四边形判定定理以及性质定理
四边形的判定定理Microsoft Word 文档
平行四边形:1.一组对边平行且相等的四边形是平行四边形2.两组对边分别平行的四边形是平行四边形3.两组对边分别相等的四边形四平行四边形4.对角线互相平分的四边形是平行四边形菱形:1.一组邻边相等的平行四边形是菱形2.对角线互相垂直的平行四边形是菱形3.四条边都相等的四边形是菱形矩形:1.有一个角是直角的平行四边形是矩形2.对角线相等平行四边形是矩形3.对角线互相平分且相等的四边形是矩形4.有三个角是直角的四边形矩形矩形正方形:1.一组邻边相等矩形是正方形2.对角线相等的菱形是正方形3.有一个角是直角的菱形是正方形4.对角线相等且垂直的平行四边形是正方平行四边形:最佳答案相似三角形的判定定理:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,(简叙为两角对应相等两三角形相似).(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.)(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.)直角三角形相似的判定定理:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.相似三角形的性质定理:(1)相似三角形的对应角相等.(2)相似三角形的对应边成比例.(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.(4)相似三角形的周长比等于相似比.(5)相似三角形的面积比等于相似比的平方.相似三角形的传递性如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2全等三角形的判定定理(1)三边对应相等的两个三角形全等(SSS)(2)两边和它们的夹角对应相等的两个三角形全等(SAS)(3)两个角和他们夹边对应相等的两个三角形全等(ASA)(4)两个角和其中一个角的对边对应相等的两个三角形全等(AAS)(5)斜边和一条直角边对应相等的两个直角三角形全等(HL)。
平行四边形定义性质以及判定定理
性质(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的两组对边分别相等”[2])(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的两组对角分别相等”[2])(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。
(简述为“平行四边形的邻角互补”)(4)夹在两条平行线间的平行的高相等。
(简述为“平行线间的高距离处处相等”)(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的对角线互相平分”[2])(6)连接任意四边形各边的中点所得图形是平行四边形。
(推论)(7)平行四边形的面积等于底和高的积。
(可视为矩形。
)(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(9)平行四边形是中心对称图形,对称中心是两对角线的交点.(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。
矩形和菱形是轴对称图形。
注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。
(11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
(13)平行四边形对角线把平行四边形面积分成四等份。
(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
(15)平行四边形的面积等于相邻两边与其夹角正弦的乘积平行四边形的判定方法(共6种)1.两组对边分别平行的四边形是平行四边形(定义判定法);2.一组对边平行且相等的四边形是平行四边形;3.对角线互相平分的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.所有邻角(每一组邻角)都互补的四边形是平行四边形;6.两组对边分别相等的四边形是平行四边形。
圆内接四边形性质及判定定理
二圆内接四边形的性质及判断定理[ 对应学生用书P21]1.圆内接四边形的性质(1)圆的内接四边形对角互补.如图:四边形ABCD 内接于⊙ O,则有:∠ A+∠ C= 180°,∠ B+∠D= 180 °.(2)圆内接四边形的外角等于它的内角的对角.如图:∠ CBE 是圆内接四边形ABCD 的一外角,则有:∠CBE=∠D.2.圆内接四边形的判断(1)判断定理:假如一个四边形的对角互补,那么这个四边形的四个极点共圆.(2)推论:假如四边形的一个外角等于它的内角的对角,那么这个四边形的四个极点共圆.[ 对应学生用书P21]圆内接四边形的性质[例 1]如图,AB是⊙ O的直径,弦BD , CA 的延伸线订交于点E,EF垂直BA 的延伸线于点 F.求证:∠DEA =∠ DFA.[思路点拨]此题主要考察圆内接四边形判断及性质的应用.解题时,只要证A, D, E,F四点共圆后可得结论.[证明 ]连结AD.由于AB 为圆的直径,所以∠ADB = 90 °又.EF⊥ AB ,∠EFA= 90°,所以A,D ,E, F四点共圆.所以∠ DEA =∠ DFA.圆内接四边形的性质即对角互补,一个外角等于其内角的对角, 可用来作为三角形相像的条件,进而证明一些比率式的建立或证明某些等量关系.1.圆内接四边形 ABCD 中,已知∠ A ,∠ B ,∠ C 的度数比为4∶ 3∶5,求四边形各角的度数.解: 设∠ A ,∠ B ,∠ C 的度数分别为 4x,3x,5x ,则由∠ A +∠ C = 180°,可得 4x + 5x = 180°∴.x = 20°.∴∠ A = 4×20°=80°,∠ B = 3× 20°= 60°,∠ C = 5× 20°= 100°,∠ D = 180°-∠ B = 120°.2.已知:如图,四边形 ABCD 内接于圆,延伸 AD ,BC 订交于点 E ,点 F 是 BD 的延伸线上的点,且 DE 均分∠ CDF .(1)求证: AB = AC ;(2)若 AC = 3 cm , AD = 2 cm ,求 DE 的长.解: (1)证明:∵∠ ABC =∠ 2,∠ 2=∠ 1=∠ 3,∠ 4=∠ 3,∴∠ ABC =∠ 4.∴ AB = AC.(2)∵∠ 3=∠ 4=∠ ABC ,∠ DAB =∠ BAE ,∴△ ABD ∽△ AEB.∴AB = AD .AE AB∵ AB = AC = 3,AD = 2,2∴ AE =AB=9.AD 2∴ DE =9- 2= 5(cm).2 2圆内接四边形的判断[例 2]如图,在△ ABC 中, E , D ,F 分别为 AB , BC , AC 的中点,且 AP ⊥ BC 于 P.求证: E , D , P , F 四点共圆.[思路点拨 ]可先连结PF ,结构四边形EDPF 的外角∠ FPC ,证明∠ FPC =∠ C,再证明∠ FPC =∠ FED 即可.