中考数学专题复习解直角三角形课件
合集下载
(公开课)解直角三角形复习课件ppt.1ppt
至少要有一个是边)就可 若直角三角形ABC中,∠C=90,那么∠A, 求出其余3个未知数
∠ B, ∠ C,
a,b,c中除∠C=90°外,其余5个元素之间有如下关系:
1)a² =c² +b²
A 的对边 B C a s inA 3) 斜边 AB c
c os A A 的邻边 A C b 斜边 AB c
在Rt△ADC中, CD=AD•tan30=
在Rt△ADB中, BD=AD•tan60˚= ∵ BD-CD=BC,BC=24 ∴
3 x 3
3x
∴ X=12 3 ≈12×1.732 =20.784 > 20
3 3x x 24 3
D
C
B
答:货轮无触礁危险。
例4:小山的高为h,为了测的小山顶上铁塔AB 的高x,在平地上选择一点P, 在P点处测得B点的 仰角为a, A点的仰角为B.(见表中测量目标图)
2)∠A+∠B=90
B c A b a C
tanA
A的对边 BC a A的邻边 AC b
概念反馈
在解直角三角形及应用时经常接触到的一些概念
(1)仰角和俯角
(2)坡度
i=
视线 铅 垂 线 仰角 水平线
h l
=tan
α
俯角
北
α为坡角
视线
h α
A
(3)方位角
西
30°
l
B
O 45°
南
东
知识
600
3 2
要能记 住有多 好
余弦cosα
1 2
3
正切tanα
1
1.互余两角三角函数关系: 0-A) 1.SinA=cos(90
∠ B, ∠ C,
a,b,c中除∠C=90°外,其余5个元素之间有如下关系:
1)a² =c² +b²
A 的对边 B C a s inA 3) 斜边 AB c
c os A A 的邻边 A C b 斜边 AB c
在Rt△ADC中, CD=AD•tan30=
在Rt△ADB中, BD=AD•tan60˚= ∵ BD-CD=BC,BC=24 ∴
3 x 3
3x
∴ X=12 3 ≈12×1.732 =20.784 > 20
3 3x x 24 3
D
C
B
答:货轮无触礁危险。
例4:小山的高为h,为了测的小山顶上铁塔AB 的高x,在平地上选择一点P, 在P点处测得B点的 仰角为a, A点的仰角为B.(见表中测量目标图)
2)∠A+∠B=90
B c A b a C
tanA
A的对边 BC a A的邻边 AC b
概念反馈
在解直角三角形及应用时经常接触到的一些概念
(1)仰角和俯角
(2)坡度
i=
视线 铅 垂 线 仰角 水平线
h l
=tan
α
俯角
北
α为坡角
视线
h α
A
(3)方位角
西
30°
l
B
O 45°
南
东
知识
600
3 2
要能记 住有多 好
余弦cosα
1 2
3
正切tanα
1
1.互余两角三角函数关系: 0-A) 1.SinA=cos(90
18、解直角三角形及其应用PPT课件
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
6
已知条件 已知两直角边(a,b) 已知斜边和一条直角边(c,a)
图形
解法 c= a2+b2,由 tanA=ab求∠A,∠ B=90°-∠A b= c2-a2,由 sinA=ac求∠A,∠ B=90°-∠A
202X权威 · 预测
第一部分 教材同步复习
12
(2)∵∠ABE=90°,AB=6,sinA=45=BAEE, ∴设 BE=4x,则 AE=5x,得 AB=3x, ∴3x=6,得 x=2,∴BE=8,AE=10, ∴tanE=ABBE=68=CDDE=D4E, 解得,DE=136, ∴AD=AE-DE=10-136=134,即 AD 的长是134.
