北航机电仿真实验报告(附源代码以及运行结果)

合集下载

北航电机学实验报告(全)

北航电机学实验报告(全)

成绩电机学实验报告院(系)名称自动化科学与电气工程学院专业名称电气工程及其自动化学生学号学生姓名指导教师201*年7月目录实验一等效电路参数的测定 (3)实验二串励直流电动机负载特性实验 (7)实验三并励直流发电机自励建压实验 (11)实验四三相同步发电机参数的测定 (14)实验五三相同步发电机并网实验 (17)实验六三相异步电动机参数测量实验 (19)2实验一等效电路参数的测定同组同学一、开路试验1、试验目的确定变比k、激磁阻抗Z m等参数2、试验方法低压侧加电压,高压侧开路3、接线图&计算原理测量:U10、U20、I20、P04计算:开路试验注意事项:开路电流和开路功率必须是额定电压时的值,并以此求取激磁参数; 开路试验的特点:电压高、电流小;铁耗大、铜耗小; 若要得到高压侧参数,须归算。

4、实验数据222200020202010/,/,/m m m m Fe m R Z X I P R P p I U Z U U k -=≈≈≈=二、短路试验1、试验目的确定短路阻抗Z k 等参数。

2、试验方法高压侧加电压,低压侧短路。

3、接线图&计算原理测量: U 1k 、I 1k 、P k 计算:短路试验注意事项:缓慢增加短路电压,使短路电流不超过一次测的额定电流; 短路试验的特点:电压低、电流大;铁耗小、铜耗大;θ++=-==≈≈︒5.234755.234,/,,/)75(222111kk k kk kk k Cu k k k kR R R Z X I P R p P I U Z短路电阻需要进行温度换算。

4、实验数据6实验二串励直流电动机负载特性实验同组同学一、实验目的1.了解串励电动机起动,调速及改变转向的方法。

2.掌握测试串励电动机调速特性和机械特性的方法。

二、实验仪器直流串励电动机电磁式测功器可调变阻器滑动电阻直流电流表直流电压表开关导线三、实验内容1.直流串励电动机的调速特性2.直流串励电动机的机械特性3.直流串励电动机的转向实验四、实验步骤1.直流串励电动机的调速特性直流串励电动机不能空载起动,因为它的机械特性是软特性,即电机转矩增加时,转速将以幂指数显著下降。

北航ARM9实验报告:实验3uCOS-II实验

北航ARM9实验报告:实验3uCOS-II实验

北航ARM9实验报告:实验3uCOS-II实验北航 ARM9 实验报告:实验 3uCOSII 实验一、实验目的本次实验的主要目的是深入了解和掌握 uCOSII 实时操作系统在ARM9 平台上的移植和应用。

通过实际操作,熟悉 uCOSII 的任务管理、内存管理、中断处理等核心机制,提高对实时操作系统的理解和应用能力,为后续的嵌入式系统开发打下坚实的基础。

二、实验环境1、硬件环境:ARM9 开发板、PC 机。

2、软件环境:Keil MDK 集成开发环境、uCOSII 源代码。

三、实验原理uCOSII 是一个可裁剪、可剥夺型的多任务实时内核,具有执行效率高、占用空间小、实时性能优良和可扩展性强等特点。

其基本原理包括任务管理、任务调度、时间管理、内存管理和中断管理等。

任务管理:uCOSII 中的任务是一个独立的执行流,每个任务都有自己的堆栈空间和任务控制块(TCB)。

任务可以处于就绪、运行、等待、挂起等状态。

任务调度:采用基于优先级的抢占式调度算法,始终让优先级最高的就绪任务运行。

时间管理:通过系统时钟节拍来实现任务的延时和定时功能。

内存管理:提供了简单的内存分区管理和内存块管理机制。

中断管理:支持中断嵌套,在中断服务程序中可以进行任务切换。

四、实验步骤1、建立工程在 Keil MDK 中创建一个新的工程,选择对应的 ARM9 芯片型号,并配置相关的编译选项。

2、导入 uCOSII 源代码将 uCOSII 的源代码导入到工程中,并对相关的文件进行配置,如设置任务堆栈大小、系统时钟节拍频率等。

3、编写任务函数根据实验要求,编写多个任务函数,每个任务实现不同的功能。

4、创建任务在主函数中使用 uCOSII 提供的 API 函数创建任务,并设置任务的优先级。

5、启动操作系统调用 uCOSII 的启动函数,使操作系统开始运行,进行任务调度。

6、调试与测试通过单步调试、查看变量值和输出信息等方式,对系统的运行情况进行调试和测试,确保任务的执行符合预期。

北航自动化学院计算机控制系统实验报告

北航自动化学院计算机控制系统实验报告

2011- 2012 学年 第二学期计算机控制实验报告班级 姓名392311 李 柏学院 学号高等工程3903· 24152012 年 6 月 12 日实验 1 模拟式小功率随动系统的实验调试一、实验目的1.熟悉反馈控制系统的结构和工作原理,进一步了解位置随动系统的特点。

