移,结合几何知识可知,0~t4时间内,两物体的位移相等,t4时刻两车相遇,而在t3~t4时间内,甲车的位移比乙车的位移大,则知在t3~t4时间内,乙车在甲车前方,故C错误。

0~t4时间内,两物体的位移相等,用时相等,则平均速度相等,故D正确。

【关键点拨】。

0~t1时间内,根据甲乙两物体的速度关系分析两者间距离的变化情况。

根据速度时间图线的斜率表示加速度,来分析t1时刻,甲乙两物体的加速度大小关系。

根据位移关系分析两车位置关系。

解决本题的关键要能从速度时间图线中获取信息,知道斜率表示加速度,图线与时间轴围成的面积表示位移。

2.(2019武汉调研)甲、乙两辆汽车沿平直的公路直线运动,其v-t图像如图所示。

已知t=0时,甲车领先乙车5km,关于两车运动的描述,下列说法正确的是A . 0~4h 时间内,甲车匀速直线运动B . 0~4h 时间内,甲、乙两车相遇3 次C . t = lh 时,甲、乙两车第一次相遇D . t = 4h 时,甲车领先乙车5 km【参考答案】B【命题意图】本题考查对速度图像的理解运用和追击相遇及其相关知识点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

追击和相遇问题(能力篇)一、选择题1. (2019武汉调研)甲、乙两辆汽车沿平直的公路直线运动,其v-t图像如图所示。

已知t=0时,甲车领先乙车5km,关于两车运动的描述,下列说法正确的是()A . 0~4h 时间内,甲车匀速直线运动B . 0~4h 时间内,甲、乙两车相遇 3 次C . t = lh 时,甲、乙两车第一次相遇D . t = 4h 时,甲车领先乙车 5 km【参考答案】 B【命题意图】本题考查对速度图像的理解运用和追击相遇及其相关知识点。

【解题思路】根据题给的速度图像可知,在0~4h 时间内,甲车匀减速直线运动,选项A错误;根据速度图像的面积表示位移可知,在0~0.5h内两车相遇一次,在1~2h内两车相遇一次,在2~4h之内两车相遇一次,即在0~4h 时间内,甲、乙两车相遇 3 次,选项B正确C错误;根据速度图像的面积表示位移可知,在t=0到t = 4h的时间内,甲车位移为x甲=12×40×4km=80km,乙车位移为x乙=12×40×1km+20×3km+12×20×1km=90km,由x乙- x甲-5km=5km可知,t = 4h时,甲车落后乙车 5 km,选项D错误。

【方法归纳】对于以速度图像给出解题信息问题,要利用速度图像的斜率表示加速度,速度图像的面积表示位移解答。

所谓相遇,是指在同一时刻两物体处于同一位置。

对于追击相遇问题,要利用位移关系和时间关系。

2.(2019高考III卷押题卷01)在平直公路上行驶的a车和b车,其位移时间图象分别为图中直线a和曲线b。

t=3 s时,直线a和曲线b刚好相切,下列说法正确的是()A.t=3 s时,两车速度相等B.a车做匀速运动,b车做加速运动C.在运动过程中,b车始终没有超过a车D.在0~3 s的时间内,a车的平均速度比b车的大【参考答案】AC【名师解析】t=3 s时,直线a和曲线b刚好相切,说明t=3 s时,两车速度相等,选项A正确;由图像可知,a车做匀速直线运动,b车做减速直线运动,选项B错误;在运动过程中,b车始终没有超过a车,选项 C正确;在0~3 s的时间内,a车的位移小于b车的位移,根据平均速度的定义,在0~3 s的时间内,a 车的平均速度比b车的平均速度小,选项D错误。

3. (多选)一辆汽车正以v1=10 m/s的速度在平直公路上匀速行驶,发现正前方有一辆自行车以v2=4 m/s的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为a=0.6 m/s2的匀减速运动,汽车恰好没有碰上自行车,则( )A.关闭油门后,汽车恰好没有碰上自行车时所用时间为10 sB.关闭油门后,汽车恰好没有碰上自行车时所用时间为 sC.关闭油门时,汽车与自行车的距离为30 mD.关闭油门时,汽车与自行车的距离为 m【参考答案】AC【名师解析】撞不上的临界条件为速度相等时恰好追上,则有v1-at=v2,代入数据解得t=10 s,选项A正确,B错误;设汽车的位移为x1,自行车的位移为x2,则由位移关系有x1=x2+x,即t=x+v2t,代入数据解得x=30 m,选项C 正确,D错误。