第一部分 教材同步复习
4
►知识点二 解直角三角形
1.解直角三角形的定义及依据 (1)定义:在直角三角形中,除直角外,由已知元素求未知元素的过程就是解直 角三角形; (2)依据:在 Rt△ABC 中,∠C=90°,∠A,∠B,∠C 所对的边分别为 a,b,c, 则①边角关系:sinA=ac,cosA=bc,tanA=ab;②三边之间的关系:a2+b2=c2;③锐 角之间的关系:∠A+∠B=∠C; 1 (3)面积公式:S△ABC=12ab=①__2_c_h_____.(h 为斜边 c 上的高)
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
11
【思路点拨】 本题考查解直角三角形.(1)要求BC的长,只要求出BE和CE的 长即可,由题意可以得到BE和CE的长,本题得以解决;(2)要求AD的长,只要求出 AE和DE的长即可,根据题意可以得到AE、DE的长,本题得以解决.
中考数学总复习 第5章 第20讲 直角三角形课件
解:设BN=x,由折叠的性质可得DN=AN=9-x, ∵D是BC的中点,∴BD=3,在Rt△NBD中,
x2+32=(9-x)2,解得x=4,故线段BN的长为4
第十七页,共30页。
直角三角形两直角边长分别为a,b,斜边长为c. 1.勾股定理:直角三角形两直角边的平方和等于斜 边的平方,即有________. 2.勾股定理的逆定理:如果三角形一条(yī tiáo)边的 平方等于另外两条边的________(即满足式子 ________),那么这个三角形是直角三角形.
【解析】(1)过点C作AB的垂线,交AB的延长线于E点,利用勾股定理求 得AC的长即可;(2)分别求得乘车时间,然后比较(bǐjiào)即可得到答案.
解:(1)过点 C 作 AB 的垂线,交 AB 的延长线于 E 点, ∵∠ABC=120°,BC=20,∴BE=10,CE=10 3,在△ACE 中,∵AC2=8100+300,∴AC=20 21=20×4.6=92(km) (2)乘客车需时间 t1=8600=131(小时);乘列车需时间 t2=19820+ 2400=1910(小时),∴选择城际列车
因此,当知道直角三角形的两边时,可以求出第 三边;当只知道直角三角形的一边时,列出关系式, 转化(zhuǎnhuà)为方程解决. 求解时应注意辨别哪一 边是斜边.
第二十一页,共30页。
勾股定理(ɡōu ɡǔ dìnɡ lǐ)及其逆定理的实际
1.(2014·黄石)小明听说“武黄城际列车”已经开通, 便设计了如下问题:如图,以往从黄石A坐客车到 武昌客运站B,现在(xiànzài)可以在A坐城际列车到 武汉青山站C,再从青山站C坐市内公共汽车到武昌 客运站B.设AB=80 km,BC=20 km,∠ABC= 120°.请你帮助小明解决以下问题:
x2+32=(9-x)2,解得x=4,故线段BN的长为4
第十七页,共30页。
直角三角形两直角边长分别为a,b,斜边长为c. 1.勾股定理:直角三角形两直角边的平方和等于斜 边的平方,即有________. 2.勾股定理的逆定理:如果三角形一条(yī tiáo)边的 平方等于另外两条边的________(即满足式子 ________),那么这个三角形是直角三角形.
【解析】(1)过点C作AB的垂线,交AB的延长线于E点,利用勾股定理求 得AC的长即可;(2)分别求得乘车时间,然后比较(bǐjiào)即可得到答案.
解:(1)过点 C 作 AB 的垂线,交 AB 的延长线于 E 点, ∵∠ABC=120°,BC=20,∴BE=10,CE=10 3,在△ACE 中,∵AC2=8100+300,∴AC=20 21=20×4.6=92(km) (2)乘客车需时间 t1=8600=131(小时);乘列车需时间 t2=19820+ 2400=1910(小时),∴选择城际列车
因此,当知道直角三角形的两边时,可以求出第 三边;当只知道直角三角形的一边时,列出关系式, 转化(zhuǎnhuà)为方程解决. 求解时应注意辨别哪一 边是斜边.