[证明 ]如图,连结PF ,∵AP⊥ BC, F 为 AC 的中点,∴PF=1 AC.2∵FC=1 AC,2∴PF= FC .∴∠ FPC=∠ C.∵E、 F、D 分别为 AB, AC, BC 的中点.∴ EF∥ CD ,ED ∥ FC.∴四边形 EDCF 为平行四边形,∴∠ FED =∠ C.∴∠ FPC=∠ FED .∴ E, D, P, F 四点共圆.证明四点共圆的方法常有:①假如四点与必定点等距离,那么这四点共圆;②假如四边形的一组对角互补,那么这个四边形的四个极点共圆;③假如四边形的一个外角等于它的内对角,那么这个四边形的四个极点共圆;④假如两个三角形有公共边,公共边所对的角相等且在公共边的同侧,那么这两个三角形的四个极点共圆.3.判断以下各命题能否正确.(1)随意三角形都有一个外接圆,但可能不仅一个;(2)矩形有独一的外接圆;(3)菱形有外接圆;(4)正多边形有外接圆.解: (1)错误,随意三角形有独一的外接圆;(2)正确,由于矩形对角线的交点到各极点的距离相等;(3) 错误,只有当菱形是正方形时才有外接圆;(4) 正确,由于正多边形的中心到各极点的距离相等.4.已知:在△ ABC 中, AD= DB ,DF ⊥AB 交 AC 于点 F ,AE= EC,EG⊥ AC 交 AB 于点 G.求证:(1)D 、E、 F、 G 四点共圆;(2)G、B、 C、 F 四点共圆.证明: (1) 如图,连结 GF ,由DF ⊥AB,EG⊥ AC,知∠GDF =∠ GEF = 90°,∴ GF 中点到 D、 E、F 、 G 四点距离相等,∴ D、 E、 F、 G 四点共圆.(2)连结 DE.由 AD= DB , AE= EC,知 DE ∥BC,∴∠ ADE=∠ B.又由 (1)中 D、 E、 F 、 G 四点共圆,∴∠ ADE=∠ GFE .∴∠ GFE=∠ B.∴ G、 B、 C、 F 四点共圆 .圆内接四边形的综合应用[ 例 3] 如图,已知⊙ O1与⊙ O2订交于 A、 B 两点, P 是⊙ O1上一点, PA、PB 的延伸线分别交⊙ O2于点 D 、 C,⊙ O1的直径 PE 的延伸线交 CD 于点 M.求证: PM ⊥ CD.[思路点拨 ]⊙ O1与⊙ O2订交,考虑连结两交点A、B 得公共弦AB;PE 是⊙ O1的直径,考虑连结 AE 或 BE 得 90°的圆周角;要证PM ⊥ CD ,再考虑证角相等.[证明 ]如图,分别连结 AB, AE,∵A、B、C、 D 四点共圆,∴∠ ABP=∠ D.∵A、E、B、P 四点共圆,∴∠ ABP=∠ AEP.∴∠ AEP=∠ D.∴A、 E、M 、 D 四点共圆.∴∠ PMC =∠ DAE .∵PE 是⊙O1的直径,∴ EA⊥ PA.∴∠ PMC =∠ DAE = 90°.∴PM⊥ CD.此类问题综合性强,知识点丰富,解决的方法大多是先判断四点共圆,而后利用圆内接四边形的性质证明或求得某些结论建立.5.如图, P 点是等边△ ABC 外接圆的BC上一点, CP 的延伸线和AB 的延伸线交于点D,连结 BP .求证: (1) ∠D =∠ CBP;(2)AC2=CP·CD.证明: (1) ∵△ ABC 为等边三角形,∴∠ ABC=∠ A= 60°.∴∠ DBC= 120°.又∵四边形ABPC 是圆内接四边形,∴∠ BPC= 180°-∠ A= 120°.∴∠ BPC=∠ DBC .又∵∠ DCB =∠ BCP,∴△ BCP∽△ DCB .∴∠ D=∠ CBP.(2)由 (1)知△ BCP∽△ DCB ,∴BC=CP.DC CB∴CB2= CP·CD .又CB= AC,∴ AC2= CP·CD .6.如图,在正三角形ABC 中,点 D,E 分别在边BC,AC 上,且 BD =1BC,CE=1CA,33AD, BE 订交于点P.求证: (1) 四点 P,D , C, E 共圆;(2)AP⊥CP.解: (1)证明:在△ ABC 中,由BD =1BC, CE=1CA 知:33△ABD≌△ BCE,即∠ ADB=∠ BEC,即∠ ADC +∠ BEC= 180°,所以四点 P,D ,C, E 共圆.(2)如图,连结DE.在△ CDE 中, CD= 2CE,∠ACD= 60°,由余弦定理知∠CED =90°.由四点 P, D, C, E 共圆知,∠DPC=∠ DEC ,所以 AP ⊥CP.[ 对应学生用书P24]一、选择题1.设四边形ABCD 为圆内接四边形,现给出四个关系式:①sin A=sin C,② sin A+ sin C= 0,③ cos B+ cos D= 0,④ cos B=cos D.此中恒建立的关系式的个数是 ()A. 1B. 2C. 3D. 4分析:由于圆内接四边形的对角互补,故∠ A= 180°-∠ C,且∠ A,∠ C 均不为 0°或 180°,故①式恒建立,②式不建立.相同由∠ B=180°-∠ D 知,③式恒建立.④式只有当∠B=∠ D= 90°时建立.答案: B2.圆内接四边形A. 4∶ 2∶3∶ 1 C. 4∶ 1∶3∶ 2分析:由四边形ABCD 中,∠ A∶∠ B∶∠ C∶∠ D 能够是 ()B. 4∶ 3∶1∶ 2D.以上都不对ABCD 内接于圆,得∠A+∠ C=∠ B+∠ D,进而只有 B 切合题意.答案: B3.如图,四边形ABCD是⊙ O 的内接四边形, E 为AB 的延伸线上一点,∠CBE= 40°,则∠ AOC等于 ()A. 20 °B. 40 °C. 80 °D. 100°分析:四边形ABCD是圆内接四边形,且∠CBE=40°,由圆内接四边形性质知∠ D =∠CBE = 40°,又由圆周角定理知:∠AOC= 2∠D =80°.答案: C4.已知四边形ABCD 是圆内接四边形,以下结论中正确的有()①假如∠ A=∠ C,则∠ A= 90°;②假如∠ A=∠ B,则四边形ABCD 是等腰梯形;③∠ A 的外角与∠ C 的外角互补;④∠ A∶∠ B∶∠ C∶∠ D 能够是 1∶ 2∶3∶ 4A. 1 个B. 2 个C. 3 个D. 4 个分析:由“圆内接四边形的对角互补” 可知:①相等且互补的两角必为直角;②两相等邻角的对角也相等 (亦可能有∠ A=∠ B=∠ C=∠ D 的特例 );③互补两内角的外角也互补;④两组对角之和的份额一定相等 (这里 1+3≠ 2+ 4).所以得出①③正确,②④错误.答案: B二、填空题5. (2014 陕·西高考 )如图,△ ABC 中, BC= 6 ,以 BC 为直径的半圆分别交AB , AC 于点E, F,若 AC= 2AE,则 EF= ________.分析:∵ B,C, F, E 四点在同一个圆上,∴∠AEF =∠ ACB,又∠ A=∠ A,∴△ AEF∽△ ACB,∴AE=EF,AC BC即1=EF,∴ EF = 3.2 6答案: 36.如图,直径 AB= 10,弦 BC =8,CD 均分∠ ACB,则 AC =______,BD= ________.分析:∠ ACB=90°,∠ ADB =90°.在Rt△ABC 中,AB=10,BC=8,∴ AC= AB2- BC2= 6.又∵ CD 均分∠ ACB.即∠ ACD=∠ BCD,∴AD=BD .∴ BD=AB2=5 2.2答案: 6 5 27.如图,点A, B,C, D 都在⊙ O 上,若∠ C= 34 °,则∠ AOB= ________,∠ ADB =________.分析:∵∠ C 和∠ AOB 分别是AB所对的圆周角与圆心角,∴∠ AOB= 2∠ C= 68°.