液态金属结构及宏观结晶规律共24页
第2章 金属结晶的基本规律(3)

根据点阵匹配原则:液态金属本身是理想的变质剂或孕育剂
3、振动、搅拌等:对正在结晶的金属进行振动或
搅动,一方面可靠外部输入的能量来促进形核,另一 方面也可使成长中的枝晶破碎, 使晶核数目显著增加。 方法:机械振动、电磁振动、超声振动
电磁搅拌细化晶粒示意图
第四节 铸锭(件)组织与缺陷
在实际生产中,液态 金属被浇注到锭模中 得到铸锭,而注入到 铸模中成型则得到铸 件。铸锭(件)
铸锭(件)的组织及其 存在的缺陷对其加工 和使用性能有着直接 的影响
一、铸锭(件)的组织
铸锭(件)的宏观组织通常由三个区组成:
1、表层细晶区:浇注时,由于冷模壁产生很大的 过冷度(激冷)及非均匀形核作用,使表面形成 一层很细的等轴晶粒区(几mm厚)。
r>rc时:体积自由能中占优势,ΔG下降,晶胚长大
→形成晶核
r=rc时:晶胚可能消散或
形成晶核
rc——称为临界晶核半径。 过冷度愈大,rc愈小。
界面自由能
自
由 能
晶胚
变
化ΔG*
晶核
ΔG
rc
r
体积自由能
2) 形核功的概念
当r>rc,晶胚形成晶核时,液体转变固 态,金属体积自由能的降低部分,只能补偿其 表面能增高部分的三分之二,其余能量升高, 需要由液相来提供。这部分能量称为形核功。
过冷度:理论结晶温度和实际
开始结晶温度之差。
过冷度值:与金属性质、冷却
速度有关;冷速越大, 过冷度越大
纯金属的冷却曲线
金属结晶热力学条件
过冷度越大ΔT 液固自由能差ΔG愈大 结晶驱动力也愈大
结晶的结构条件
结构起伏:液态金属的结构模型认为:原子排列的
金属材料第三章结晶

第三章金属的结晶金属由液态转变为固态的过程称为凝固,由于固态金属是晶体,故又把凝固称为结晶。
§3.1 结晶的过程和条件一、液态金属的结构特点金属键:导电性,正电阻温度系数近程有序:近程规则排列的原子集团结构起伏:近程规则排列的原子集团是不稳定的,处于时聚时散,时起时伏,此起彼伏,不断变化和运动之中,称为结构起伏。
结晶的结构条件:当近程规则排列的原子集团达到一定的尺寸时,可能成为结晶核心称为晶核, 即由液态金属的结构起伏提供了结晶核心。
结构起伏是金属结晶的结构条件。
二、结晶过程形核:液相中出现结晶核心即晶核;晶核长大:晶核形成后不断长大,同时新晶核不断形成并长大;不断形核、不断长大;晶体形成:各晶核相互碰撞,形成取向各异、大小不等的等轴晶粒组成的多晶体形核与长大是晶体形成的一般规律。
单晶体与多晶体三、结晶的过冷现象用热分析法获得液态金属在缓慢冷却时温度随时间的变化关系,即冷却曲线。
由冷却曲线可知,结晶时有过冷现象:实际结晶温度Tn低于理论结晶温度Tm的现象称为过冷。
液态金属过冷是结晶的必要条件。
过冷度:△T=Tm-Tn, 其大小除与金属的性质和纯度有关外,主要决定于冷却速度,一般冷却速度愈大,实际结晶温度愈低,过冷度愈大。
四、结晶的热力学条件热力学:研究热现象中物态转变和能量转换规律的学科,主要研究平衡状态的物理、化学过程。
热力学第二定律:在等温等压下,自发过程自动进行的方向是体系自由焓降低的方向,这个过程一直进行到自由焓具有最低值为止,称为最小自由焓原理。
利用最小自由焓原理分析结晶过程。
两相自由焓差是相变的驱动力。
金属结晶的热力学条件:固相自由焓必须低于液相自由焓。
热力学条件与过冷条件的一致性。
§3.2 形核的规律形核方式:均匀形核(自发形核)与非均匀形核(非自发形核)。
一、均匀形核均匀形核:当液态金属很纯净时,在相当大的过冷度下,固态晶核依靠液相内部的结构起伏直接从液相中自发形成。
液态金属结构及宏观结晶规律概诉