第二十一页,共30页。
勾股定理(ɡōu ɡǔ dìnɡ lǐ)及其逆定理的实际
1.(2014·黄石)小明听说“武黄城际列车”已经开通, 便设计了如下问题:如图,以往从黄石A坐客车到 武昌客运站B,现在(xiànzài)可以在A坐城际列车到 武汉青山站C,再从青山站C坐市内公共汽车到武昌 客运站B.设AB=80 km,BC=20 km,∠ABC= 120°.请你帮助小明解决以下问题:
解直角三角形完整版PPT课件
余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。
2025年中考数学一轮复习课件:第31讲解直角三角形
离是多少米.
答案:解:由题意,得∠CHA=∠CHB=90°,CH=60,所以∠A
=60°,∠B=45°.
在Rt△ACH中,AH=
= =20
°
在Rt△BCH中,BH=
= =60.
°
所以AB=AH+BH=20 +60.
答:A,B之间的距离是(20 +60)米.
在Rt△ABC中,∠ACB=45°,所以AB=BC·tan45°=a m.
在Rt△ADB中,∠ADB=42°,所以AB=BD·tan42°≈0.9(22-a)m,
则a=0.9(22-a),解得a≈10.4,所以AB=BC=10.4 m,
即乌当惜字塔AB的高度约为10.4 m.
(2)由(1)得BC=AB=10.4 m,所以BD=CD-BC=22-10.4=11.6(m).
×
=15(米).
在Rt△CAD中,AD=15 米,∠CAD=60°.
因为tan∠CAD=
,所以CD=AD·tan∠CAD=15
所以BC=BD+CD=15+45=60(米).
答:这栋高楼的高BC为60 米.
× =45(米),
12.一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑
.
11.如图,小强从热气球上的A点测量一栋高楼顶部的仰角∠DAB=30°,测量这栋高
楼底部的俯角∠DAC=60°,热气球与高楼的水平距离AD为15 米,求这栋高楼的
高BC.
答案:解:在Rt△BAD中,AD=15 米,∠DAB=30°.
因为tan∠DAB=
,所以BD=AD·tan∠DAB=15
答案:解:由题意,得∠CHA=∠CHB=90°,CH=60,所以∠A
=60°,∠B=45°.
在Rt△ACH中,AH=
= =20
°
在Rt△BCH中,BH=
= =60.
°
所以AB=AH+BH=20 +60.
答:A,B之间的距离是(20 +60)米.
在Rt△ABC中,∠ACB=45°,所以AB=BC·tan45°=a m.
在Rt△ADB中,∠ADB=42°,所以AB=BD·tan42°≈0.9(22-a)m,
则a=0.9(22-a),解得a≈10.4,所以AB=BC=10.4 m,
即乌当惜字塔AB的高度约为10.4 m.
(2)由(1)得BC=AB=10.4 m,所以BD=CD-BC=22-10.4=11.6(m).
×
=15(米).
在Rt△CAD中,AD=15 米,∠CAD=60°.
因为tan∠CAD=
,所以CD=AD·tan∠CAD=15
所以BC=BD+CD=15+45=60(米).
答:这栋高楼的高BC为60 米.
× =45(米),
12.一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑
.
11.如图,小强从热气球上的A点测量一栋高楼顶部的仰角∠DAB=30°,测量这栋高
楼底部的俯角∠DAC=60°,热气球与高楼的水平距离AD为15 米,求这栋高楼的
高BC.
答案:解:在Rt△BAD中,AD=15 米,∠DAB=30°.