∵周角是 360°,劣弧 AB 的度数为68°,∴优弧 AB 的度数为292°.1∴∠ ADB=× 292°= 146°.答案: 68° 146°三、解答题8.已知:如图,E、 F 、 G、 H 分别为菱形ABCD 各边的中点,对角线 AC 与 BD 订交于 O 点,求证: E,F , G, H 共圆.证明:法一:连结EF、FG、GH、HE .∵E、 F 分别为 AB、 BC 的中点,∴ EF∥ AC.同理 EH∥ BD .∴∠ HEF =∠ AOB.∵AC⊥ BD ,∴∠ HEF = 90°.同理∠ FGH = 90°.∴∠ HEF +∠ FGH = 180°.∴ E、 F、G、 H 共圆.法二:连结 OE、 OF、 OG、OH .∵四边形 ABCD 为菱形.∴AC⊥ BD ,AB= BC= CD=DA .∵ E、 F、G、 H 分别为菱形ABCD 各边的中点,∴OE=1AB, OF=1BC,22OG=1CD , OH=1DA . 22∴OE=OF = OG = OH.∴E, F,G, H 在以 O 点为圆心,以 OE 为半径的圆上.故E, F ,G, H 四点共圆.9.如图, A, B, C, D 四点在同一圆上,AD 的延伸线与BC 的延伸线交于 E 点,且 EC=ED .(1)证明: CD∥ AB;(2)延伸 CD 到 F ,延伸 DC 到 G,使得 EF= EG,证明: A, B, G, F 四点共圆.证明: (1) 由于 EC= ED,所以∠ EDC =∠ ECD .由于 A, B, C, D 四点在同一圆上,所以∠ EDC =∠ EBA.故ECD=∠ EBA.所以 CD ∥ AB.(2)由 (1)知, AE= BE.由于 EF =EG,故∠ EFD =∠ EGC,进而∠ FED =∠ GEC.连结 AF ,BG,则△ EFA≌ △ EGB,故∠ FAE=∠ GBE.又CD ∥AB,∠EDC =∠ECD ,所以∠ FAB=∠ GBA.所以∠ AFG +∠ GBA= 180°.故 A, B,G, F 四点共圆.10.如图,已知⊙ O 的半径为 2,弦 AB 的长为 2 3,点 C 与点 D 分别是劣弧 AB 与优弧 ADB 上的任一点(点C、D均不与A、B重合).(1)求∠ ACB.(2)求△ ABD 的最大面积.解: (1)连结 OA、 OB,作 OE⊥ AB, E 为垂足,则AE=BE .Rt△ AOE 中, OA=2.AE=1AB=1× 2 3= 3. 22AE3所以 sin ∠AOE==,∴∠ AOE= 60°,∠ AOB= 2∠AOE= 120°.又∠ ADB=1∠ AOB,2∴∠ ADB= 60°.又四边形 ACBD 为圆内接四边形,∴∠ ACB+∠ ADB = 180°.进而有∠ ACB=180°-∠ ADB =120°.(2)作 DF ⊥ AB,垂足为F,则△1A B·DF =1× 23× DF = 3DF .S ABD=22明显,当DF 经过圆心 O 时, DF 取最大值,进而 S△ABD获得最大值.此时 DF = DO + OF=3, S△ABD=3 3,即△ ABD 的最大面积是 3 3.。
知识必备07 四边形(公式、定理、结论图表)
知识必备07四边形(公式、定理、结论图表)考点一、四边形的相关概念1.多边形的定义:在平面内,由不在同一直线上的一些线段首尾顺次相接组成的封闭图形叫做多边形.2.多边形的性质:(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°;(2)推论:多边形的外角和是360°;(3)对角线条数公式:n边形的对角线有条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形.3.四边形的定义:同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形.4.四边形的性质:(1)定理:四边形的内角和是360°;(2)推论:四边形的外角和是360°.典例1:2022•甘肃)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF的边长为()A.2mm B.2mm C.2mm D.4mm【分析】根据正六边形的性质和题目中的数据,可以求得正六边形ABCDEF的边长.【解答】解:连接BE,CF,BE、CF交于点O,如右图所示,∵六边形ABCDEF是正六边形,AD的长约为8mm,∴∠AOF=60°,OA=OD=OF,OA和OD约为4mm,∴AF约为4mm,故选:D.【点评】本题考查多边形的对角线,解答本题的关键是明确正六边形的特点.典例2:(2022•柳州)如图,四边形ABCD的内角和等于()A.180°B.270°C.360°D.540°【分析】根据四边形的内角和等于360°解答即可.【解答】解:四边形ABCD的内角和为360°.故选:C.【点评】本题考查了四边形的内角和,四边形的内角和等于360°.考点二、特殊的四边形1.平行四边形及特殊的平行四边形的性质2.平行四边形及特殊的平行四边形的判定【要点诠释】面积公式:S 菱形=21ab=ch.(a、b 为菱形的对角线,c 为菱形的边长,h 为c 边上的高)S 平行四边形=ah.a 为平行四边形的边,h 为a 上的高)典例3:(2022•朝阳)将一个三角尺按如图所示的方式放置在一张平行四边形的纸片上,∠EFG =90°,∠EGF =60°,∠AEF =50°,则∠EGC 的度数为()A .100°B .80°C .70°D .60°【分析】由平行四边形的性质可得AB ∥DC ,再根据三角形内角和定理,即可得到∠GEF 的度数,依据平行线的性质,即可得到∠EGC 的度数.【解答】解:∵四边形ABCD 是平行四边形,∴AB∥DC,∴∠AEG=∠EGC,∵∠EFG=90°,∠EGF=60°,∴∠GEF=30°,∴∠GEA=80°,∴∠EGC=80°.故选:B.【点评】此题考查的是平行四边形的性质,掌握其性质定理是解决此题的关键.典例4:(2022•鞍山)如图,在四边形ABCD中,AC与BD交于点O,BE⊥AC,DF⊥AC,垂足分别为点E,F,且BE=DF,∠ABD=∠BDC.求证:四边形ABCD是平行四边形.【分析】结合已知条件推知AB∥CD;然后由全等三角形的判定定理AAS证得△ABE≌△CDF,则其对应边相等:AB=CD;最后根据“对边平行且相等是四边形是平行四边形”证得结论.【解答】证明:∵∠ABD=∠BDC,∴AB∥CD.∴∠BAE=∠DCF.在△ABE与△CDF中,.∴△ABE≌△CDF(AAS).∴AB=CD.∴四边形ABCD是平行四边形.【点评】本题主要考查了平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形.典例5:(2022•内江)如图,在▱ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.【分析】(1)根据平行四边形的性质得到AB=CD,AB∥CD,根据平行线的性质得到∠ABD=∠CDB,利用SAS定理证明△ABE≌△CDF;(2)根据全等三角形的性质得到AE=CF,∠AEB=∠CFD,根据平行线的判定定理证明AE∥CF,再根据平行四边形的判定定理证明结论.