Cr 42.6
40.5
Ni 35.7
35.7
Al 32.6
29.3
• 金属在固 -液转变时热容量仍有突变,但是变化不大,在 液体中质点热运动的特点与固体很接近
2018/11/28
柏振海 baizhai@
10
中南大学材料科学与工程学院
材料科学与工程基础
液态金属结构及宏观结晶规律
2.4.1.1.3 熔化热和熔化熵的变化
组织的遗传性 • 熔体的组织和缺陷、在液态合金中加入可以改变元素之间的相互作用 的合金元素、液态金属的结构(如过冷度、净化程度)对凝固后铸件 或毛坯的组织和缺陷及性能有影响
2018/11/28 柏振海 baizhai@ 7
中南大学材料科学与工程学院
材料科学与工程基础
液态金属结构及宏观结晶规律
柏振海 baizhai@
1
中南大学材料科学与工程学院
材料科学与工程基础
液态金属结构及宏观结晶规律
晶体与非晶体的形成 • 粘度高的物质如高分子材料容易形成非晶体 • 粘度小的物质如金属和合金容易形成晶体 • 冷却速度也有直接的影响
• 如果冷却速度达到107℃/s,金属也能获得非晶 态
1536 650
6.4
15.2 8.69
2018/11/28
柏振海 baizhai@
5
中南大学材料科学与工程学院
材料科学与工程基础
液态金属结构及宏观结晶规律
早期凝固理论
• 研究工作仅仅局限于夹杂、气体、微量元素等异质组成对 最终组织的影响
• 最近逐渐认识到,即使在纯净的熔体体系中,液 态结构变化对凝固以后的材料组织、性能和铸锭 (件)质量也存在直接和重要的影响 • 从熔体结构控制的角度来改善和控制凝固尚是经 验性的,远远没有形成系统的理论
液态金属的结构与性质资料

2019/11/3
7/73
H2O 的压力-温度相图
金属的凝固: 凝固:金属由液态转变为固态的过程。(宏观) 结晶:从原子不规则排列的液态转变为原子规则排列的晶 体状态的过程。 (微观)
2019/11/3
8/73
金属从固态熔化为液态时的状态变化
固态原子在平衡位置振动 加热
振动频率加快,振幅增大 超过原子激活能
液态金属在冷却和凝固过程中,由于存在温度差 和浓度差而产生浮力,它是液态合金对流的驱动力。 当浮力大于或等于粘滞力时则产生对流,其对流强 度由无量纲的格拉晓夫准则度量,即
※产生对流的条件:温差和浓度差→浮力>粘滞力
※对流强度--格拉晓夫准则数:
可见粘度η越大对流强度越小。液体对流对结晶组 织、溶质分布、偏析、杂质的聚合等产生重要影响。
纵坐标表示当半径增 加 dr 长度时,球壳内原 子个数的变化值,其中 (r)称为密度函数。
3 2
1
2019/11/3
12/73
对于实际液体的原子分布曲线,
其第一峰值与固态时的衍射线(第一
条垂线)极为接近,其配位数与固态 时相当。
第二峰值虽仍较明显,但与固
态时的峰值偏离增大,而且随着r的 3
增大,峰值与固态时的偏离也越来越 大。
元素;
(3)存在浓度起伏; (4)存在不稳定或稳定化合物(固、气、
液)。
2019/11/3
21/73
2.3 液态金属的性质
液态合金有各种性质,与材料成形过程
关系特别密切的主要有两个性质:
一、液态金属(合金)的粘度
二、液态金属(合金)的表面张力
2019/11/3
22/73
一、粘度
1、粘度的实质及影响因素
液态金属的结构和性质

新型液态金属材料的 研究
通过合理设计晶体结构,可以实 现液态金属的形状记忆作用,这 对于制造细小弹簧等的微系统件 具有重要意义。
液态金属技术在逐渐 增长的产业中的应用
例如液态金属的能量变形和动力 学表征,液态金属的应用在未来 的产业发展中具有广泛的前景和 意义。
液态金属的发展历程
液态金属的最早实验可以追溯到18世纪,但真正形成规模化研究还是在20世 纪60年代,随着液态金属的广泛应用,液态金属的领域将会得到更多的拓展。
2 长时间电解时的热效应
液态金属电解很容易因长时间操作而产生过量的热量影响工业生产。
3 难于处理的反应性个体
液态金属中有许多化学反应难以控制,因为它们处于非常活跃的电子状态。
未来液态金属的研究方向
性能改善
在液态安全使用液态金属的过程 中,新的活性液态金属材料也总 是受到人们的期待。
结论与展望
总结本次液态金属的结构和性质的讲座中,可以看出在我们日常生活和大规模的工业生产中液态金属都扮演着不可 或缺的角色。同时,液态金属在新材料、新技术方面也一直处于人们的瞩目之下。
制备新型催化剂
以细金属液滴为基础的催化剂 可以提高催化活性,促进各种 有机卤化物和芳香烃化合物的 亲电取代反应。
高速传输液态金属技术 的应用
液态金属电控阀和液态金属离 子引擎等技术可用于表面动力 学研究和科学远洋。
液态金属的挑战
1 液态金属化学的不稳定性
液态金属化学中发现了一些稳定性不高的元素,在长时间电化学反应下会转化为其他物 质。
合金化对液态金属性质的影响
生成
通过将不同金属原子的化合物混合形成合金,可以改善 液态金属的某些物理特性,例如延展性和软化。
调节
在不同的合金化组合中,可以通过调节原子间距和比例 来调节液态金属的性质。
6液态金属的结构与性质讲解