因为tan∠DAB=
,所以BD=AD·tan∠DAB=15
解直角三角形ppt课件
经济学中的复利计算
在经济学中,经常需要进行复利计算。虽然复利计算本身与解直角三角形没有直接关系, 但是可以通过构造类似直角三角形的数学模型并求解,得到复利计算的精确结果。
06
解直角三角形的拓展与延伸
斜三角形的解法探讨
斜三角形的定义与性质
斜三角形是指一个三角形中不包含直角的情况。其性质包 括三角形的内角和为180度,以及三边关系等。
工程问题中的解直角三角形
土木工程中的坡度计算
在土木工程中,经常需要计算坡度,即斜坡的倾斜程度。 通过构造直角三角形并求解,可以得到精确的坡度值。
机械工程中的力学分析
在机械工程中,经常需要对物体进行力学分析。通过构造 直角三角形并利用三角函数求解,可以得到物体受到的力 的大小和方向。
电气工程中的相位差计算
在电气工程中,经常需要计算两个交流信号之间的相位差 。通过构造直角三角形并求解,可以得到精确的相位差值 。
其他实际问题中的解直角三角形
航海问题中的航向和航程计算
在航海问题中,经常需要计算航向和航程。通过构造直角三角形并求解,可以得到精确的 航向和航程值。
物理学中的矢量合成与分解
在物理学中,经常需要对矢量进行合成与分解。通过构造直角三角形并利用三角函数求解 ,可以得到合成或分解后的矢量的大小和方向。
在直角三角形中,已知任意两边长,可以利用勾股定理求出 第三边长。
已知角度和一边求另一边
在直角三角形中,已知一个锐角和一条边长,可以利用三角 函数和勾股定理求出另一条边长。
勾股定理在实际问题中的应用
测量问题
在测量问题中,可以利用 勾股定理解决距离、高度 等测量问题。
工程问题
在工程问题中,可以利用 勾股定理解决角度、长度 等计算问题。
在经济学中,经常需要进行复利计算。虽然复利计算本身与解直角三角形没有直接关系, 但是可以通过构造类似直角三角形的数学模型并求解,得到复利计算的精确结果。
06
解直角三角形的拓展与延伸
斜三角形的解法探讨
斜三角形的定义与性质
斜三角形是指一个三角形中不包含直角的情况。其性质包 括三角形的内角和为180度,以及三边关系等。
工程问题中的解直角三角形
土木工程中的坡度计算
在土木工程中,经常需要计算坡度,即斜坡的倾斜程度。 通过构造直角三角形并求解,可以得到精确的坡度值。
机械工程中的力学分析
在机械工程中,经常需要对物体进行力学分析。通过构造 直角三角形并利用三角函数求解,可以得到物体受到的力 的大小和方向。
电气工程中的相位差计算
在电气工程中,经常需要计算两个交流信号之间的相位差 。通过构造直角三角形并求解,可以得到精确的相位差值 。
其他实际问题中的解直角三角形
航海问题中的航向和航程计算
在航海问题中,经常需要计算航向和航程。通过构造直角三角形并求解,可以得到精确的 航向和航程值。
物理学中的矢量合成与分解
在物理学中,经常需要对矢量进行合成与分解。通过构造直角三角形并利用三角函数求解 ,可以得到合成或分解后的矢量的大小和方向。
在直角三角形中,已知任意两边长,可以利用勾股定理求出 第三边长。
已知角度和一边求另一边
在直角三角形中,已知一个锐角和一条边长,可以利用三角 函数和勾股定理求出另一条边长。
勾股定理在实际问题中的应用
测量问题
在测量问题中,可以利用 勾股定理解决距离、高度 等测量问题。
工程问题
在工程问题中,可以利用 勾股定理解决角度、长度 等计算问题。
《解直角三角形》-完整版PPT课件
整理,得4t2-26t+39=0
解之,得
t1
13413,t2
13 13 4
∴台风抵达D港的时间为 1 3 1 3 小时.
B
∵轮船从A处用 1 3
≈25.5.
4
13
4
小时到达D港的速度为60÷
1
3413∴为台风抵达D港之前轮船到D港,轮船至少应提速6里/时.
例7 如图,公路MN和公路N上沿PN方向行驶时,学校是否会受 到噪声影响?请说明理由(2)如果受影响,已知拖拉机的速 度为18千米/时,那么学校受影响的时间为多少秒?