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)由(1)可知,△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴180°﹣∠AEB=180°﹣∠CFD,即∠AEF=∠CFE,∴AE∥CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.【点评】本题考查的是平行四边形的判定和性质、全等三角形的判定和性质,掌握平行四边形的对边平行且相等、一组对边平行且相等的四边形是平行四边形是解题的关键.典例6:(2022•兰州)如图,菱形ABCD的对角线AC与BD相交于点O,E为AD的中点,连接OE,∠ABC =60°,BD=4,则OE=()A.4B.2C.2D.【分析】根据菱形的性质可得,∠ABO=30°,AC⊥BD,则BO=2,再利用含30°角的直角三角形的性质可得答案.【解答】解:∵四边形ABCD是菱形,∠ABC=60°,∴BO=DO,∠ABO=30°,AC⊥BD,AB=AD,∴BO=2,∴AO==2,∴AB=2AO=4,∵E为AD的中点,∠AOD=90°,∴OE=AD=2,故选:C.【点评】本题主要考查了菱形的性质,含30°角的直角三角形的性质等知识,熟练掌握菱形的性质是解题的关键.典例7:(2022•聊城)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.(1)求证:AD=CF;(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF是菱形,证明你的结论.【分析】(1)由CF∥AB,得∠ADF=∠CFD,∠DAC=∠FCA,又AE=CE,可证△ADE≌△CFE(AAS),即得AD=CF;(2)由AD=CF,AD∥CF,知四边形ADCF是平行四边形,若AC⊥BC,点D是AB的中点,可得CD =AB=AD,即得四边形ADCF是菱形.【解答】(1)证明:∵CF∥AB,∴∠ADF=∠CFD,∠DAC=∠FCA,∵点E是AC的中点,∴AE=CE,∴△ADE≌△CFE(AAS),∴AD=CF;(2)解:当AC⊥BC时,四边形ADCF是菱形,证明如下:由(1)知,AD=CF,∵AD∥CF,∴四边形ADCF是平行四边形,∵AC⊥BC,∴△ABC是直角三角形,∵点D是AB的中点,∴CD=AB=AD,∴四边形ADCF是菱形.【点评】本题考查全等三角形的判定与性质及菱形的判定,解题的关键是掌握全等三角形判定定理及菱形的判定定理.典例8:(2022•广元)如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.(1)求证:四边形AECD为菱形;(2)若∠D=120°,DC=2,求△ABC的面积.【分析】(1)由一组对边平行且相等的四边形是平行四边形,可证四边形AECD是平行四边形,由平行线的性质和角平分线的性质可证AD=CD,可得结论;(2)由菱形的性质可求AE=BE=CE=2,由等边三角形的性质和直角三角形的性质可求BC,AC的长,即可求解.【解答】(1)证明:∵E为AB中点,∴AB=2AE=2BE,∵AB=2CD,∴CD=AE,又∵AE∥CD,∴四边形AECD是平行四边形,∵AC平分∠DAB,∴∠DAC=∠EAC,∵AB∥CD,∴∠DCA=∠CAB,∴∠DCA=∠DAC,∴AD=CD,∴平行四边形AECD是菱形;(2)∵四边形AECD是菱形,∠D=120°,∴AD=CD=CE=AE=2,∠D=120°=∠AEC,∴AE=CE=BE,∠CEB=60°,∴∠CAE=30°=∠ACE,△CEB是等边三角形,∴BE=BC=EC=2,∠B=60°,∴∠ACB=90°,∴AC=BC=2,=×AC×BC=×2×2=2.∴S△ABC【点评】本题考查了菱形的判定和性质,等边三角形的性质,角平分线的性质,灵活运用这些性质解决问题是解题的关键.典例9:(2022•青海)如图,矩形ABCD的对角线相交于点O,过点O的直线交AD,BC于点E,F,若AB=3,BC=4,则图中阴影部分的面积为6.【分析】首先结合矩形的性质证明△AOE≌△COF,得△AOE、△COF的面积相等,从而将阴影部分的面积转化为△BDC的面积.【解答】解:∵四边形ABCD是矩形,AB=3,∴OA=OC,AB=CD=3,AD∥BC,∴∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S△AOE=S△COF,∴S阴影=S△AOE+S△BOF+S△COD=S△COF+S△BOF+S△COD=S△BCD,∵S△BCD=BC•CD==6,∴S阴影=6.故答案为6.【点评】此题主要考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的一半,是解决问题的关键.典例10:(2022•巴中)如图,▱ABCD中,E为BC边的中点,连接AE并延长交DC的延长线于点F,延长EC至点G,使CG=CE,连接DG、DE、FG.(1)求证:△ABE≌△FCE;(2)若AD=2AB,求证:四边形DEFG是矩形.【分析】(1)由平行四边形的性质推出AB∥CD,根据平行线的性质推出∠EAB=∠CFE,利用AAS即可判定△ABE≌△FCE;(2)先证明四边形DEFG是平行四边形,再证明DF=EG,即可证明四边形DEFG是矩形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠CFE,又∵E为BC的中点,∴EC=EB,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS);(2)∵△ABE≌△FCE,∴AB=CF,∵四边形ABCD是平行四边形,∴AB=DC,∴DC=CF,又∵CE=CG,∴四边形DEFG是平行四边形,∵E为BC的中点,CE=CG,∴BC=EG,又∵AD=BC=EG=2AB,DF=CD+CF=2CD=2AB,∴DF=EG,∴平行四边形DEFG是矩形.【点评】本题考查了矩形的判定,平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定与性质,证明△ABE≌△FCE是解题的关键.典例11:(2022•云南)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=5,DF=3,求四边形ABCF的面积S.【分析】(1)由四边形ABCD是平行四边形,得∠BAE=∠FDE,而点E是AD的中点,可得△BEA≌△FED(ASA),即知EF=EB,从而四边形ABDF是平行四边形,又∠BDF=90°,即得四边形ABDF 是矩形;=DF•(2)由∠AFD=90°,AB=DF=3,AF=BD,得AF===4,S矩形ABDFAF=12,四边形ABCD是平行四边形,得CD=AB=3,从而S△BCD=BD•CD=6,即可得四边形ABCF 的面积S为18.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BA∥CD,∴∠BAE=∠FDE,∵点E是AD的中点,∴AE=DE,在△BEA和△FED中,,∴△BEA≌△FED(ASA),∴EF=EB,又∵AE=DE,∴四边形ABDF是平行四边形,∵∠BDF=90°.