二阶低通滤波器的设计说明

合集下载

二阶低通滤波器

二阶低通滤波器

二阶低通滤波器概述二阶低通滤波器是一种常见的信号处理工具,用于消除高频噪声和保留低频成分。

它具有简单的结构和良好的性能,被广泛应用于音频处理、图像处理、通信系统等领域。

本文将介绍二阶低通滤波器的原理、设计方法以及实现步骤,并给出一个实际的例子。

原理二阶低通滤波器通过对输入信号进行滤波操作,将输入信号中的高频成分去除,只保留低频成分。

它的原理基于二阶巴特沃斯滤波器(Butterworth Filter),巴特沃斯滤波器是一种模拟滤波器,具有平坦的通带响应和陡峭的阻带响应。

以模拟二阶低通巴特沃斯滤波器为例,其传输函数为:H(s) = 1 / (s^2 + s/Q + 1)其中,s为复平面上的变量,Q为品质因数,决定了滤波器的带宽和衰减率。

当输入信号经过滤波器后,输出信号可由输入信号经传输函数求得。

为了实现离散的二阶低通滤波器,可以使用数字滤波器设计方法,例如双线性变换或者频率抽样法。

通过将连续时间传输函数进行离散化,可以得到离散二阶滤波器的差分方程。

设计方法设计二阶低通滤波器的方法主要有以下几种:1. 理想低通滤波器法理想低通滤波器法通过将输入信号在一定截止频率处进行截断,得到一个临界低频截断点。

然后使用 Fourier 变换将其转换成频域,通过将较高频率处的频谱截断,得到一个频率响应变为零的低通滤波器。

2. 巴特沃斯低通滤波器法巴特沃斯低通滤波器法是基于巴特沃斯滤波器的原理进行设计。

通过选择合适的参数,可以得到具有平坦通带响应和陡峭阻带响应的二阶低通滤波器。

巴特沃斯低通滤波器具有最大的平坦度和最小的群延迟。

3. 非线性规划法非线性规划法是一种优化方法,通过最小化滤波器的误差函数,得到最优的滤波器。

这种方法可以根据自己的需求进行自定义滤波器的设计。

实现步骤下面是一种基于巴特沃斯低通滤波器的二阶低通滤波器的实现步骤:1.确定滤波器的截止频率和品质因数。

截止频率决定了滤波器的截止频率,品质因数决定了滤波器的带宽和衰减率。

二阶压控型低通滤波器的设计

二阶压控型低通滤波器的设计

目录实验目的------------------------------------------------------------------------------------------------------------ 3实验要求------------------------------------------------------------------------------------------------------------ 3实验原理------------------------------------------------------------------------------------------------------------ 3滤波器基础知识简介-------------------------------------------------------------------------------- 3有源低通滤波器(LPF)-------------------------------------------------------------------------- 4二阶压控型低通滤波器--------------------------------------------------------------------------- 4实验设计------------------------------------------------------------------------------------------------------------- 5仿真分析------------------------------------------------------------------------------------------------------------- 6仿真电路---------------------------------------------------------------------------------------------------------- 6实验结果---------------------------------------------------------------------------------------------------------- 7波特图仪显示-----------------------------------------------------------------------------------------------7AC交流分析显示-------------------------------------------------------------------------------------- 9实验结果分析------------------------------------------------------------------------------------------------13理论计算-------------------------------------------------------------------------------------------------------13实验结果比较与分析--------------------------------------------------------------------------------13实验结论-------------------------------------------------------------------------------------------------------------- 14参考文献--------------------------------------------------------------------------------------------------------------14实验目的:1、熟悉由集成运放和阻容元件组成的有源滤波器的原理;2、学习运用传递函数法分析有源滤波器的频率响应;3、学习RC有源滤波器的设计及电路调试方法;4、学习利用Multisim仿真软件进行电路仿真分析。