(1)切割法:把图形分成一个或几个直角三角形与 其 他特殊图形的组合;
(2)粘补法:此方法大都通过延长线段来实现
例1 要求tan30°的值,可构造如图所示的直角三角形进行
计算:作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,
那么BC= ,
3
∴tan30°= AC 1 3 BC 3 3
A
D
C
B
祝同学们学习进步! 再见!
∴C1D0=201208(02米)
学校受噪声影响的时间t=120米÷18千米/时= 时=1 24秒
150
小结:
1、将实际问题经提炼数学知识,建立数学模 型转化为数学问题 2、设法寻找或构造可解的直角三角形,尤其 是对于一些非直角三角形图形,必须添加 适当的辅助线,才能转化为直角三角形的 问题来解决
C FG
∵ sinB= ,AG AB
D E
AG=AB•sinB=415•sin37°=415 06=
A
37 °B
249 25cm,
即EF 25cm
答:球的直径约为25cm
解直角三角形的应用(19张ppt)课件
选择合适的解法
根据实际情况选择合适的解法,如近似计算、 精确计算等。
注意单位统一
在实际应用中,要注意单位统一,避免计算 错误。
考虑多解情况
在某些情况下,解直角三角形可能存在多个 解,需要全面考虑。
06
练习与巩固
基础练习题
总结词
掌握基本概念和公式
直角三角形中的角度和边长关系
理解直角三角形中锐角、直角和钝角之间 的关系,以及边长与角度之间的勾股定理 。
利用三角函数定义求解
总结词
通过已知角度和邻边长度,求对边或 斜边长度。
详细描述
根据三角函数定义,已知一个锐角和它 所对的边,可以通过三角函数求出其他 两边。例如,已知∠A=30°和a=1,可 以通过三角函数sin(30°)求出对边b。
利用勾股定理求解
总结词
通过已知两边的长度,求第三边长度。
详细描述
向。
确定建筑物的角度
在建筑设计中,通过解直角三角形, 可以确定建筑物的角度和方向。
确定建筑物的长度
在建筑设计中,通过解直角三角形, 可以确定建筑物的长度和方向。
物理问题中的运用
确定物体的运动轨迹
在物理问题中,通过解直角三角形,可以确定物体的运动轨 迹和方向。
确定物体的受力情况
在物理问题中,通过解直角三角形,可以确定物体的受力情 况和方向。
04
实际应用案例
测高问题
01
02
03
测量山的高度
通过测量山脚和山顶的仰 角,利用解直角三角形的 知识,可以计算出山的高 度。
测量楼的高度
利用解直角三角形的知识, 通过测量楼底和楼顶的仰 角,可以计算出楼的高度。
测量树的高度
通过测量树底部和树顶部 的仰角,利用解直角三角 形的知识,可以计算出树 的高度。
解直角三角形(共30张)PPT课件
比例性质应用
利用相似三角形中对应边 之间的比例关系进行计算。
实际应用举例
测量问题
利用相似三角形原理解决 测量中的实际问题,如测 量建筑物高度、河宽等。
航海问题
在航海中,利用相似三角 形原理解决船只定位、航 向确定等问题。
物理问题
在物理实验中,利用相似 三角形原理解决光学、力 学等问题,如光的折射、 力的合成与分解等。
利用相似三角形求边长
通过已知边长和相似比,可以求出未知边长。
利用相似三角形求角度
通过已知角度和相似关系,可以求出未知角度。
利用相似三角形求面积
通过已知面积和相似比,可以求出未知面积。
相似比计算方法和技巧
01
02
03
直接计算法
根据已知条件直接计算相 似比。
间接计算法
通过引入辅助线或构造特 殊图形来计算相似比。
解直角三角形(共30张)PPT课 件
目录
• 直角三角形基本概念与性质 • 解直角三角形方法论述 • 三角函数在解直角三角形中应用 • 相似三角形在解直角三角形中作用
目录
• 复杂图形中解直角三角形策略探讨 • 拓展延伸:非直角三角形解法探讨
01
直角三角形基本概念与性 质
直角三角形定义及特点
有一个角为90度的三角形称为直角三角形。
案例三
在三角形中解直角三角形问题。 通过作高线构造直角三角形,并
结合相似性质进行求解。
总结归纳与提高建议
总结归纳
在复杂图形中解直角三角形的关键在于构造直角三角形并利用 已知条件进行推理和计算。通过添加辅助线、利用相似性质和 三角函数关系等方法,可以有效地解决这类问题。
提高建议
为了更好地掌握解直角三角形的技巧和方法,建议多做相关练 习题并总结归纳经验。同时,也可以学习一些高级的数学知识 和技巧,如三角函数恒等式、极坐标等,以便更好地应对复杂 的数学问题。
九年级数学下册28.2 《解直角三角形及其应用》PPT课件
解:设登到B处,视线BC在C点与地球相切,也就是 看C点,AB就是“楼”的高度,
在Rt△OCB中,∠O
AC OC
180
4.5 ,
OB
OC cos∠O
6370 cos 4.5
6389km,
∴ AB=OB-OA=6389-6370=19(km). 即这层楼至少要高19km,即1900m. 这是不存在 的.