∴四边形ABDF是矩形;(2)解:由(1)得四边形ABDF是矩形,∴∠AFD=90°,AB=DF=3,AF=BD,∴AF===4,=DF•AF=3×4=12,BD=AF=4,∴S矩形ABDF∵四边形ABCD是平行四边形,∴CD=AB=3,=BD•CD=×4×3=6,∴S△BCD+S△BCD=12+6=18,∴四边形ABCF的面积S=S矩形ABDF答:四边形ABCF的面积S为18.【点评】本题考查平行四边形性质及应用,涉及矩形的判定,全等三角形判定与性质,勾股定理及应用等,解题的关键是掌握全等三角形判定定理,证明△BEA≌△FED.典例12:(2022•重庆)如图,在正方形ABCD中,对角线AC、BD相交于点O.E、F分别为AC、BD上一点,且OE=OF,连接AF,BE,EF.若∠AFE=25°,则∠CBE的度数为()A.50°B.55°C.65°D.70°【分析】利用正方形的对角线互相垂直平分且相等,等腰直角三角形的性质,三角形的内角和定理和全等三角形的判定与性质解答即可.【解答】解:∵四边形ABCD是正方形,∴∠AOB=∠AOD=90°,OA=OB=OD=OC.∵OE=OF,∴△OEF为等腰直角三角形,∴∠OEF=∠OFE=45°,∵∠AFE=25°,∴∠AFO=∠AFE+∠OFE=70°,∴∠FAO=20°.在△AOF和△BOE中,,∴△AOF≌△BOE(SAS).∴∠FAO=∠EBO=20°,∵OB=OC,∴△OBC是等腰直角三角形,∴∠OBC=∠OCB=45°,∴∠CBE=∠EBO+∠OBC=65°.故选:C.【点评】本题主要考查了正方形的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的内角和定理,熟练掌握正方形的性质是解题的关键.典例13:(2022•邵阳)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD上,且BE=DF,OE=OA.求证:四边形AECF是正方形.【分析】先证明四边形AECF是菱形,再证明EF=AC,即可得出结论【解答】证明:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是菱形;∵OE=OA=OF,∴OE=OF=OA=OC,即EF=AC,∴菱形AECF是正方形.【点评】本题主要考查了菱形的性质与判定,正方形的判定,掌握相关定理是解题基础考点三、梯形1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形.(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底.(2)不平行的两边叫做梯形的腰.(3)梯形的四个角都叫做底角.2.直角梯形:一腰垂直于底的梯形叫做直角梯形.3.等腰梯形:两腰相等的梯形叫做等腰梯形.4.等腰梯形的性质:(1)等腰梯形的两腰相等;(2)等腰梯形同一底上的两个底角相等.(3)等腰梯形的对角线相等.5.等腰梯形的判定方法:(1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形;(3)对角线相等的梯形是等腰梯形.6.梯形中位线:连接梯形两腰中点的线段叫梯形的中位线.7.面积公式:S=(a+b)h(a、b是梯形的上、下底,h是梯形的高).【要点诠释】解决四边形问题常用的方法(1)有些四边形问题可以转化为三角形问题来解决.(2)有些梯形的问题可以转化为三角形、平行四边形问题来解决.(3)有时也可以运用平移、轴对称来构造图形,解决四边形问题.典例14:(2021•毕节市)如图,拦水坝的横断面为梯形ABCD,其中AD∥BC,∠ABC=45°,∠DCB=30°,斜坡AB长8m,则斜坡CD的长为()A.6m B.8m C.4m D.8m【分析】过A作AE⊥BC于E,过D作DF⊥BC于F,则AE=DF,在Rt△DCF中,根据等腰直角三角形的性质和勾股定理求出AE,在Rt△ABE中,根据等腰直角三角形的性质和勾股定理求出AE.【解答】解:过A作AE⊥BC于E,过D作DF⊥BC于F,∴AE∥DF,∵AD∥BC,∴AE=DF,在Rt△ABE中,AE=AB sin45°=4,在Rt△DCF中,∵∠DCB=30°,∴DF=CD,∴CD=2DF=2×4=8,故选:B.【点评】本题考查了梯形,解直角三角形的应用,正确作出辅助线,构造出直角三角形是解决问题的关键.考点四、平面图形1.平面图形的镶嵌的定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺.2.平面图形镶嵌的条件:(1)同种正多边形镶嵌成一个平面的条件:周角是否是这种正多边形的一个内角的整倍数.在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.(2)n种正多边形组合起来镶嵌成一个平面的条件:①n个正多边形中的一个内角的和的倍数是360°;②n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍.典例15:(2022•资阳)小张同学家要装修,准备购买两种边长相同的正多边形瓷砖用于铺满地面.现已选定正三角形瓷砖,则选的另一种正多边形瓷砖的边数可以是4答案不唯一.(填一种即可)【分析】分别求出各个多边形的每个内角的度数,结合镶嵌的条件即可求出答案.【解答】解:正三角形的每个内角是60°,正四边形的每个内角是90°,∵3×60°+2×90°=360°,∴正四边形可以,正六边形的每个内角是120°,∵2×60°+2×120°=360°,∴正六边形可以,正十二边形的每个内角是150°,∵1×60°+2×150°=360°,∴正十二边形可以,故答案为:4答案不唯一.【点评】本题考查了平面镶嵌问题,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.。
圆内接四边形的性质与判定定理 课件
思考 2 判定四点共圆的方法有哪些?
提示:(1)如果四个点与一定点距离相等,那么这四个点共圆. (2)如果一个四边形的对角互补,那么这个四边形的四个顶点共圆. (3)如果一个四边形的一个外角等于它的内角的对角,那么这个四边形 的四个顶点共圆. (4)如果两个直角三角形有公共的斜边,那么这两个三角形的四个顶点 共圆(因为四个顶点与斜边中点距离相等).
(2)连接 DE,由条件易证 DE∥BC,从而∠ADE=∠B,由(1)知∠ADE=∠
GFE,从而∠GFE=∠B,从而得到结论.
证明:(1)连接 GF.由 DF⊥AB,EG⊥AC,知∠GDF=∠GEF=90°, ∴GF 的中点到 D,E,F,G 四点的距离相等,∴D,E,F,G 四点共圆.
(2)连接 DE.由 AD=DB, AE=EC,知 DE∥BC, ∴∠ADE=∠B.又由(1)中 D,E,F,G 四点共圆, ∴∠ADE=∠GFE,∴∠GFE=∠B, ∴G,B,C,F 四点共圆.
探究一 证明四点共圆
判断四点共圆时,要根据题目特点,灵活选用判定四点共圆的方法.
【典型例题 1】 如图所示,在△ABC 中,AD=DB,DF⊥AB 交 AC 于点 F,AE=EC,EG⊥AC 交 AB 于点 G.求证:
(1)D,E,F,G 四点共圆; (2)G,B,C,F 四点共圆.
思路分析:(1)连接 GF,则易证△GDF 与△GEF 均为直角三角形,由直角 三角形斜边的中点到三个顶点的距离相等可得出结论.