二阶低通滤波器实验报告

二阶低通滤波器实验报告

二阶低通滤波器实验报告二阶低通滤波器实验报告引言:在电子领域中,滤波器是一种用于处理信号的重要工具。

滤波器的作用是根据信号的频率特性,选择性地通过或抑制特定的频率分量。

本次实验旨在研究和探索二阶低通滤波器的工作原理和性能。

一、实验目的本次实验的主要目的是:1. 理解二阶低通滤波器的基本原理;2. 掌握二阶低通滤波器的设计和调试方法;3. 通过实验验证滤波器的性能和频率响应。

二、实验原理1. 二阶低通滤波器的基本原理二阶低通滤波器是一种常见的滤波器类型,其主要功能是通过滤除高于截止频率的信号分量,使得信号在低频范围内得到保留。

该滤波器由电容和电感组成,通过调整电容和电感的数值,可以改变截止频率和滤波器的斜率。

2. 二阶低通滤波器的设计方法二阶低通滤波器的设计需要确定截止频率和滤波器的品质因数Q。

截止频率决定了滤波器的频率响应范围,而品质因数Q则决定了滤波器的斜率和幅频特性。

根据所需的滤波器性能,可以选择合适的电容和电感数值,并通过计算和模拟验证其设计是否满足要求。

三、实验装置与步骤1. 实验装置本次实验所需的装置包括信号发生器、二阶低通滤波器电路、示波器等。

2. 实验步骤(1)根据设计要求,选择合适的电容和电感数值,并连接电路。

(2)将信号发生器连接到滤波器的输入端,调节信号发生器的频率和幅度。

(3)将示波器连接到滤波器的输出端,观察输出信号的波形和频率响应。

(4)通过调节电容和电感数值,优化滤波器的性能和频率响应。

(5)记录实验数据,并进行分析和总结。

四、实验结果与分析在实验中,我们根据设计要求选择了合适的电容和电感数值,并连接了二阶低通滤波器电路。

通过调节信号发生器的频率和幅度,我们观察到滤波器输出信号的波形和频率响应。

根据实验数据,我们可以绘制出滤波器的幅频特性曲线和相频特性曲线,并分析其性能和频率响应。

五、实验总结与心得通过本次实验,我们深入了解了二阶低通滤波器的工作原理和性能。

实验中,我们通过调节电容和电感数值,优化了滤波器的性能和频率响应。

二阶有源低通滤波电路的设计与分析

二阶有源低通滤波电路的设计与分析

二阶有源低通滤波电路的设计与分析有源滤波电路是一种灵活、可靠和性能卓越的滤波器,广泛用于通信、控制和测量等领域。

本文介绍了实现二阶有源低通滤波器的基本原理,并通过计算机仿真分析了设计过程中遇到的一些问题。

一、二阶有源低通滤波器原理有源低通滤波器是一种混合型滤波器,它具有电容和电感耦合之间的耦合,从而实现了低通特性。

其基本原理是,将输入信号分别经过两个放大器,然后将放大器的输出信号反馈到电容的两个端,进而形成一个闭环系统,以构成一个连续反馈低通滤波器,达到滤波的目的。

二、有源低通滤波器的设计有源低通滤波器的设计有三个要考虑的重要参数,包括滤波器的频率特性,输入阻抗和输出阻抗。

1.滤波器频率特性:有源低通滤波器的基本频率特性可以使用Bessel函数表示。

它的特性截止频率可以用“截止频率Hz”表示。

同时,有源低通滤波器也具有频带宽和延迟特性,可以用“频带宽Hz”和“延迟时间ms”来表示。

2.输入阻抗:有源低通滤波器的输入阻抗为电子放大器的输入阻抗,由电子放大器的输入元件的参数决定,一般是50欧姆或大于50欧姆的阻抗。

3.输出阻抗:有源低通滤波器的输出阻抗取决于电子放大器的输出元件的参数,输出阻抗一般为几千欧姆以上。

三、计算机仿真分析由于有源低通滤波器的设计过程非常复杂,需要考虑很多参数,因此通常采用计算机仿真技术进行分析研究,以便验证设计方案的正确性。

在计算机仿真的分析过程中,首先要确定滤波器的输入信号的频率、幅度和相位,并计算出滤波器的输出信号特性,如频率、幅度和相位等,然后将实验结果与理论预测结果进行对比,以验证滤波器的设计方案是否正确。