2. 掌握判别闭环系统的反馈极性的方法。

3.了解开环放大倍数对稳定性的影响及对系统动态特性的影响,对静态误差的影响。

二、实验仪器XSJ-3 小功率直流随动系统学习机一台 DH1718 双路直流稳压电源一台 4 1/2 数字多用表一台三、 实验原理模拟式小功率随动系统结构如图 2-3 所示 调试步骤如下: 零位调整:为了保证精度,同时判断运放是否好用,在连接成闭环系统之前进行零位的调整。

首先,把三个运放负相端输入 电阻接地,并使其增益为 1(利用电阻调整) ,再利用运放上方的调零旋钮,使输出端输出为 0;然后将电位计两端接上±10V 电压后,用数字电压表测其电刷输出,旋转之,使其电刷输出为 0,并同时调整刻度盘零点于 0 点。

开环工作状态:断开反馈电为计,加入给定电压,使电压从小到大,当信号大时,电机转速高,信号反极性时,电机反转。

反馈极性判断。

首先判断测速机反馈极性。

在一级运放处加一电压(正或负) ,记住电机转向,然后断开输入,用手旋转电 机按同一转向转动,测量测速机输出电压,如与前电机所加电压极性相同,则可将该信号接入运放二的负端;否则应把测速 机输出极性倒置, 即把另一信号接入运放二的负相端。

其次判断位置反馈极性。

将回路接成开环状态, 给电机加入一正电压, 可使其转动,然后使电机回零,顺着电机刚才转动的方向转一小角度(不可转到非线性区) ,同时用数字电压表测电位计电 刷的输出电压,倘若其值为负,则表明此时是负反馈,否则,需把电位计两端±10V 接线头对调,以保证闭环系统是负反馈。

检验系统跟随情况:按图 2-2 连线,逐渐加大电压,察看输出角度是否也同时增加(绝对量值) ,如跟随则系统跟随情况良 好。

北航计算机控制系统实验报告

北航计算机控制系统实验报告

计算机控制系统实验报告实验一模拟式小功率随动系统的实验调试实验二 A/D、D/A接口的使用和数据采集实验三中断及采样周期的调试实验四计算机控制系统的实验调试姓名:王尼玛学号: 100311xx 同组人:李尼美郑尼玛指导教师:袁少强日期: 2013年6月15日实验一二阶系统的电子模拟及时域响应的动态测试一、实验目的1. 熟悉反馈控制系统的结构和工作原理,进一步了解位置随动系统的特点。

2. 掌握判别闭环系统的反馈极性的方法。

3. 了解开环放大倍数对稳定性的影响及对系统动态特性的影响,对静态误差的影响。

二、实验内容1. 连接元件构成位置随动系统;2. 利用计算机内的采样及显示程序,显示并分析输出的响应结果;3. 反复调试达到设计要求。

三、实验设备XSJ-3 小功率直流随动系统学习机一台、DH1718 双路直流稳压电源一台、4 1/2 数字多用表一台四、实验原理模拟式小功率随动系统如下图所示:1. 实验前需进行零位调整,反馈极性判断,反馈极性判断又包括速度反馈极性判断和位置反馈极性判断,须使反馈为负反馈。

2. 动态闭环实验系统调试。

按下面电路图连线,通过改变变阻器大小来改变闭环系统放大倍数,通过一路A/D把输出相应采入计算机进行绘图,同时测量输入电压和反馈电位计输入电压,算出稳态误差。

五、实验结果滑阻阻值(千20 30 55 74欧)比例系数 1 1.5 2.75 3.7 给定角度(度)90 90 90 90 输出角度(度)89 89 89 89.5 静差角度(度)-1 -1 -1 -0.5 静态误差(mv)-50.5 -20.5 -17.5 -28.8 过度过程曲线见下图1.K=1时的过渡过程曲线2.K=1.5时的过渡过程曲线3.K=2.75时的过渡过程曲线4.K=3.7时的过渡过程曲线六、思考题及实验感想1 如果速度反馈极性不对应如何处理?如果位置反馈极性不对应如何处理?答:首先判断测速机反馈极性。

北航电子电路实验报告二

北航电子电路实验报告二
(2)输入电阻
测试方法同第二步
测得:Ii=202.33nA,Ui=99.996mV,进而可求的Ri=494.22kΩ
(3)输出电阻
测试方法同第三步
测得:Io=2.913mA,Uo=99.996mV,进而可求的Ro=34.32Ω
(4)利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线:
将xbp表如图所示连接在电路中,观察xbp表即可得其幅频、相频特性曲线
100mV
对于电路一用上面公式计算放大倍数,可以看到随着RL的增加,放大倍数增加,逐渐接近输入电压100mV。
而对于理想放大器来说,跟随器的作用就是使得输出电压等于输入电压,所以输出电压恒为100mV
3测量输出电阻
将输入电压源短路,同时在输出端串接电压源,同时连接万用表如下图所示
测得:Io=2.929mA,Uo=99.996mV,进而可求的Ro=34.140Ω
4利用软件提供的测量仪表测出电路的幅频、相频特性曲线
将xbp表如图所示连接在电路中,观察xbp表即可得其幅频、相频特性曲线
5利用交流分析功能测出电路的幅频、相频特性曲线
电路一
10欧
100欧
1000欧
10千欧
100千欧
1兆欧
100兆欧
22.088mV
81.811mV
98.302mV
99.665mV
99.803mV
99.816mV
99.818mV
运算放大器
10欧
100欧
1000欧
10千欧
100千欧
1兆欧
100兆欧
100mV
100mV
100mV
100mV
100mV
100mV
电子电路