4. 如图所示,处于平直轨道上的A、B两物体相距s,同时同向开始运动,A以初速度v1、加速度a1做匀加速运动,B由静止开始以加速度a2做匀加速运动下列情况不可能发生的是(假设A能从B旁边通过且互不影响)()A. a1= a2,能相遇一次B. a1> a2,能相遇两次C. a1< a2,可能相遇一次D. a1< a2,可能相遇两次【参考答案】B【名师解析】用图象法我们画出满足题给条件的v—t图象.图甲对应a1= a2的情况,两物体仅在t=t1时相遇一次(图中阴影部分面积为s).图乙对应a1> a2的情况,两物体仅在t=t2时相遇一次.图丙对应a1<a2的情况,若阴影部分面积等于s,则相遇一次;若阴影部分面积小于s,则A、B不可能相遇;若阴影部分面积大于s,则可能相遇两次,如图丁所示.故选项B正确.作出不同情况下A、B的速度时间图线,结合图线围成的面积分析判断相遇的次数.本题为追及相遇问题,首先要从题意中找中运动的情景,再由运动学中位移关系确定二者能否再次相遇;本题用图象进行分析比较简便.5.如图所示,三个可视为质点的物体的v-t图象,其中A,C两物体是从不同地点出发,A,B是从同一地点出发,则以下说法正确的是()A. 前4s内,A,C两物体的运动方向相同B.t=4s时,A,B两物体相遇C. t=4s时,A,C两物体相遇D. t=2s 时,A,B两物体相距最远【参考答案】ABD【名师解析】.在t=4s之前,A、B、C物体开始阶段速度方向均为正,方向相同,故A正确;当t=4s时,A、B两物体发生的位移相同,且两物体由同地出发,因此此时两者相遇,故B正确;而A、C两物体是同时不同地出发,此时两者的位移也相等,故此时两物体不会相遇,故C错误;当t=2s时,A、B两物体的速度相同,此时应当为两者之间距离的一个极值,且由于两物体由同地出发,故相距最远,故D正确。

6.一步行者以匀速运动跑去追赶被红灯阻停的公交车,在跑到距汽车36m处时,绿灯亮了,汽车匀加速启动前进,其后两者的v-t图象如图所示,则下列说法正确的是()A. 人不能追上公共汽车,且车开动后,人车距离越来越远B. 人能追上公共汽车,追赶过程中人跑了32mC. 汽车开动16s时人能追上公共汽车D. 人不能追上公共汽车,人、车最近距离为4m人【参考答案】D【名师解析】开始阶段,人的速度大于汽车的速度,人和车的距离在减小;当人的速度小于汽车的速度时,人和车的增大,所以A错误;由图可知,汽车的加速度a=1m/s2,经过时间t=8s两者速度相等,此时步行者的位移,汽车的位移,因为,故人不能追上汽车;人车最近距离,故D正确,B、C错误。

二.计算题1.同向运动的甲乙两质点在某时刻恰好通过同一路标,以此时为计时起点,此后甲质点的速度随时间的变化关系为,乙质点位移随时间的变化关系为试求:两质点何时再次相遇?两质点再次相遇之前何时相距最远?最远的距离是多少?【名师解析】由甲质点速度随时间变化关系得,甲做匀变速直线运动,,,则甲的位移随时间的变化关系为:由乙质点位移随时间变化关系为:若甲乙再次相遇,两者位移相等,则有:由得,,,由题意得两质点5s时再次相遇.由乙质点位移随时间的变化关系为:,乙做匀变速直线运动,有:,,则乙的速度随时间变化关系为:则甲质点的速度随时间的变化关系为由题意得当两质点速度相等时,两者相距最远,由得,则两质点两次相遇之前相距最远的距离.由,代入数据得,两质点的最远距离为:.答:(1)两质点5s时再次相遇;(2)两质点再次相遇之前时相距最远,最远距离为.2.(2016·高考信息卷)甲、乙两辆车在同一直轨道上向右匀速行驶,甲车的速度为v1=16 m/s,乙车的速度为v2=12 m/s,乙车在甲车的前面。