四、结论有源低通滤波器是一种灵活、可靠和性能卓越的滤波器,它具有良好的性能特性,广泛应用于通信、控制和测量等领域。

其设计方案中,需要考虑多个参数,使用计算机仿真技术可以有效验证设计的正确性,也可以大大提高滤波器的性能。

二阶低通滤波器

二阶低通滤波器

课程设计说明书课程设计题目:有源二阶低通滤波器学院名称:信息工程学院专业:通信工程姓名:班级学号:同组人:指导老师:黄丽贞信息工程学院2010 年3月13 日课程设计任务书I、课程设计题目:有源二阶低通滤波器II、课程设计技术要求及主要元器件:〖基本要求〗:1) 分别用压控电压源和无限增益多路反馈二种方法设计电路;2)截止频率f c=2KHz;3)增益A vp=2 ;〖主要参考元器〗:UA741CD芯片;III、电子专业课程设计工作内容及进度安排:第一周查阅资料,确定方案,Multisim仿真第二周设计制作,电路调试,撰写报告Ⅳ、主要参考资料:[1]童诗白.模拟电子技术基础(第四版)[M].北京:高等教育出版社,2006[2] 谢自美.电子线路综合设计(第一版) [M].武汉:华中科技大学出版社,2006[3] 沈小丰,余琼蓉.电子线路实验——模拟电路基础[M].北京:上清华大学出版社,2005摘要在现代的电信设备和各类控制系统中,滤波器应用极为广泛。

在我们日常生活中,几乎所有的电子部件都有使用滤波器,而且滤波器的优劣将直接决定电子产品的优劣。

鉴于滤波器与人们的生活息息相关,本文研究的对象正是一个二阶有源低通滤波器(巴特沃思响应)。

该电路主要采用了uA741运放,并且在一阶的基础上增加一节RC网络,加大幅频特性衰减斜率,以达到在给定的频段内,让信号无衰减地通过电路,而通带外的其他信号将受到很大的衰减;从而提高滤波效果。

本设计运用uA741和RC选频网络实现了信号频率在给定的范围内通过,也在一定程度上提高了滤波效果。

关键字:二阶、频率衰减、滤波目录前言 (1)第一章二阶低通滤波器的设计要求 (2)1.1设计任务及要求 (2)第二章电路设计原理及方案 (3)2.1二阶有源低通滤波器的特点 (3)2.2设计原理 (4)2.3设计方案 (6)2.3.1芯片选择 (6)2.3.2二阶低通滤波器电路 (8)第三章滤波电路的详细设计 (9)3.1二阶有源低通滤波器的理论分析 (9)3.1.1频率特性 (9)3.1.2通带电压放大倍数AUP (9)3.2二阶低通滤波器的理论计算 (9)3.3用Mutisim仿真 (12)第四章电路的焊接与调试 (14)4.1电路的安装 (14)4.2电路的调试 (14)实验结论 (15)第五章设计心得和体会 (16)参考文献 (17)附录一 (18)附录二 (19)前言随着社会文明的进步和科学技术的发展,先进的电子技术在各个近代学科门类和技术领域中占有不可或缺的核心地位。

二阶有源低通滤波器课程设计

二阶有源低通滤波器课程设计

目录一题目规定与方案论证........................................................ 错误!未定义书签。

1.1(设计题题目)二阶有源低通滤波器............................................. 错误!未定义书签。

1.1.1题目规定.................................................................................. 错误!未定义书签。

1.1.2 方案论证................................................................................. 错误!未定义书签。

1.2(实训题题目)波形发生器与计数器............................................. 错误!未定义书签。

1.2.1题目规定.................................................................................. 错误!未定义书签。

1.2.2方案论证.................................................................................. 错误!未定义书签。

二电子线路设计与实现........................................................ 错误!未定义书签。

2.1二阶有源低通滤波器........................................................................ 错误!未定义书签。