由于点 D 不在圆上时,可能出现点 D 在圆外和点 D 在圆内两种情况, 所以应分别加以证明,下面先讨论点 D 在圆内的情况.假设点 D 在圆内,若作 出对角线 BD,设 BD 和圆交于点 D'.连接 AD',CD',则 ABCD'为圆内接四边形 (如图),则∠ABC+∠AD'C=180°.另一方面,因为∠ADB,∠BDC 分别是
四边形基本知识点
第四章四边形性质探索知识点归纳 一.四边形的相关概念和性质(1)在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形.四边形用表示它的各顶点的字母来表示.注意:表示四边形必须按顶点的顺序书写,可按照顺时针或逆时针的顺序.如图读作“四边形ABCD ” .(2)在四边形中,连结不相邻两个顶点的线段叫做四边形的对角线.注意:①四边形共有两条对角线.②连结四边形的对角线也是一种常用的辅助线作法.(3)四边形的不稳定性:三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性.但是,四边形四边长确定后,它的形状不能确定.这就是四边形具有不稳定性,它在生产、生活方面有很多的应用.(4)四边形的内角和等于 360.(5)四边形的外角和等于 360.注意:1、四边形内角中最多有三个钝角,四个直角,三个锐角;2、四边形外角中最多有三个钝角、四个直角、三个锐角,最少没有钝角,没有直角,没有锐角;3、四边形内角与同一个顶点的一个外角互为邻补角.二.多边形的概念和性质:(1)n 边形的内角和等于 180)2(⋅-n .(2)任意多边形的外角和等于 360.(3)n 边形共有2)3(-n n 条对角线.(4)在平面内,内角都相等且边都相等的多边形叫做正多边形。
(5)正多边形的每个内角等于n n 180).2(-三、平行四边形.1.平行四边形的性质(1)平行四边形的邻角互补,对角相等.(2)平行四边形的对边平行且相等.(3)夹在两条平行线间的平行线段相等.(4)平行四边形的对角线互相平分.(5)中心对称图形,对称中心是对角线的交点。
(6)若一直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分四边形的面积.2.平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形.(2)定理1:两组对角分别相等的四边形是平行四边形.(3)定理2:两组对边分别相等的四边形是平行四边形.(4)定理3:对角线互相平分的四边形是平行四边形.(5)定理4:一组对边平行且相等的四边形是平行四边形.3.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离.平行线间的距离处处相等.注意:(1)距离是指垂线段的长度,是正值.(2)两条平行线的位置确定后,它们的距离是定值,不随垂线段位置改变.(3)平行线间的距离处处相等,因此在作平行四边形的高时,可根据需要灵活选择位置.4.平行四边形的面积S=底边长×高=ah(a是平行四边形任何一边长,h必须是a边与其对(1)、平行四边形边的距离).(2)、同底(等底)同高(等高)的平行四边形面积相等.四.矩形、1.矩形的定义:_________________________________2.矩形的性质:(1)对边平行且相等。
圆内接四边形的性质与判定定理(人教选修)
圆. 3.判定定理的推论
对角
如果四边形的一个外角等于它的内角的
,那么这
个四边形的四个顶点共圆.
返回
[小问题·大思维] 1.所有的三角形都有外接圆吗?所有的四边形是否都 有外接圆? 提示:所有的三角形都有外接圆,但四边形并不一定 有外接圆. 2.如果一个平行四边形有外接圆,它是矩形吗? 提示:因为平行四边形的对角相等,圆内接四边形的 对角和为180°,所以该平行四边形一定是矩形.
圆的半径.
[命题立意] 本题主要考查圆内接四边形的判定、一元
二次方程根与系数的关系以及逻辑推理和运算能力.
返回
解:(1)证明:连接 DE, 根据题意在△ADE 和△ACB 中, AD×AB=mn=AE×AC, 即AADC=AAEB. 又∠DAE=∠CAB, 从而△ADE∽△ACB. 因此∠ADE=∠ACB, 所以 C,B,D,E 四点共圆.
返回
证明:(1)若∠DBA=∠CBA,则DF=CE. (2)若DF=CE,则∠DBA=∠CBA. 分析:本题考查圆内接四边形的判定及性质.解决本 题需要借助三角形全等证明角相等或边长相等.
返回
证明:(1)连接 AE、AF、AC、AD, 则∠3=∠4,∠5=∠6. 又∵∠1=∠2,∴ AD= AE . ∴AD=AE,∴△ACE≌△AFD. 故 CE=DF. (2)由(1)∠3=∠4,∠5=∠6, 又∵DF=CE, ∴△ACE≌△AFD, ∴AD=AE,∴∠1=∠2,即∠DBA=∠CBA.
返回
[悟一法] 证明比例线段或比例式通常利用三角形相似来解决, 而证明三角形相似,常利用圆内接四边形的性质寻找角 之间的关系.
返回
[通一类] 3.试证明:在圆内接四边形ABCD中,
AC·BD=AD·BC+AB·CD.
平行四边形的性质定理和判定定理及其证明
•
二十四、生命是以时间为单位的,浪费别人的时间等于谋财害命,浪费自己的时间,等于慢性自杀。——鲁迅
•
二十五、梦是心灵的思想,是我们的秘密真情。——杜鲁门·卡波特
•
二十六、坚强的信念能赢得强者的心,并使他们变得更坚强。——白哲特
•
二十七、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德
•
三十二、在科学上没有平坦的大道,只有不畏劳苦,沿着陡峭山路攀登的人,才有希望达到光辉的顶点。——马克思
•
三十三、在劳力上劳心,是一切发明之母。事事在劳力上劳心,变可得事物之真理。——陶行知
•
三十四、一年之计在于春,一日之计在于晨。——萧绛
•
三十五、没有一颗心会因为追求梦想而受伤,当你真心想要某样东西时,整个宇宙都会联合起来帮你完成。——佚名
•
十九、要想成就伟业,除了梦想,必须行动。——佚名
•
二十、忘掉今天的人将被明天忘掉。──歌德
•
二十一、梦境总是现实的反面。——伟格利
•
二十二、世界上最快乐的事,莫过于为理想而奋斗。——苏格拉底
•
二十三、“梦想”是一个多么“虚无缥缈不切实际”的词啊。在很多人的眼里,梦想只是白日做梦,可是,如果你不曾真切的拥有过梦想,你就不会理解梦想的珍贵。——柳岩
•
二十八、青少年是一个美好而又是一去不可再得的时期,是将来一切光明和幸福的开端。——加里宁
•
二十九、梦想家命长,实干家寿短。——约·奥赖利
•
三十、青年时准备好材料,想造一座通向月亮的桥,或者在地上造二所宫殿或庙宇。活到中年,终于决定搭一个棚。——佚名
•
三十一、在这个并非尽善尽美的世界上,勤奋会得到报偿,而游手好闲则要受到惩罚。——毛姆
数学平行四边形、菱形、矩形、正方形的定理、性质、判定
1. 定义: 两组对边分别平行的四边形叫做平行四边形。
2.性质:⑴如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的对边相等”)⑵如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的对角相等”)⑶夹在两条平行线间的平行线段相等。
⑷如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的两条对角线互相平分”)⑸平行四边形是中心对称图形,对称中心是两条对角线的交点。