北航verilog实验报告(全)

北航verilog实验报告(全)

目录实验一 (2)实验二 (8)实验三 (14)实验四 (27)实验一实验目的:熟悉硬件开发流程,掌握Modelsim设计与仿真环境,学会简单组合逻辑电路、简单时序逻辑电路设计,不要求掌握综合和综合后仿真。

实验内容:必做实验:练习一、简单的组合逻辑设计练习二、简单分频时序逻辑电路的设计选做实验:选做一、练习一的练习题选做二、7段数码管译码电路练习一、简单的组合逻辑设计描述一个可综合的数据比较器,比较数据a 、b的大小,若相同,则给出结果1,否则给出结果0。

实验代码:模块源代码:module compare(equal,a,b);input a,b;output equal;assign equal=(a==b)?1:0;endmodule测试模块源代码:`timescale 1ns/1ns`include "./compare.v"module t;reg a,b;wire equal;initialbegina=0;b=0;#100 a=0;b=1;#100 a=1;b=1;#100 a=1;b=0;#100 a=0;b=0;#100 $stop;endcompare m(.equal(equal),.a(a),.b(b));endmodule实验波形练习二、简单分频时序逻辑电路的设计用always块和@(posedge clk)或@(negedge clk)的结构表述一个1/2分频器的可综合模型,观察时序仿真结果。

实验代码:模块源代码:module halfclk(reset,clkin,clkout);input clkin,reset;output clkout;reg clkout;always@(posedge clkin)beginif(!reset) clkout=0;else clkout=~clkout;endendmodule测试模块源代码:`timescale 1ns/100ps`define clkcycle 50module tt;reg clkin,reset;wire clkout;always#`clkcycle clkin=~clkin;initialbeginclkin=0;reset=1;#10 reset=0;#110 reset=1;#100000 $stop;endhalfclk m0(.reset(reset),.clkin(clkin),.clkout(clkout));endmodule练习题1:设计一个字节(8位)的比较器。

北航电路实验报告

北航电路实验报告

实验一、组合逻辑电路一、实验目的(1)熟悉集成电路的引脚排列(2)掌握TTL门电路逻辑功能的测试方法(3)掌握TTL组合逻辑电路的实际方法,完成单元功能电路的设计(4)熟悉中规模集成电路译码器、数据译码器的性能与应用(5)掌握数字电子技术实验箱的功能及使用方法二、仪器设备(1)双踪示波器1台(2)500型万用表1台(3)数字逻辑实验箱(4)74LS00(5)74LS39(6)74LS153三、用两片74LS00自拟一个三人表决电路设三输入分别为A、B、C,当两人以上同意时发光二极管亮真值表如下1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1电路图如下:运行结果如下所示。

一人按下:二人按下:三人按下:2、设计一个三输入三输出的逻辑电路真值表如下用两个数据选择器74LS153设计电路,电路图如下:红绿灯亮:黄红灯亮:绿黄灯亮:实验二、时序逻辑电路一、实验目的(1)掌握D触发器和JK触发器逻辑功能的测试方法(2)掌握74LS161功能和引脚图,设计和实现具有一定功能的时序逻辑电路,体会不同控制端在电路设计中的作用(3)了解所用总规模集成器件的性能和应用二、仪器设备(1)双踪示波器1台(2)500型万用表1台(3)数字逻辑实验箱(4)74LS74(5)74LS20(6)74LS00(7)74LS161三、实验原理与内容1、利用2片74LS74、1片74LS20和2片74LS00设计一个4人抢答器。

电路图如下:主持人未按下抢答无效:A完成抢答其他选手按下无效:抢答完成后选手松开按钮灯保持不灭:2、利用中规模计数器74LS161实现任意进制计数器(1)用预置数置0实现七进制计数器电路图如下:计数为3的图片:计数为6的图片:,.。

北航verilog实验报告

北航verilog实验报告

北京航空航天大学电子电路设计数字部分实验报告实验一简单组合逻辑设计 (2)实验二简单分频时序逻辑电路的设计 (3)一.实验目的:1.掌握最基本组合逻辑电路的实现方法。

(3)2.学习时序电路测试模块的编写。

(3)3.学习综合和不同层次的仿真。

(3)实验三利用条件语句实现计数分频时序电路 (5)实验四阻塞赋值与非阻塞赋值的区别 (7)实验五用always块实现较复杂的组合逻辑: (10)实验六在Verilog HDL中使用函数 (12)实验七在Verilog HDL中使用任务(task) (14)实验八利用有限状态机进行时序逻辑的设计 (17)实验九楼梯灯 (19)实验思考与总结 (29)学院:学号:姓名:实验一简单组合逻辑设计一.实验目的:1.掌握基本组合逻辑电路的实现方法。