2.2十位二进制加法计数器电路设计.................................................... 错误!未定义书签。

二阶低通滤波器的设计要点

二阶低通滤波器的设计要点

二阶低通滤波器的设计要点1.滤波器类型选择:二阶低通滤波器有许多不同的类型,包括巴特沃斯、切比雪夫、贝塞尔等。

根据实际需求选择合适的滤波器类型,以满足对于频率响应、阻带抑制等方面的要求。

2.滤波器参数选择:滤波器参数包括截止频率、阻带衰减等。

截止频率是指滤波器将信号截止的频率点,阻带衰减是指滤波器在截止频率之外的频段对信号的抑制程度。

需要根据实际应用需求选择合适的参数值,以保证所需的信号处理效果。

3.构建转移函数:根据选定的滤波器类型和参数,可以建立二阶低通滤波器的传递函数。

传递函数描述了滤波器对输入信号的响应特性,可以用于分析和设计滤波器。

4.滤波器电路实现:根据滤波器的传递函数,可以设计具体的电路实现。

常见的二阶低通滤波器电路包括RC电路、RLC电路等。

可以通过选择合适的电路拓扑和元件参数,来实现所需的滤波特性。

5.频率响应分析:设计完成后,需要进行频率响应分析,以确保滤波器的性能满足要求。

可以使用仿真工具或实验测量的方法,观察滤波器在不同频率下的响应特性。

若有需要,可以对设计参数进行调整以达到预期的性能。

6.稳定性和阻带波纹:稳定性是指滤波器的输出能否在有限时间内收敛到稳定的目标状态。

对于二阶低通滤波器,稳定性要求其传递函数的极点都位于左半平面,以保证系统的稳定性。

另外,阻带波纹是指滤波器在截止频率附近的振荡现象。

设计时需要注意减小阻带波纹的幅度,以确保输出信号的稳定性。

7.电路实现工艺:根据滤波器的实际应用场景,选择适当的电路实现工艺。

常见的工艺包括模拟电路实现、数字滤波器实现、集成电路实现等。

不同的工艺具有各自的优点和限制,需要根据实际情况选择适合的工艺。

8.优化设计:进行性能优化和设计改进。

可以通过参数调整、电路拓扑优化等方法来改进滤波器的性能。

此外,还可以使用自适应滤波、多级联结等技术来提高滤波器的性能。

总结起来,设计二阶低通滤波器需要考虑滤波器类型选择、参数选择、转移函数构建、电路实现、频率响应分析、稳定性和阻带波纹、电路实现工艺以及优化设计等要点。

课程设计--二阶低通滤波器设计

课程设计--二阶低通滤波器设计

课程设计--二阶低通滤波器设计1. 理论基础二阶低通滤波器(second-order low-pass filter)属于电子滤波器的一种。

在电子信号处理中,低通滤波器(low-pass filter)是指可以滤掉高频部分,只保留信号中低频部分的滤波器。

二阶低通滤波器可以更加有效的滤掉高频部分,有更好的频率响应特性。

2. 实验目的设计一个二阶低通滤波器,学习和掌握滤波器的设计方法和理论基础。

3. 实验器材- 电阻器- 电容器- 运放(OPAMP)4. 实验步骤步骤1:选择设定滤波器的截止频率fc,以及质量因数Q值。

其实这两个参数是相互影响的,如果截止频率增大,Q值也需要增大;如果Q值增大,则截止频率也需要增大。

具体选择需要根据实际需求和设计条件来确定。

步骤2:根据所选择参数,计算出滤波器的电路参数,包括电容器和电阻器的阻值和电容值。

步骤3:按照电路图进行电路连接和布线。

步骤4:进行实验测试。

可以使用信号发生器输入测试信号,观察输出信号波形和频率响应特性。

5. 实验结果根据实际需要和设计条件,选择合适的截止频率和Q值,设计出二阶低通滤波器电路,进行实验测试。

观察输出信号波形和频率响应特性。

6. 实验注意事项- 实验时需要注意硬件电路的连接问题;- 工作电压选择和滤波器电路的工作范围匹配;- 实验测试时需要合理地选择信号频率和振幅,避免过高的信号幅值造成硬件模块损坏,或者信号失真等问题。