3.判定:(1)如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形。
(简述为“两组对边分别相等的四边形是平行四边形”)(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。
(简述为“一组对边平行且相等的四边形是平行四边形”)(3)如果一个四边形的两条对角线互相平分,那么这个四边形是平行四边形。
(简述为“对角线互相平分的四边形是平行四边形”)(4)如果一个四边形的两组对角分别相等,那么这个四边形是平行四边形。
(简述为“两组对角分别相等的四边形是平行四边形”(5)如果一个四边形的两组对边分别平行,那么这个四边形是平行四边形。
(简述为“两组对边分别平行的四边形是平行四边形”)矩形的性质和判定定义:有一个角是直角的平行四边形叫做矩形.性质:①矩形的四个角都是直角;②矩形的对角线相等 .注意:矩形具有平行四边形的一切性质 .判定:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形 .菱形的性质和判定定义:有一组邻边相等的平行四边形叫做菱形.性质:①菱形的四条边都相等;②菱形的对角线互相垂直,并且每一条对角线平分一组对角 .注意:菱形也具有平行四边形的一切性质 .判定:①有一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形(4).有一条对角线平分一组对角的平行四边形是菱形正方形的性质和判定定义:有一组邻边相等并且有一角是直角的平行四边形叫做正方形.性质:①正方形的四个角都是直角,四条边都相等;②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 .判定:因为正方形具有平行四边形、矩形、菱形的一切性质,所以我们判定正方形有三个途径①四条边都相等的平行四边形是正方形②有一组临边相等的矩形是正方形③有一个角是直角的菱形是正方形梯形及特殊梯形的定义梯形:一组对边平行而另一组对边不平行的四边形叫做梯形.(一组对边平行且不相等的四边形叫做梯形.)等腰梯形:两腰相等的梯形叫做等腰梯形. 直角梯形:一腰垂直于底的梯形叫做直角梯形.等腰梯形的性质1、等腰梯形两腰相等、两底平行;2、等腰梯形在同一底上的两个角相等;3、等腰梯形的对角线相等;4、等腰梯形是轴对称图形,它只有一条对称轴,一底的垂直平分线是它的对称轴. 等腰梯形的判定1、两腰相等的梯形是等腰梯形;2、在同一底上的两个角相等的梯形是等腰梯形;3、对角线相等的梯形是等腰梯形.平行四边形性质定理1 平行四边形的对角相等平行四边形性质定理2 平行四边形的对边相等且平行平行四边形性质定理3 平行四边形的对角线互相平分平行四边形判定定理1 两组对角分别相等的四边形是平行四边形平行四边形判定定理2 两组对边分别相等的四边形是平行四边形平行四边形判定定理3 对角线互相平分的四边形是平行四边形平行四边形判定定理4 一组对边平行相等的四边形是平行四边形矩形性质定理1 矩形的四个角都是直角矩形性质定理2 矩形的对角线相等矩形判定定理1 有一个角是直角的平行四边形是矩形矩形判定定理2 对角线相等的平行四边形是矩形正方形性质定理1正方形的四个角都是直角,四条边都相等正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角菱形性质定理1 菱形的四条边都相等菱形性质定理2 菱形的对角线互相垂直菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1 四边都相等的四边形是菱形菱形判定定理2 对角线互相垂直的平行四边形是菱形菱形判定定理3是对称轴图形的平行四边形是菱形。
四边形判定定理以及性质定理
判定定理以及性质定理四边形判定定理四边形一、平行四边形:一、平行四边形:判定:判定:)两组对边分别平行的四边形是平行四边形。
(1)两组对边分别平行的四边形是平行四边形。
)两组对边分别相等的四边形是平行四边形。
(2)两组对边分别相等的四边形是平行四边形。
(3)一组对边平行且相等的四边形是平行四边形。
)一组对边平行且相等的四边形是平行四边形。
)对角线互相平分的四边形是平行四边形。
(4)对角线互相平分的四边形是平行四边形。
)两组对角分别相等的四边形是平行四边形。
(5)两组对角分别相等的四边形是平行四边形。
性质:性质:)平行四边形两组对边分别平行。
(1)平行四边形两组对边分别平行。
(2)平行四边形的对变相等。
)平行四边形的对变相等。
)平行四边形的对角相等。
(3)平行四边形的对角相等。
)平行四边形的两条对角线互相平分。
(4)平行四边形的两条对角线互相平分。
(5)平行四边形是中心对称图形,对称中心是两条对角线的交点。
)平行四边形是中心对称图形,对称中心是两条对角线的交点。
二、矩形:二、矩形:判定:判定:)有一个内角是直角的平行四边形是矩形。
(1)有一个内角是直角的平行四边形是矩形。
)有三个内角是直角的四边形是矩形。
(2)有三个内角是直角的四边形是矩形。
)对角线相等平行四边形是矩形。
(3)对角线相等平行四边形是矩形。
性质:性质:)矩形的四个角都是直角。
(1)矩形的四个角都是直角。
)矩形的两条对角线相等。
(2)矩形的两条对角线相等。
三、菱形:三、菱形:判定:判定:)有一组邻边相等的平行四边形叫做菱形。
(1)有一组邻边相等的平行四边形叫做菱形。
)四条边都相等的四边形是菱形。
(2)四条边都相等的四边形是菱形。
)对角线互相垂直的平行四边形是菱形。
(3)对角线互相垂直的平行四边形是菱形。
性质:性质:)菱形的四条边都相等。
(1)菱形的四条边都相等。
)菱形的对角线互相垂直,并且每一条对角线平分一组对角。
(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角。
平行四边形定义性质以及判定定理
性质(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的两组对边分别相等”[2])(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的两组对角分别相等”[2])(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。
(简述为“平行四边形的邻角互补”)(4)夹在两条平行线间的平行的高相等。
(简述为“平行线间的高距离处处相等”)(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的对角线互相平分”[2])(6)连接任意四边形各边的中点所得图形是平行四边形。
(推论)(7)平行四边形的面积等于底和高的积。
(可视为矩形。
)(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(9)平行四边形是中心对称图形,对称中心是两对角线的交点.(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。
矩形和菱形是轴对称图形。
注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。
(11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
(13)平行四边形对角线把平行四边形面积分成四等份。
(14)平行四边形中,两条在分歧对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