2.初步了解两种基本组合逻辑电路的生成方法。

3.学习测试模块的编写。

4.通过综合和布局布线了解不同层次仿真的物理意义。

二.实验设备:安装Modelsim-6.5c的PC机。

三.实验内容:描述一个可综合的数据比较器,比较数据a 、b的大小,若相同,则给出结果1,否则给出结果0四.综合仿真结果实验二简单分频时序逻辑电路的设计一.实验目的:1.掌握最基本组合逻辑电路的实现方法。

2.学习时序电路测试模块的编写。

3.学习综合和不同层次的仿真。

二.实验设备:安装Modelsim-6.5c的PC机。

三.实验内容:用always块和@(posedge clk)或@(negedge clk)的结构表述一个1/2分频器的可综合模型,观察时序仿真结果四.实验代码module half_clk(reset,clk_in,clk_out);input clk_in,reset;output clk_out;reg clk_out;always@(posedge clk_in)beginif(!reset)clk_out=0;elseclk_out=~clk_out;endendmodule`timescale 1ns/100ps`define clk_cycle 50module top;reg clk,reset;wire clk_out;always #`clk_cycle clk=~clk;initialbeginclk=0;reset=-1;#10 reset=0;#110 reset=1;#100000 $stop;endhalf_clk m0(.reset(reset),.clk_in(clk),.clk_out(clk_out)); endmodule五.综合仿真结果实验三利用条件语句实现计数分频时序电路一.实验目的:1.掌握条件语句在简单时序模块设计中的使用。

北航电子实习模拟部分实验报告3

北航电子实习模拟部分实验报告3

实验三:差动放大器分析与设计一、实验目的(1)通过使用Multisim来仿真电路,测试差分放大电路的静态工作点、差模电压放大倍数、输入电阻、输出电阻;(2)加深对差分放大电路工作原理的理解;(3)通过仿真,体会差分放大电路对温漂的抑制作用二、实验步骤(1)请对该电路进行直流工作点分析,进而判断电路的工作状态。

(2)请利用软件提供的电流表测出电流源提供给差放的静态工作电流。

(3)请利用软件提供的各种测量仪表测出该电路的输入、输出电阻。

(4)请利用软件提供的各种测量仪表测出该电路的单端出差模放大倍数。

(5)请利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线。

(6)请利用交流分析功能给出该电路的幅频、相频特性曲线。

(7)请利用温度扫描功能给出工作温度从0℃变化到100℃时,输出波形的变化。

*(8)根据前面得到的静态工作点,请设计一单管共射电路,使其工作点和图3电路的静态工作点一样。

利用温度扫描功能,给出单管共射电路工作温度从0℃变化到100℃时,输出波形的变化,比较单管共射电路与共射差分电路的区别。

三、实验问题(1)根据直流工作点分析的结果,说明该电路的工作状态。

(2)请画出测量电流源提供给差放的静态工作电流时,电流表在电路中的接法,并说明电流表的各项参数设置。

(3)详细说明测量输入、输出电阻的方法(操作步骤),并给出其值。

(4)详细说明测量差模放大倍数的方法(操作步骤),并给出其值。

(5)详细说明两种测量幅频、相频特性曲线的方法(操作步骤),并分别画出幅频、相频特性曲线。

*(6)对比实验步骤(7)和(8)的结果,你有何结论?(7)对比实验步骤(4)和(9)的结果,你有何结论?(8)请分析并总结仿真结论与体会。

四、实验结果0)实验电路图根据实验要求,画出实验电路图如下所示1)直流静态工作点分析其中,V(2)=-2.11726mV,V(3)=11.63205V,V(4)=-585.02429mV。

北航电子电路设计训练模拟部分实验报告

北航电子电路设计训练模拟部分实验报告

北航电子电路设计训练模拟部分实验报告电子电路设计训练模拟部分实验实验报告实验一:共射放大器分析与设计1.目的:(1)进一步了解Multisim的各项功能,熟练掌握其使用方法,为后续课程打好基础。

(2)通过使用Multisim来仿真电路,测试如图1所示的单管共射放大电路的静态工作点、电压放大倍数、输入电阻和输出电阻,并观察静态工作点的变化对输出波形的影响。

(3 )加深对放大电路工作原理的理解和参数变化对输出波形的影响。

(4)观察失真现象,了解其产生的原因。

■ ■ ■…- n - - ■- r f - - "一Lr-t-g-.I. .1 4l.4h.l- ■JLJIi.lb _...... vcc图1实验一电路图2.步骤:(1)请对该电路进行直流工作点分析,进而判断管子的工作状态。

(2)请利用软件提供的各种测量仪表测出该电路的输入电阻。

(3)请利用软件提供的各种测量仪表测出该电路的输出电阻。

(4)请利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线。

(5)请利用交流分析功能给出该电路的幅频、相频特性曲线。

(6)请分别在30Hz、1KHz lOOKHz 4MHz和100MHz这5个频点利用示波器测出输入和输出的关系,并仔细观察放大倍数和相位差。

(提示:在上述实验步骤中,建议使用普通的2N2222A三极管,并请注意信号源幅度和频率的选取,否则将得不到正确的结果。

)3.实验结果及分析:(1)根据直流工作点分析的结果,说明该电路的工作状态。

由simulate->analyses->DC operating point, 可测得该电路的静态工作点为:.Ls>lOtnVrffls1000 Hz0s..............R4j.4kQ::由V(5)>V(4)>V(2),可知,晶体管发射结导通,且发射结正偏,集 电结反偏,晶体管工作在放大状态。