7. 实验拓展- 可以进行滤波器级数的增加,设计更高阶的滤波器电路;- 可以修改电路参数和工作电压,观察滤波器的频率响应曲线变化;- 可以将低通滤波器改成高通滤波器、带通滤波器和带阻滤波器等,进行不同类型滤波器的设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要滤波器是一种使用信号通过而同时抑制无用频率信号的电子装置,在信息处理、数据传送和抑制干扰等自动控制、通信及其它电子系统中应用广泛。

滤波一般可分为有源滤波和无源滤波,有源滤波可以使幅频特性比较陡峭,而无源滤波设计简单易行,但幅频特性不如有源滤波器,而且体积较大。

二阶低通滤波器可用压控和无限增益多路反馈。

采用集成运放构成的RC有源滤波器具有输入阻抗高,输出阻抗低,可提供一定增益,截止频率可调等特点。

压控电压源型二阶低通滤波电路是有源滤波电路的重要一种,适合作为多级放大器的级联。

本文根据实际要求设计一种压控电压源型二阶有源低通滤波电路,采用EDA仿真软件Multisim1O对压控电压源型二阶有源低通滤波电路进行仿真分析、调试,从而实现电路的优化设计。

关键字:二阶低通滤波器,multisim仿真分析,电路设计目录第一章课程设计任务及要求 (2)1.1设计任务 (2)1.2设计要求 (2)第二章系统设计方案选择 (3)2.1 总方案设计 (3)2.2子框图的作用 (3)2.3 方案选择 (4)第三章系统组成及工作原理 (4)3.1有源二阶压控滤波器 (5)3.2无限增益多路反馈有源滤波器 (6)第四章单元电路设计、参数计算、器件选择 (7)4.1二阶压控低通滤波器设计及参数计算 (7)4.2无限增益多路反馈有源滤波器的设计及参数计算 (8)第五章电路组装及调试 (9)5.1压控电压源二阶低通滤波电路 (9)5.2无限增益多路负反馈二阶低通滤波器 (10)第六章总结与体会................................... 错误!未定义书签。

参考文献 (12)附录一芯片介绍: (13)附录二元件清单 (14)附录三实物图 (15)第一章课程设计任务及要求1.1设计任务1、学习RC有源滤波器的设计方法;2、由滤波器设计指标计算电路元件参数;3、设计二阶RC有源滤波器(低通);4、掌握有源滤波器的测试方法;5、测量有源滤波器的幅频特性。

1.2设计要求1.分别用压控电压源和无限增益多路反馈两种方法设计电路2.截止频率fc=2000HZ3.增益Av=2第二章系统设计方案选择2.1 总方案设计2.1.1方案框图图2.1.1 RC有源滤波总框图2.2子框图的作用1 RC网络的作用在电路中RC网络起着滤波的作用,滤掉不需要的信号,这样在对波形的选取上起着至关重要的作用,通常主要由电阻和电容组成。