(15)平行四边形的面积等于相邻两边与其夹角正弦的乘积平行四边形的判定方法(共6种)1.两组对边分别平行的四边形是平行四边形(定义判定法);2.一组对边平行且相等的四边形是平行四边形;3.对角线互相平分的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.所有邻角(每一组邻角)都互补的四边形是平行四边形;6.两组对边分别相等的四边形是平行四边形。
全等四边形的判定定理
全等四边形的判定定理全文共四篇示例,供读者参考第一篇示例:全等四边形的判定定理是几何学中的一个重要概念,它用来判断两个四边形是否全等。
在几何学中,全等的概念是指两个图形的形状和大小完全相同。
全等四边形的判定定理是通过几何学中的一些定理和性质来进行判断的。
下面我们将详细介绍全等四边形的判定定理。
全等四边形的判定定理有两个基本条件:相应的边对应相等,相应的角对应相等。
首先我们来看相应的边对应相等这个条件。
在全等四边形中,如果两个四边形的对应边相等,那么这两个四边形就是全等的。
这是因为在平面几何中,如果两个图形的三个边分别相等,那么这两个图形一定全等。
全等四边形的对边平行。
在一个全等四边形中,对应的边是平行的,这是因为全等四边形的边长相等,所以对应的边也是平行的。
全等四边形的面积相等。
在一个全等四边形中,面积相等,这是因为全等四边形的形状和大小完全相同,所以面积也是相等的。
通过这些性质,我们可以更好地理解全等四边形,判断和证明全等四边形的相关问题。
全等四边形的判定定理是几何学中的一个重要概念,它可以帮助我们判断两个四边形是否全等。
通过比较对应边和对应角,我们可以判断两个四边形是否全等,并且可以利用全等四边形的性质来解决一些问题。
理解全等四边形的判定定理对于几何学的学习和应用都是非常重要的。
希望本文能够对读者有所帮助。
【这篇文章大约800字,不能满足您的需求,请再添加内容】第二篇示例:全等四边形的判定定理是初中数学中重要的一部分,在几何学中有广泛的应用。
全等四边形是指具有完全相同的形状和大小的四边形。
在实际生活中,我们经常会遇到全等四边形,例如在建筑设计、地图绘制、工程规划等领域。
全等四边形的判定定理是确定两个四边形是否全等的重要工具。
通过判定定理,我们可以验证两个四边形是否完全相同,从而在解决相关问题时提供重要参考。
我们来看一下全等四边形的性质。
全等四边形的定义是具有相同的对应边和对应角的四边形,它们的位置可以不同,但形状和大小完全相同。
四边形的相关性质及判定定理
3、对角线互相垂直的平行四边形是菱形
正方形
1、正方形的四个角都是直角、四条边相等
2、正方形的对角线相等,并且互相垂直平分,每条对角线平分一组对角
1、有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。
2、有一组邻边相等的矩形是正方形
3、有一个角是直角的菱形是正方形
附:相关概念
1、多边形
2、边
3、内角
4、外角
5、顶点
6、对角线
四边形的相关性质及判定定理
性质/定理
判定定理
多边形
1、N边形的内角和为(n-2)×180°(n≥3)
2、任何多边形的外角和为360°
四边形
1、四边形的内角和等于360°
平行四边形
1、平行四边形的对角相等
2、平行四边形的对边相等
3、平行四边形的对角线互相平分
1、一组对边平行且相等的四边形是平行四边形
2、两组对边分别相等的四边形是平行四边形
3、对角线互相平分的四边形是平行四边形
相等
1、有一个角是直角的平行四边形叫矩形
2、有三个角是直角的四边形是矩形
3、对角线相等的平行四边形是矩形
菱形
1、菱形的四条边都相等
2、菱形的对角线互相垂直,并且每条对角线平分一组对角
1、一组邻边相等的平行四边形叫做菱形
中点四边形与判定定理
中点四边形与判定定理中点四边形是指一个四边形的对角线的交点是四条边的中点。
中点四边形有一些特殊的性质和定理。
本文将介绍中点四边形的性质,并讲解与之相关的判定定理。
一、中点四边形的性质1. 中点连线性质:在中点四边形中,连接两个相邻顶点的线段恰好是另一条对边的中点连线。
例如,对于四边形ABCD,若AC的中点为E,BD的中点为F,则AE与BF相交于中点四边形的对角线交点G。
2. 对角线平分性质:在中点四边形中,对角线互相平分。
即对于四边形ABCD,AC和BD作为对角线,则AC平分BD,BD也平分AC。
这是因为中点四边形的定义决定了对角线的交点G是AC和BD的中点,所以AC平分BD,BD也平分AC。
3. 斜边性质:在中点四边形中,连接中点的斜边恰好等于两个对角线的一半。
以四边形ABCD为例,若AC的中点为E,BD的中点为F,则EF = AG = BG = CG = DG = 1/2(AC + BD)。
二、中点四边形判定定理根据中点四边形的性质,我们可以得出两个判定定理:1. 判定定理一:如果一个四边形的对角线交点是该四边形两对相对边中点,那么这个四边形一定是中点四边形。
证明:设四边形ABCD的对角线交点为E,且E是AC和BD的中点。
根据中点连线性质,连接AE和BE,连接CE和DE。
则AE和BE分别平分CD,CE和DE分别平分AB。
根据对角线平分性质,AC 和BD互相平分。
因此,四边形ABCD满足中点四边形的定义,即为中点四边形。
2. 判定定理二:如果一个四边形的两对相对边互相平分,并且对角线交于一点,那么这个四边形一定是中点四边形。
证明:设四边形ABCD的对角线为AC和BD,且AC平分BD,BD平分AC,交于点E。
根据中点连线性质,连接AE和BE,连接CE和DE。
由于AC平分BD,根据转角平分定理,角EAB等于角EDB,角EBA等于角EAD。
同理,角ECD等于角EBC,角EDC等于角ECA。
因此,四边形ABCD满足中点四边形的定义,即为中点四边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、平行四边形:
判定:
(1)两组对边分别平行的四边形)一组对边平行且相等的四边形是平行四边形。
(4)对角线互相平分的四边形是平行四边形。
(5)两组对角分别相等的四边形是平行四边形。
性质:
(1)平行四边形两组对边分别平行。
(2)平行四边形的对边相等。
(3)平行四边形的对角相等。
(4)平行四边形的两条对角线互相平分。
(5)平行四边形是中心对称图形,对称中心是两条对角线的交点。
二、矩形:
判定:
(1)有一个内角是直角的平行四边形是矩形。
(2)有三个内角是直角的四边形是矩形。
(3)对角线相等平行四边形是矩形。
性质:
(1)矩形的四个角都是直角。
(2)矩形的两条对角线相等。
三、菱形:
判定:
(1)有一组邻边相等的平行四边形叫做菱形。
(2)四条边都相等的四边形是菱形。
(3)对角线互相垂直的平行四边形是菱形。
性质:
(1)菱形的四条边都相等。
(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角。
四、正方形:
判定:
(1)有一组邻边相等并且有一个内角是直角的平行四边形是正方形。
(2)有一组邻边相等的矩形是正方形。
(3)有一个内角是直角的菱形是正方形。
性质:
(1)正方形的四个角都是直角,四条边都相等。
(2)正方形的两条对角线相等,并且互相垂直,每条对角线平分一组对角。
五、梯形:
判定:
(1)两腰相等的梯形是等腰梯形。
(2)在同一底边上的两个内角相等的梯形是等腰梯形。
(3)对角线相等的四边形是等腰梯形。
性质:
(1)等腰梯形在同一底边上的两个内角相等。
(2)等腰梯形的两条对角线相等。