6液态金属的结构与性质讲解液态金属是指在一定温度范围内处于液态的金属物质。
与固态金属相比,液态金属具有一些独特的结构和性质。
本文将为您详细介绍液态金属的结构和性质。
液态金属的结构:液态金属的结构与晶体固态金属的结构有很大的不同。
晶体金属中金属离子排列有序,呈现出长程有序的结构,而液态金属中金属离子呈现无序排列。
这是因为在液态金属中,金属离子没有固定的位置,而是随机运动,呈现出短程有序的结构。
液态金属的结构可以用连续性函数理论描述,即假设金属离子周围的电子云呈代表性连续函数的分布。
这种结构在液态金属中使得金属离子具有较高的流动性和可塑性。
液态金属的性质:1.密度较大:液态金属的密度一般比固态金属的密度大,这是由于金属在液态状态下金属离子之间没有固定的排列方式,所以更加紧密地堆积在一起。
2.熔点低:相比固态金属,液态金属的熔点要低得多。
这是因为在固态金属中,金属离子呈现有序排列,需要克服更大的排斥力才能实现相互组合成具有晶体结构的固体。
而在液态金属中,金属离子无序排列,排斥力较小,因此熔点较低。
3.导电性好:液态金属具有良好的导电性。
这是因为金属中的电子能够在金属离子间自由运动,并且在液态金属中,金属离子之间的距离较小,电子的运动受到较小的阻碍,所以电子能够更容易地在液态金属中传导电流。
4.热稳定性差:液态金属在高温下容易氧化,因为金属离子在液态金属中处于无序排列状态,容易与外界的氧气分子发生反应,导致金属氧化并丧失其原有性质。
因此,液态金属在高温下需要采取相应的防护措施,以防止其被氧化。
5.可塑性好:液态金属具有较好的可塑性。
这是因为在液态金属中金属离子的无序运动使其具有较高的流动性和可塑性,能够容易地适应外界的形变和应力。
6.高的热传导性:液态金属具有较高的热传导性,金属离子之间的无序排列有利于热能的传导,所以液态金属能够迅速地吸收和释放热能。
总结:液态金属具有独特的结构和性质。
液态金属的结构呈现短程有序,金属离子之间具有较高的流动性。
第四章 液态金属的结晶

第一节 第二节 第三节 第四节 第五节 第六节 第七节 液态金属的结晶过程 结晶的热力学条件 晶核的形成 晶体的生长 单相合金的结晶 共晶合金的结晶 液态金属的流动性及其对结晶过程的影响
第一节 液态金属的结晶过程
铸件铸态组织的形成过程的两个阶段: 铸件铸态组织的形成过程的两个阶段:
A
矛盾? 矛盾?
过冷刚开始增加时,前一项的贡献大于后一项,生核速度随过冷度增大而增加。 过冷刚开始增加时,前一项的贡献大于后一项,生核速度随过冷度增大而增加。 当过冷大时,液体粘度增加,原子活动能力降低,生核能力降低。 当过冷大时,液体粘度增加,原子活动能力降低,生核能力降低。
1、均匀形核功及临界半径
•匀质形核必须具备4个条件: 匀质形核必须具备4个条件: 匀质形核必须具备
过冷液体中存在结构起伏,以提供固相晶核的晶坯; 过冷液体中存在结构起伏,以提供固相晶核的晶坯; 只有r>r *均的晶坯才能稳定晶核; 均的晶坯才能稳定晶核; 只有 均的晶坯才能稳定晶核 过冷液体中存在能量起伏和温度起伏,以提供临界形核功; 过冷液体中存在能量起伏和温度起伏,以提供临界形核功; 为维持形核功,需要一定的过冷度。 为维持形核功,需要一定的过冷度。
匀质形核动力学
另一方面,液体中存在“结构起伏”的原子集团,其统 另一方面,液体中存在“结构起伏”的原子集团, 计平均尺寸 r°随温度降低(∆T增大)而增大,r°与 随温度降低( 增大)而增大, r* 相交,交点的过冷度即为均质形核的临界过冷度∆T* 相交,交点的过冷度即为均质形核的临界过冷度∆ (约为0.18~0.20Tm)。 约为0.18~0.20T
SL
即:临界形核功ΔG*的大小为临界晶核表面能的三分之一, 临界形核功Δ 的大小为临界晶核表面能的三分之一, 它是均质形核所必须克服的能量障碍。形核功由熔体中的 它是均质形核所必须克服的能量障碍。 “能量起伏”提供。因此,过冷熔体中形成的晶核是“结构 能量起伏”提供。因此,过冷熔体中形成的晶核是“ 起伏” 起伏”及“能量起伏”的共同产物。 能量起伏”的共同产物。
液态金属的结构和性质