(2)详细说明测量输入电阻的方法(操作步骤),并给出其值图3输入电阻测量使用交流模式的电流表接在电路的输入端测量输入电压和输入电 流,如图所示,可得输入电阻:R +需料3碎。

北航实验报告实验实验

北航实验报告实验实验

实验三UC-OS移植实验一、实验目的在内核移植了uCOS-II 的处理器上创建任务。

二、实验内容1.运行实验十,在超级终端上观察四个任务的切换。

2. 任务1~3,每个控制“红”、“绿”、“蓝”一种颜色的显示,适当增加OSTimeDly()的时间,且优先级高的任务延时时间加长,以便看清三种颜色。

3.引入一个全局变量 BOOLEAN ac_key,解决完整刷屏问题。

4. #define rUTRSTAT0 (*(volatile unsigned *)0x)#define RdURXH0()(*(volatile unsigned char *)0x)当键盘有输入时在超级终端上显示相应的字符。

三、实验设备硬件:ARM嵌入式开发平台、用于ARM920T的JTAG仿真器、PC机Pentium100以上。

软件:PC机操作系统Win2000或WinXP、ARM 集成开发环境、仿真器驱动程序、超级终端通讯程序。

四、实验原理所谓移植,指的是一个操作系统可以在某个微处理器或者微控制器上运行。

虽然uCOS-II的大部分源代码是用C语言写成的,仍需要用C语言和汇编语言完成一些与处理器相关的代码。

比如:uCOS-II在读写处理器、寄存器时只能通过汇编语言来实现。

因为uCOS-II在设计的时候就己经充分考虑了可移植性,所以,uCOS-II的移植还是比较容易的。

要使uCOS一工工可以正常工作,处理器必须满足以下要求:1)处理器的C编译器能产生可重入代码。

2)在程序中可以打开或者关闭中断。

3)处理器支持中断,并A能产生定时中断(通常在10Hz}1000Hz之间)。

4)处理器支持能够容纳一定量数据的硬件堆栈。

5)处理器有将堆栈指针和其它CPU寄存器存储和读出到堆栈(或者内存)的指令。

uCOS-II进行任务调度的时候,会把当前任务的CPU寄存器存放到此任务的堆栈中,然后,再从另一个任务的堆栈中恢复原来的工作寄存器,继续运行另一个任务。

北航机电仿真实验报告(附源代码以及运行结果)

北航机电仿真实验报告(附源代码以及运行结果)

机电系统设计仿真实验报告题目:基于Maple的滑块摆仿真实验程序设计院系:班级:姓名:学号:基于Maple 的滑块摆实验程序设计一、实验目的及意义通过本实验掌握Maple 仿真软件的使用方法,建立系统数学建模的思想,同时对编程能力也是一种提高。

二、实验原理与要求2.1 Maple 简介Maple 是一个具有强大符号运算能力、数值计算能力、图形处理能力的交互式计算机代数系统(Computer Algebra System)。

它可以借助键盘和显示器代替原来的笔和纸进行各种科学计算、数学推理、猜想的证明以及智能化文字处理。

Maple 这个超强数学工具不仅适合数学家、物理学家、工程师, 还适合化学家、生物学家和社会学家, 总之, 它适合于所有需要科学计算的人。

2.2 滑块摆实验要求 滑块摆由一置于光滑杆上的质量为m 的滑块A 、一质量为M 的小球B 和长度为L ,质量不计的刚性杆铰接而成,不计各处摩擦,以过A 点的水平面为零势能面,通过Lagrange 方程建立系统的运动方程,利用Maple 软件画出: 1. 滑块A 的位移x 随时间t 的变化曲线 2. 角度φ随时间t 的变化曲线 3. 滑块摆的运动动画三、实验设计及方法3.1 设计原理 设定初始条件为:m=1Kg ,M=1Kg ,g=9.8,L=2mφ(0) = 0rad, x(0) = 0m, φ’(0) = -1.3rad/s, x’(0) = 1m/s如下定义的拉格朗日方程''c p q L E E d L L DF dt q q q =-⎧⎪⎛⎫∂∂∂⎨-+= ⎪⎪∂∂∂⎝⎭⎩其中:q x(t)和θ(t)的自由度 D 由于摩擦而消耗的能量 F q 由自由度q 产生的力 E c 和E p系统的动能和势能 系统有两个自由度,以x 和ϕ为广义坐标,以过A 点的水平面为零势能面,系统的动能和势能分别为()()2222222112cos 2211cos 22c E mx M x l lx m M x Ml Mlx ϕϕϕϕϕϕ=+++=+++cos p E Mgl ϕ=-系统的Lagrange 方程为()22211cos cos 22c p L E E m M x Ml Mlx Mgl ϕϕϕϕ=-=++++计算出诸导数()2cos sin d L m M x Ml Ml dt x ϕϕϕϕ∂⎛⎫=++- ⎪∂⎝⎭0L x∂=∂ 2cos sin d L Ml Mlx Ml x dt ϕϕϕϕϕ⎛⎫∂=+- ⎪∂⎝⎭sin sin LMl x Mgl ϕϕϕϕ∂=--∂带入Lagrange 方程,得到系统的运动微分方程()2cos sin 0cos sin 0m M x Ml Ml l x g ϕϕϕϕϕϕϕ⎧++-=⎪⎨++=⎪⎩ 3.2程序设计流程四、实验结果与分析4.1滑块摆运动动画4.2 位移随时间变化曲线4.3 角度随时间变化曲线五、实验总结与体会此次实验成功实现了滑块摆的运动演示,并且绘制出了位移和角度随时间的变化曲线。