例1 2012年6月18日,“神州”九号载人航天飞船与“天宫”一号
目标飞行器成功实现交会对接. “神州”九号与“天宫”一号的
组合体在离地球表面343km的圆形轨道上运行. 如图,当组
合体运行到离地球表面P点的正上方时,从中能直接看到的
地球表面最远的点在什么位置?最远点与P点的距离是多少
(地球半径约为6 400km,取3.142,结果取整数)?
个角), 其中∠C=90°.
B
(1) 三边之间的关系:a2+b2=__c_2__;
c a
(2) 锐角之间的关系: ∠A+∠B=__9_0_°_;
A
a
bC
b
(3) 边角之间的关系:sinA=__c___,cosA=__c___,
a
tanA=___b__.
讲授新课
一 已知两边解直角三角形
合作探究
在图中的Rt△ABC中,
三 已知一锐角三角函数值解直角三角形
例3 如图,在Rt△ABC 中,∠C=90°,cosA = 1,
3
BC = 5, 试求AB的长.
解: C 90,cos A 1, AC 1 . 3 AB 3
设 AB x, AC 1 x,
B
解直角三角形(复习课)课件
分析多个直角三角形之间的关系,解 决较为复杂的几何问题。
结合勾股定理和三角函数计算直角三 角形中的未知量。
利用给定的条件,设计合理的方案解 决实际问题,如设计桥梁、建筑等结 构的支撑体系。
06
复习与总结
重点回顾
直角三角形的定义与性质
回顾直角三角形的定义、性质和判定条件,理解其在几何图形中 的重要地位。
求解角度。
常见错误分析
混淆边和角
在解题过程中,有时会混淆边和角,导致计算错误。
忽视勾股定理的条件
在使用勾股定理时,需要确保三角形是直角三角形,否则会导致错 误。
角度范围错误
在计算角度时,需要注意角度的范围,避免出现负角度或超过180 度的角度。
解题方法总结
勾股定理法
适用于已知两边长度, 求第三边长度的情况。
船只安全航行。
物理实验
测量角度
在物理实验中,经常需要测量各 种角度。解直角三角形的方法可 以用来计算这些角度,确保实验
结果的准确性。
计算力的大小
在物理实验中,经常需要计算力的 大小。通过解直角三角形,可以精 确地计算出力的大小,确保实验结 果的可靠性。
确定物体的位置
在物理实验中,物体的位置是非常 重要的。通过解直角三角形,可以 计算出物体的位置,确保实验的准 确性和可靠性。
04
解题技巧与策略
解题思路
01
02
03
04
明确问题要求
首先需要理解题目的要求,确 定需要求解的是什么。
选择合适的三角形
根据问题描述,选择一个合适 的直角三角形来解决问题。
利用勾股定理
在直角三角形中,勾股定理是 一个重要的工具,可以帮助我
们求解边长。
结合勾股定理和三角函数计算直角三 角形中的未知量。
利用给定的条件,设计合理的方案解 决实际问题,如设计桥梁、建筑等结 构的支撑体系。
06
复习与总结
重点回顾
直角三角形的定义与性质
回顾直角三角形的定义、性质和判定条件,理解其在几何图形中 的重要地位。
求解角度。
常见错误分析
混淆边和角
在解题过程中,有时会混淆边和角,导致计算错误。
忽视勾股定理的条件
在使用勾股定理时,需要确保三角形是直角三角形,否则会导致错 误。
角度范围错误
在计算角度时,需要注意角度的范围,避免出现负角度或超过180 度的角度。
解题方法总结
勾股定理法
适用于已知两边长度, 求第三边长度的情况。
船只安全航行。
物理实验
测量角度