系统(液相)能量起伏的含义:
(1)某一瞬时,各微观体积能量不同;
(2)不同瞬时,某一微观体积能量分布不同。
液相能量起伏呈正态分
出
布。在具高能量的微观区 现
成核,其能量可补偿表面
几 率
能,克服能垒。
能量起伏大小
小结
液态(相)金属结构 结构:长程无序而近程有序,即液态金属由
近程有序排列的原子集团构成。原子集团:能
1.1 液态金属的结构
1.1.1 液体与固体、气体结构比较及衍射特征 1.1.2 由物质熔化过程认识液态金属的结构 1.1.3 液态金属结构的理论模型
液态金属结构 是指在液态金属中原子或离子 的排列或分布的状态。
决定液态金属原子(或离子)分布规律的是原 子之间的交互作用能。所有的关于液态金属结 构的模型和理论,都是力图说明其原子排列与 原子间交互作用能之间的关系,用一种比较严 密的物理和数学表达式来描述结构,并用它来 解释液态金属的各种物理化学性质。
金属液态结构的研究方法
直接测定法:即用X射线衍射、中子衍射等手 段直接测定金属的液态结构,研究液态金属原 子的排列情况;
间接法:即测定对结构敏感的物性,如密度、 黏度和电阻率等,然后根据敏感物性推断金属
液态结构的变化。
1.1.1液体与固体、气体结构比较及衍射特征
晶体: 平移、对称性特征(长程有序)
异类原子间结合力大于同类原子,因此摩擦阻力
及黏度随之提高)
若溶质与溶剂在固态形成金属间化合物,则合 金液的黏度将会明显高于纯溶剂金属液的黏度,
因为合金液中存在异类原子间较强的化学结合键。
表面活性元素 当合金液中存在表面活性元素 (如向Al-Si合金中添加的变质元素Na)时,由 于冷却过程中表面活性元素抑制原子集团的聚集 长大,使金属液黏度降低。
第一章液态金属的结构和性质

第一章液态金属的结构和性质液态金属是一种特殊的物质状态,在一定温度范围内具有液态的流动性,同时又具有金属的特性。
它的结构和性质在科学研究和工业应用中具有重要意义。
本文将从液态金属的结构和性质两个方面进行详细讨论。
液态金属的结构是相对复杂的。
在室温以下,金属一般为固态,其原子间有规则的排列方式。
而当温度升高超过金属的熔点时,金属开始熔化并转变为液态。
一般来说,液态金属的原子结构呈现较高的无序性,原子间的距离近似相等。
在液态金属中,原子之间通常存在一定的空隙,这使得金属呈现一种流动性,可流动性是液态金属的显著特征之一、此外,由于液态金属的无序性,其结构中也可能存在一些凝结核心,例如小的团簇或者局部有序结构。
液态金属的结构和性质的研究表明,液态金属结构的演变与固态金属之间存在一定的关联性,在固态金属中形成的晶体缺陷或者凝聚核心在液态金属中可能会得到进一步的发展或者形成新的相态。
液态金属的性质一方面受金属原子特性的影响,另一方面受到液体状态的因素的影响。
由于金属原子之间的金属键较为强大,在液态金属中,金属具有良好的导电性和导热性。
液态金属中的离子与自由电子相互作用,使电子在金属内部自由传导,并且电流可以在金属中流动。
这种导电性使得液态金属在电子设备、导线等领域具有广泛的应用。
同时,由于金属原子的性质,液态金属具有良好的可塑性和可变形性,可以在一定温度范围内通过加热和冷却来调节液态金属的形状和结构。
这种可塑性使得液态金属在制备复杂金属结构,例如凸轮、导柱等方面有广泛的应用。
此外,液态金属还具有较低的粘度和表面张力,使得液态金属具有较好的流动性。
液态金属在受到外力作用下可迅速流动和扩散,这对于一些需要快速制备金属材料或者形状复杂的金属产品非常有价值。
比如,液态金属可以用于制备3D打印的金属材料,通过快速冷却可以制造出复杂形状的金属产品。
此外,液态金属还具有很好的耐高温性能和化学惰性,可用于制备高温工艺设备和化学容器。
纯金属结晶的基本规律