北航机电控制工程基础-单片机实验报告

北航机电控制工程基础-单片机实验报告

《机电控制工程技术》作业三:单片机实验报告姓名:班级:130717目录一、实验目的 (1)二、实验任务 (1)三、实验设备 (1)四、实验思路及过程 (1)4.1实验箱中基本的器件及其控制方式: (1)4.2程序流程图 (3)4.3代码编写 (3)五、程序调试 (4)六、感想 (4)七、附录 (5)一、实验目的1.学习使用单片机编程软件ICCV7 for A VR以及烧写软件progisp2.了解并使用ATmega8单片机及其外围电路二、实验任务通过电位计控制电机转速,按键控制转向与工作方式,并在数码管上稳定的显示当前工作频率,用LED灯显示电机工作方式,当电机频率过低时电机自动关闭。

三、实验设备1.机电控制工程实验教学平台实验箱2.PC一台四、实验思路及过程4.1实验箱中基本的器件及其控制方式:实验箱中单片机开发板如下图:图表 1 单片机开发板硬件图解4.1.1硬件介绍该实验中用到了,ATmega8的最小系统(晶振(11.059MHZ),滤波电路,复位电路,ISP下载,电源),以及外围器件(4位数码管及其驱动芯片ZLG7289,4个LED灯,2个中断按钮,1个旋转电位计,以及24BYJ48A 型步进电机和L298芯片)4.1.2外围器件的工作原理简介①4位数码管由ZLG7289芯片驱动,采用的驱动方式为动态显示,ATmega8通过PD5~7管脚与ZLG7289之间进行数据传送。

②4个LED灯与PC0~3管脚相连,当管脚输出低电平时,LED点亮。

③2个中断开关与PD2、PD3相连,其中断方式可以为电平触发和沿触发④旋转电位计输出电压为0~5V,与ADC7相连,通过ATmega8中ADC模块可以得到10位精度的电压数字量值。