在物理实验中,经常需要测量各 种角度。解直角三角形的方法可 以用来计算这些角度,确保实验
结果的准确性。
计算力的大小
在物理实验中,经常需要计算力的 大小。通过解直角三角形,可以精 确地计算出力的大小,确保实验结 果的可靠性。
确定物体的位置
在物理实验中,物体的位置是非常 重要的。通过解直角三角形,可以 计算出物体的位置,确保实验的准 确性和可靠性。
04
解题技巧与策略
解题思路
01
02
03
04
明确问题要求
首先需要理解题目的要求,确 定需要求解的是什么。
选择合适的三角形
根据问题描述,选择一个合适 的直角三角形来解决问题。
利用勾股定理
在直角三角形中,勾股定理是 一个重要的工具,可以帮助我
们求解边长。
人教版九年级数学下册解直角三角形ppt课件
AD 4 2 2
∴∠ADC=45°, ∴∠ADB=180°-45°=135°.
5.(2018黑龙江大庆龙凤月考)在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边 分别为a,b,c.根据下列条件解直角三角形. (1)已知a=5,∠B=60°; (2)已知a=5 2 ,b=5 6 .
解析 (1)∵∠C=90°,∠B=60°, ∴∠A=30°, ∵cos B=cos 60°= a = 1 ,a=5,∴c=10,
5
(1)求AB的长; (2)求cos∠BAD的值.
图28-2-1-6
解析 (1)在Rt△ADC中,∵∠C=90°,sin∠ADC= AC = 4,AD=5,∴AC=4.
AD 5
由勾股定理得CD= AD2 -AC2 =3, ∴BC=CD+DB=3+5=8, 在Rt△ABC中,∠C=90°, 由勾股定理得AB= AC2 BC2 = 42 82 =4 5 . (2)∵AD=BD, ∴∠BAD=∠ABD.
知识点一 解直角三角形 1.解直角三角形的定义与边角关系
2.解直角三角形的类型
在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c.
已知条件
解法
两直角边 斜边、一直角边(如c,a) 一锐角与邻边(如∠A,b) 一锐角与对边(如∠A,a) 斜边与一锐角(如c,∠A)
由tan A= a,求∠A;∠B=90°-∠A;c= a2 b2
点O,AB⊥AC.若AB=8,tan∠ACB= 2,则BD的长是
.
3
图28-2-1-3
答案 20
解析 ∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB
⊥AC,AB=8,tan∠ACB= 2= AB ,∴AC= 3AB=12,∴OA=6,∴BO= OA2 AB2=
∴∠ADC=45°, ∴∠ADB=180°-45°=135°.
5.(2018黑龙江大庆龙凤月考)在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边 分别为a,b,c.根据下列条件解直角三角形. (1)已知a=5,∠B=60°; (2)已知a=5 2 ,b=5 6 .
解析 (1)∵∠C=90°,∠B=60°, ∴∠A=30°, ∵cos B=cos 60°= a = 1 ,a=5,∴c=10,
5
(1)求AB的长; (2)求cos∠BAD的值.
图28-2-1-6
解析 (1)在Rt△ADC中,∵∠C=90°,sin∠ADC= AC = 4,AD=5,∴AC=4.