纯金属结晶的基本规律一、引言金属材料是人类历史上最早使用的材料之一,具有良好的导电、导热、机械性能等特点,因此被广泛应用于各个领域。
而金属结晶是金属材料中最基本的组织形态,其结构和性质对金属材料的力学性能、物理性能等都有着重要影响。
因此,研究纯金属结晶的基本规律对于深入理解金属材料的性质和应用具有重要意义。
二、纯金属结晶的定义纯金属结晶是指由同种原子组成的晶体,在不同温度下经过凝固或加工后形成的具有一定形状和大小的结构体。
纯金属结晶可以分为单晶、多晶和多孪晶三种类型。
三、纯金属结晶的形成机制1.核心生长机制:当液态金属降温到一定温度时,会出现过饱和现象,此时在液态中就会出现微小团簇。
这些团簇在进一步降温过程中逐渐增大,并且在团簇表面形成晶核,晶核周围的原子开始有序排列,形成晶体,最终形成单晶或多晶。
2.固相生长机制:当金属材料在室温下进行变形加工时,金属中的原子会发生位错和滑移等变化,导致晶体内部结构发生变化。
这种结构变化会引起局部应力集中,从而促进新的晶核形成。
随着加工次数的增加,新的晶核逐渐长大并与周围的晶粒相互交错,最终形成多孪晶。
四、纯金属结晶的基本规律1.单晶生长方向规律:单晶是由一个完整的、没有任何缺陷和杂质的结构体组成。
在单晶生长过程中,由于表面张力作用等因素影响,在某些方向上生长速度较快,在其他方向上则较慢。
因此,在单晶中会出现一些特定方向上生长速度较快的区域,这些区域被称为“取向区”。
2.多孪晶取向规律:多孪晶是由多个孪生组分组合而成的结构体。
在多孪晶中存在着一些特定的取向规律,即同一晶粒内的各个孪生组分在晶格取向上具有一定的关系。
这种关系可以通过X射线衍射等手段进行测量和分析。
3.晶界结构与性能规律:晶界是指不同晶粒之间的交界面,其结构和性质对金属材料的力学性能、物理性能等都有着重要影响。
在纯金属中,晶界主要由原子错配和原子缺陷等因素引起。
因此,在金属材料中研究晶界结构和性质对于深入理解金属材料的力学性能、物理性能等方面具有重要意义。
第一章液态金属的结构与性质

R1、R2、R3 (>R0) 能量起伏
升温
起伏加剧
形成空穴
空穴移动、增多
膨胀
膨胀原因? 原子间距增大和空穴的产生
3.金属的熔化
熔点附近
晶界粘性流动
接近熔点
从晶界开始
晶粒相对滑动
继续吸热 (熔化潜热)
晶粒失去原有形状 晶粒瓦解,体积突然膨胀 晶粒瓦解,形成此起 彼伏的原子集团,游 离原子和空穴
温度不变,内能增加
同时与固相和气相接触 的球冠形液相的
界面张力的平衡情况
当固相表面有液相和气相时,发生界面现象如图 (a)所示。 当液相与固相接触时,三个界面张力的平衡情况见 (b)所示。
平衡时水平分量的平衡关系为:
SG LS LG cos
式中 SG — 固相/气相界面张力; LS — 液相/固相界面张力; LG — 液相/气象界面张力。
表面张力和表面能虽然是不同的概念,但符 号相同,大小一样,单位也可以互换(如 表面张力为10-1N/m,则表面能为101J/m2 ) ,是从不同角度描述同一表面现 象。
由相关热力学公式可得:
dF dA dA
W
此式表明,表面张力就是单位面积上的自由能。 式中负号表示由于产生了新的单位面积的表面,而使系 统的自由能增加,增加值等于外力对单位表面所作的功。
P g m B
即二者重量之差
在最初很短的时间内以加速度进行运动,往后便开始匀速运动 根据stocks原理,半径为0.1cm以下的球形杂质的阻力Pc为:
Pc 6r
r为球形杂质半径,v为运动速度
杂质匀速运动时,Pc=P,故
6r g m B
4r 3g(m B ) 2gr2 (m B ) 3 6r 9