⑤24BYJ48A型步进电机为4相直流步进电机,其工作电压为12V,由L298芯片控制,L298芯片与ATmega8通过PA1~4相连。

该步进电机的通电方式为由自己控制。

4.2 程序流程图4.3 代码编写利用ICCV7 for A VR 软件编写单片机程序新建一个project ,在project 中新建一个c 程序。

北航电力电子实验报告

北航电力电子实验报告

北航电力电子实验报告一、实验目的电力电子是指能够对电能进行控制、调节和变换的设备和技术。

本实验旨在通过对电力电子元件和电路的实际操作,了解电力电子的基本原理和工作特性,掌握电力电子技术的应用。

二、实验内容1.了解电力电子元件的工作原理和特性,包括二极管、晶闸管、MOSFET等。

2.使用电力电子元件搭建基本电力电子实验电路,包括电压倍增器、交流调压电路等。

3.对电力电子元件和电路进行实验调试,观察和测量电路中电压、电流等参数。

4.记录实验结果,撰写实验报告。

三、实验步骤1.根据实验要求和提供的材料,准备实验所需的电力电子元件和电路板。

2.根据实验指导书的要求,依次搭建不同的电力电子电路。

3.使用万用表、示波器等测试仪器,对电路中的电压、电流等参数进行测量和观察。

4.调试电路,观察电力电子元件的工作情况,并记录实验数据。

5.完成实验后,将实验所用的设备归还到指定位置,整理实验报告。

四、实验结果分析本实验以搭建电压倍增器为例,观察和测量了电压倍增器电路中的输入电压、输出电压和负载电流等参数。

通过实验发现,当输入电压为直流电压时,输出电压比输入电压高;当输入电压为交流电压时,输出电压也为交流电压,但其幅值大于输入电压。

此外,当负载电流增加时,电路中的电流也相应增加,但电压倍增器的输出稳定性有一定的局限性,不适用于所有场合。

五、实验总结通过本次实验,我深入了解了电力电子元件和电路的工作原理和特性,通过实际操作和测量,进一步加深了对电力电子技术的理解。

实验过程中,我掌握了搭建和调试电力电子电路的方法和技巧,提高了实际操作的能力。

同时,也意识到了电力电子技术在现代工程和生活中的广泛应用,对工程实践有着重要的意义。

在未来的学习和实践中,我将进一步探索和应用电力电子技术,为工程和生活提供更好的解决方案。

同时,也要不断学习和更新电力电子技术的知识,跟随科技的发展,不断提升自己的专业素养和技能水平。

北航电路实验报告

北航电路实验报告

北航电路实验报告北航电路实验报告引言北航电路实验是电子信息工程专业学生必修的一门实践课程,旨在帮助学生理解和掌握电路的基本原理和实验技巧。

本文将对北航电路实验进行详细的报告和分析,以便更好地总结和应用所学知识。

实验一:电路基础实验电路基础实验是北航电路实验的第一次实践活动,通过搭建简单的电路并测量电流和电压,学生可以对电路的基本概念和特性有一个初步的了解。

首先,我们使用面包板搭建了一个简单的电路,包括电源、电阻和电流表。

然后,我们通过改变电阻的大小,测量了电路中的电流和电压。

实验结果表明,电流与电压成正比,而电阻则影响电流的大小。

实验二:交流电路实验交流电路实验是北航电路实验的第二个实践环节,通过使用交流电源和各种电路元件,学生可以研究交流电路的特性和行为。

我们首先搭建了一个简单的交流电路,包括交流电源、电感和电容。

然后,我们测量了电路中的电流和电压,并绘制了电流和电压随时间变化的波形图。

实验结果表明,电感和电容对交流电路的行为有重要影响,可以产生滤波、延时等效果。

实验三:放大电路实验放大电路实验是北航电路实验的第三个实践环节,通过使用放大器和各种电路元件,学生可以研究电路的放大效果和信号处理。

我们首先搭建了一个简单的放大电路,包括放大器、电阻和信号源。

然后,我们输入不同幅度和频率的信号,并测量输出信号的幅度和频率。

实验结果表明,放大器可以放大输入信号的幅度,同时也会对信号的频率产生一定的影响。

实验四:滤波电路实验滤波电路实验是北航电路实验的第四个实践环节,通过使用滤波器和各种电路元件,学生可以研究电路的滤波效果和频率响应。

我们首先搭建了一个简单的滤波电路,包括滤波器、电容和电阻。

然后,我们输入不同频率的信号,并测量输出信号的幅度和相位。

实验结果表明,滤波器可以对输入信号进行频率选择,滤除不需要的频率成分。

实验五:数字电路实验数字电路实验是北航电路实验的最后一个实践环节,通过使用数字电路元件和逻辑门,学生可以研究电路的逻辑运算和数字信号处理。

北航电子电路设计训练模拟部分实验报告

北航电子电路设计训练模拟部分实验报告

电子电路设计训练模拟部分实验实验报告实验一:共射放大器分析与设计1.目的:(1)进一步了解Multisim的各项功能,熟练掌握其使用方法,为后续课程打好基础。

(2)通过使用Multisim来仿真电路,测试如图1所示的单管共射放大电路的静态工作点、电压放大倍数、输入电阻和输出电阻,并观察静态工作点的变化对输出波形的影响。

(3)加深对放大电路工作原理的理解和参数变化对输出波形的影响。

(4)观察失真现象,了解其产生的原因。

图 1 实验一电路图2.步骤:(1)请对该电路进行直流工作点分析,进而判断管子的工作状态。

(2)请利用软件提供的各种测量仪表测出该电路的输入电阻。

(3)请利用软件提供的各种测量仪表测出该电路的输出电阻。

(4)请利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线。

(5)请利用交流分析功能给出该电路的幅频、相频特性曲线。

(6)请分别在30Hz、1KHz、100KHz、4MHz和100MHz这5个频点利用示波器测出输入和输出的关系,并仔细观察放大倍数和相位差。

(提示:在上述实验步骤中,建议使用普通的2N2222A三极管,并请注意信号源幅度和频率的选取,否则将得不到正确的结果。

)3.实验结果及分析:(1)根据直流工作点分析的结果,说明该电路的工作状态。

由simulate->analyses->DC operating point,可测得该电路的静态工作点为:图 2 直流工作点由V(5)>V(4)>V(2),可知,晶体管发射结导通,且发射结正偏,集电结反偏,晶体管工作在放大状态。

(2)详细说明测量输入电阻的方法(操作步骤),并给出其值。

图 3 输入电阻测量使用交流模式的电流表接在电路的输入端测量输入电压和输入电流,如图所示,可得输入电阻:7.691 3.352.295i i i U mV R k I Aμ===Ω。

(3)详细说明测量输出电阻的方法(操作步骤),并给出其值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机电系统设计仿真实验报告
题目:基于Maple的滑块摆仿真实验程序设计院系:
班级:
姓名:
学号:。

北京航空航天大学机电系统设计仿真实验
基于Maple的滑块摆实验程序设计
一、实验目的及意义
通过本实验掌握Maple仿真软件的使用方法,建立系统数学建模的思想,同时对编程能力也是一种提高。

二、实验原理与要求
2.1 Maple简介
Maple是一个具有强大符号运算能力、数值计算能力、图形处理能力的交互式计算机代数系统(Computer Algebra System)。