AD 5
由勾股定理得CD= AD2 -AC2 =3, ∴BC=CD+DB=3+5=8, 在Rt△ABC中,∠C=90°, 由勾股定理得AB= AC2 BC2 = 42 82 =4 5 . (2)∵AD=BD, ∴∠BAD=∠ABD.
知识点一 解直角三角形 1.解直角三角形的定义与边角关系
2.解直角三角形的类型
在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c.
已知条件
解法
两直角边 斜边、一直角边(如c,a) 一锐角与邻边(如∠A,b) 一锐角与对边(如∠A,a) 斜边与一锐角(如c,∠A)
由tan A= a,求∠A;∠B=90°-∠A;c= a2 b2
点O,AB⊥AC.若AB=8,tan∠ACB= 2,则BD的长是
.
3
图28-2-1-3
答案 20
解析 ∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB
⊥AC,AB=8,tan∠ACB= 2= AB ,∴AC= 3AB=12,∴OA=6,∴BO= OA2 AB2=
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形有公共的直角边,先求出公共边是解决此
类问题的基本出发点.这就体现了数学中的转
化思想!
例2
已知:如图,在 ABC中,∠B = 45°, ∠C = 60°,AB = 6.求BC的长. (结果 保留根号)。
D
举一反三
如图,从热气球C处测得地面A、B两点的俯 角分别为30°、45°,如果此时热气球C处 的高度CD为100米,点A、D、B在同一直线
上,则AB两点距离是( D )。
A.200米 B.200 米 C.220 米 D.100( +1)米
1.锐角三角函数的定义
⑴正弦
⑵余弦 方法依据
解
⑶正切
直 角 三
2.30°、45°、60°特殊角的三角函数值
巧记牢记 ⑴定义 至少一边
①三边间关系
角 形
3.解直角三角形
⑵解直角三角形的依据 ②锐角间关系
4.会用解直角三角形的有关知识解决简单的实际问 题.
自主学习
完成知识点、基本图形内容并牢记
完成后思考:
1.特殊角的三角函数值规律、技巧记 法?
2.解直角三角形必备条件
合作探究
拓展提升
(三)常用辅助线和数学思想方法:
C
方法:A
B
D
角数、一学个思俯若想角出,:现解数两决个形此不类结同问的合题仰时+角方, x D
tan600x
举一反三
如图,小明同学在东西方向的环海路A处,测 得海中灯塔P在北偏东60°方向上,在A处东 500米的B处,测得海中灯塔P在北偏东30°方 向上,求灯塔P到环海路的距离PC(用根号表
示).
拓展提升
(三)常用辅助线和数学思想方法:
C
A
D
B
当线三构数角造学形两思不个想是直:直角角三数三角形角形结形求合时解,。+转可 两以个化通直思过角想做三高角
中考数学专题复习解直角三角形 课件
1. 巩固三角函数的概念,巩固用直角三角形边之比 来表示某个锐角的三角函数.
2. 熟记30°,45°, 60°角的三角函数值.会计算 含有特殊角的三角函数的值,会由一个特殊锐 角的三角函数值,求出它的对应的角度.
3.掌握直角三角形的边角关系,会运用勾股定理, 直角三角形的两锐角互余及锐角三角函数解直 角三角形.
知数,用同一个未知数表示问题中的未知量,然
后根据问题中的数量关系列出方程求解.
例1
海中有一小岛A,该岛四周40海里内有暗礁,今 有一货轮由西向东航行, 在C处见A岛在北偏 东60°,航行30海里后到达B处,见岛A在北偏 东45°,你认为货船继续向西航行,途中会有 触礁的危险吗?
等量关系列方程
=+
x
宁乘勿除 ③边角间关系
⑶解直角三角形在实际问题中
的应用 思想方法
1
2
3
2
2
2
3
2
1
2
2
2
一一二二三三、三、二三3一3 二、一弦、内1三切九外二莫忘十3 记七
思考:解直角三角形必备条件
至少一边
B
5 370
宁乘勿除
530
A 3C
结语
谢谢大家!