当两车相距L=6 m时,两车同时开始刹车,从此时开始计时,甲车以a1=2 m/s2的加速度刹车,6 s后立即改做匀速运动,乙车刹车的加速度为a2=1 m/s2。

求:(1)从两车刹车开始计时,甲车第一次追上乙车的时间;(2)两车相遇的次数;(3)两车速度相等的时间。

【参考答案】(1)2 s (2)3次(3)4 s和8 s【名师解析】(1)在甲减速时,设经时间t相遇,甲和乙的加速度分别为a1、a2,位移分别为x1、x2,则有x 1=v 1t -12a 1t 2,x 2=v 2t -12a 2t 2,x 1=x 2+L 联立解得t 1=2 s ,t 2=6 s即在甲车减速时,相遇两次,第一次相遇的时间为t 1=2 s(2)当t 2=6 s 时,甲车的速度为v 1′=v 1-a 1t 2=4 m/s ,乙车的速度为v 2′=v 2-a 2t 2=6 m/s ,甲车的速度小于乙车的速度,但乙车做减速运动,设再经Δt 甲追上乙,有v 1′Δt =v 2′Δt -12a 2Δt 2 解得Δt =4 s此时乙仍在做减速运动,此解成立 综合以上分析知,甲、乙两车共相遇3次。

(3)第一次速度相等的时间为t 3,有v 1-a 1t 3=v 2-a 2t 3 解得t 3=4 s甲车匀速运动的速度为4 m/s ,第二次速度相等的时间为t 4,有v 1′=v 2-a 2t 4 解得t 4=8 s3.甲、乙两辆车在同一直轨道上向右匀速行驶,甲车的速度为v 1=16 m/s ,乙车的速度为v 2=12 m/s ,乙车在甲车的前面.当两车相距L =6 m 时,两车同时开始刹车,从此时开始计时,甲车以a 1=2 m/s 2的加速度刹车,6 s 后立即改做匀速运动,乙车刹车的加速度为a 2=1 m/s 2.求: (1)从两车刹车开始计时,甲车第一次追上乙车的时间; (2)两车相遇的次数; (3)两车速度相等的时间.【参考答案】(1)2 s (2)3次 (3)4 s 和8 s【名师解析】(1)在甲减速时,设经时间t 相遇,甲和乙的位移分别为x 1、x 2,则有 x 1=v 1t -12a 1t 2,x 2=v 2t -12a 2t 2,x 1=x 2+L 联立解得t 1=2 s ,t 2=6 s即在甲车减速时,相遇两次,第一次相遇的时间为t 1=2 s(2)当t 2=6 s 时,甲车的速度为v 1′=v 1-a 1t 2=4 m/s ,乙车的速度为v 2′=v 2-a 2t 2=6 m/s ,甲车的速度小于乙车的速度,但乙车做减速运动,设再经Δt 甲追上乙,有 v 1′Δt =v 2′Δt -12a 2Δt 2 解得Δt =4 s此时乙仍在做减速运动,此解成立 综合以上分析知,甲、乙两车共相遇3次. (3)第一次速度相等的时间为t 3,有v 1-a 1t 3=v 2-a 2t 3解得t 3=4 s甲车匀速运动的速度为4 m/s ,第二次速度相等的时间为t 4,有v 1′=v 2-a 2t 4 解得t 4=8 s4.现有一辆摩托车先由静止开始以2.5 m/s 2的加速度做匀加速运动,后以最大行驶速度25 m/s 匀速行驶,追赶前方以15 m/s 的速度同向匀速行驶的卡车.已知摩托车开始运动时与卡车的距离为200 m ,则: (1)追上卡车前二者相隔的最大距离是多少? (2)摩托车经过多少时间才能追上卡车? 【参考答案】(1)245 m (2)32.5 s【名师解析】(1)由题意得摩托车匀加速运动最长时间:t 1=v ma =10 s此过程的位移:x 1=v 2m2a =125 m <x 0=200 m所以摩托车在达到最大速度之前没有追上卡车.在追上卡车前当二者速度相等时相距最大,设从开始经过t 2时间速度相等,最大间距为x m ,则v =at 2解得t 2=va =6 s最大间距x m =(x 0+vt 2)-12at 22=245 m(2)设从开始经过t 时间摩托车追上卡车,则有v 2m2a +v m (t -t 1)=x 0+vt解得t =32.5 s.5.汽车A 以v A =4 m/s 的速度向右做匀速直线运动,在其前方相距x 0=7 m 处以v B =10 m/s 的速度同向运动的汽车B 正开始刹车做匀减速直线运动,加速度大小a =2 m/s 2。

相关文档
最新文档