它可以借助键盘和显示器代替原来的笔和纸进行各种科学计算、数学推理、猜想的证明以及智能化文字处理。

Maple这个超强数学工具不仅适合数学家、物理学家、工程师, 还适合化学家、生物学家和社会学家, 总之, 它适合于所有需要科学计算的人。

2.2 滑块摆实验要求
滑块摆由一置于光滑杆上的质量为m的滑块A、一质量为M的小球B和长度为L,质量不计的刚性杆铰接而成,不计各处摩擦,以过A点的水平面为零势能面,通过Lagrange 方程建立系统的运动方程,利用Maple软件画出:
1.滑块A的位移x随时间t的变化曲线
2.角度φ随时间t的变化曲线
3.滑块摆的运动动画
三、实验设计及方法
3.1 设计原理
设定初始条件为:m=1Kg ,M=1Kg ,g=9.8,L=2m
φ(0) = 0rad, x(0) = 0m, φ’(0) = -1.3rad/s, x ’(0) = 1m/s
如下定义的拉格朗日方程
''c p q
L E E d L L D
F dt q q q =-⎧

⎛⎫∂∂∂⎨-+= ⎪⎪∂∂∂⎝
⎭⎩ 其中: q
x(t)和θ(t)的自由度 D
由于摩擦而消耗的能量 F q
由自由度q 产生的力 E c 和E p
系统的动能和势能
系统有两个自由度,以x 和ϕ为广义坐标,以过A 点的水平面为零势能面,系统的动
能和势能分别为
()()2222
222
112cos 22
11cos 22
c E mx M x l lx m M x Ml Mlx ϕϕϕϕϕϕ
=+++=+++&&&&&&&&&
cos p E Mgl ϕ=-
系统的Lagrange 方程为
()222
11cos cos 22
c p L E E m M x
Ml Mlx Mgl ϕϕϕϕ=-=
++++&&&&
计算出诸导数
()2
cos sin d L m M x Ml Ml dt x ϕϕϕϕ∂⎛⎫=++- ⎪∂⎝⎭
&&&&
&& 0L
x
∂=∂ 2
cos sin d L Ml Mlx Ml x dt ϕϕϕϕϕ⎛⎫∂=+- ⎪∂⎝⎭
&&&&&&& sin sin L
Ml x Mgl ϕϕϕϕ
∂=--∂&&
带入Lagrange 方程,得到系统的运动微分方程
()2
cos sin 0cos sin 0m M x Ml Ml l x g ϕϕϕϕϕ
ϕϕ⎧++-=⎪⎨
++=⎪⎩&&&&
&&&&& 3.2程序设计流程
四、实验结果与分析
4.1滑块摆运动动画
4.2 位移随时间变化曲线
4.3 角度随时间变化曲线
北京航空航天大学机电系统设计仿真实验五、实验总结与体会
此次实验成功实现了滑块摆的运动演示,并且绘制出了位移和角度随时间的变化曲线。

达到了实验要求。

通过此次实验,我对Maple强大的仿真功能有了新的认识和学习,并对系统进行数学建模的思想有了更为深入的理解,对自己的编程能力也有很大的锻炼。

六、附录
程序源代码:
> restart;
with (DEtools):
with (plots):
with (plottools):
> m:=1:M:=1:g:=9.8:l:=2:
>
eq1:=(m+M)*diff(x(t),t$2)+M*l*diff(phi(t),t$2)*cos(phi(t))-M*l*(diff(phi(t),t))^2*sin( phi(t))=0;
> eq2:=M*(l^2)*diff(phi(t),t$2)+M*l*diff(x(t),
`$`(t,2))*cos(phi(t))+M*g*l*sin(phi(t))=0;
> sys:={eq1,eq2};
> Ini:={phi(0)=0,x(0)=0,D(phi)(0)=-1.3,D(x)(0)=1};。

var:={phi(t),x(t)}:
> val:=array(1..100):for i to 100 do val[i]:=i/10 end do:
S:=dsolve(`union`(sys,Ini),var,type=numeric,method=rkf45,output=val): > eval(S):
> for i to 100 do
pos[i]:=S[2,1][i,4];
ang[i]:=S[2,1][i,2];
北京航空航天大学机电系统设计仿真实验posY[i]:=-cos(ang[i])*l;
posX[i]:=sin(ang[i])*l;
end do:
> minx:=10000:maxx:=-10000:
for i to 100 do
temmin:=`if`(minx<pos[i],minx,pos[i]):
minx:=temmin:
temmax:=`if`(maxx>pos[i],maxx,pos[i]):
maxx:=temmax:
end do:
> for t to 100 do:
wall:=curve([[maxx,0],[minx,0]]):
pospendx:=posX[t]+pos[t]:
pendulum:=disk([pospendx,posY[t]],0.15,color=tan):
mass:=rectangle([pos[t]-0.18,0.1],[pos[t]+0.18,-0.1],color=violet):
#mass:=disk([pos[t],0],0.15,color=tan):
lineM_P:=curve([[pos[t],0],[pospendx,posY[t]]]):
G1[t]:=display(pendulum,mass,lineM_P,wall):
end do:
>
display([seq(G1[t],t=1..100)],insequence=true,scaling=constrained,axes=none,titl e=`滑块摆的运动动画`);
>
>
>
>。

>
-可编辑修改-
北京航空航天大学机电系统设计仿真实验>
>
>
>
6。

相关文档
最新文档