2放大器的作用电路中运用了同相输入运放,其闭环增益 RVF=1+R4/R3同相放大器具有输入阻抗非常高,输出阻抗很低的特点,广泛用于前置放大级。

3反馈网络的作用将输出信号的一部分或全部通过牧电路印象输入端,称为反馈,其中电路称为反馈网络,反馈网络分为正、负反馈。

2.3 方案选择1.滤波器的选择一阶滤波器电路最简单,但带外传输系数衰减慢,一般在对带外衰减性要求不高的场合下选用。

无限增益多环反馈型滤波器的特性对参数变化比较敏感,在这点上它不如压控电压源型二阶滤波器。

2.级数的选择滤波器的级数主要根据对带外衰减特殊性的要求来确定。

每一阶低通或高通电路可获得-6dB每倍频程(-20dB每十倍频程)的衰减,每二阶低通或高通电路可获得-12dB每倍频程(-40dB每十倍频程)的衰减。

3.元器件的选择一般设计滤波器时都要给定截止频率fc (ωc)带增益Av,以及品质因数Q(二阶低通或高通一般为0.707)。

在设计时经常出现待确定其值的元件数目多于限制元件取值的参数之数目,因此有许多个元件均可满足给定的要求,这就需要设计者自行选定某些元件值。

一般从选定电容器入手,因为电容标称值的分档较少,电容难配,而电阻易配,可根据工作频率围按照表1.1.3初选电容值。

第三章系统组成及工作原理3.1有源二阶压控滤波器基础电路如图1所示图1 二阶有源低通滤波基础电路它由两节RC 滤波电路和同相比例放大电路组成,在集成运放输出到集成运放同相输入之间引入一个负反馈,在不同的频段,反馈的极性不相同,当信号频率f >>f0时(f0 为截止频率),电路的每级RC 电路的相移趋于-90º,两级RC 电路的移相到-180º,电路的输出电压与输入电压的相位相反,故此时通过电容c 引到集成运放同相端的反馈是负反馈,反馈信号将起着削弱输入信号的作用,使电压放大倍数减小,所以该反馈将使二阶有源低通滤波器的幅频特性高频端迅速衰减,只允许低频端信号通过。

其特点是输入阻抗高,输出阻抗低。

传输函数为: )()()(i o s V s V s A = 2F F)()-(31sCR sCR A A V V ++=令8 F 0V A A = 称为通带增益F31V A Q -=称为等效品质因数 RC 1c =ω 称为特征角频率则2c n 22c 0)(ωωω++=s Q s A s A -------------------------------------------3.(1)注 时,即当 3 03 F F <>-V V A A 滤波电路才能稳定工作。

3.2无限增益多路反馈有源滤波器基本形式图2图2在二阶压控电压源低通滤波电路中,由于输入信号加到集成运放的同相输入端,同时电容C1在电路参数不合适时会产生自激震荡。

为了避免这一点,Aup 取值应小于3.可以考虑将输入信号加到集成运放的反相输入端,采取和二阶压控电压源低通滤波电路相同的方式,引入多路反馈,构成反相输入的二阶低通滤波电路,这样既能提高滤波电路的性能,也能提高在f=f0附近的频率特性幅度。

由于所示电路中的运放可看成理想运放,即可认为其增益无穷大,所以该电路叫做无限增益多路反馈低通滤波电路。

3221321122121111111)(R R C C s R R R C s R R C C s A u +⎪⎪⎭⎫ ⎝⎛+++-=11)(2++=L L uo L u s Qs A s A 其中: c L s s ω= ,Q 为品质因数。

第四章 单元电路设计、参数计算、器件选择4.1二阶压控低通滤波器设计及参数计算所以根据上述推导公式可得:电路设计时应该使得143=R R , 根据市场能买到的器件,则可以取K R R 1034==,然后由中心频率计算公 试可以取C1=C2=0.1uF,可以得出电阻R1=596.58k,R4=1.06255k. 可以用2k 的电位器代替,基本达到设计要求了。

仿真电路图如下所示:图3 压控电压源二阶低通滤波4.2无限增益多路反馈有源滤波器的设计及参数计算通带的电压放大倍数: 13R R A uo -= 滤波器的截止角频率: c c f C C R R πω212132== 根据上述推导公式可得:电路设计时应该使得C1=C2,根据市场能买到的器件,则可以取C1= C3=0.1uF ,然后由中心频率计算公式,电压增益公式以及品质因素的公式计算参数,依据以上三个公式,取f O =2KHz ,Q=0.707,Aup=2.令R1=R2可得:R1=R2=0.22519K ,3R =0.45038K,而用R1 ,R2用2K 的电位器调节,使得其等于0.22519K 即可基本达到设计要求。

其仿真电路图如下图4 无限增益多路反馈低通滤波电路第五章电路组装及调试5.1压控电压源二阶低通滤波电路当输入的信号频率小于截止频率2000hz,其电路的增益为2.即其波形的峰峰值是两倍5.2无限增益多路负反馈二阶低通滤波器其仿真电路图如上:当输入的频率是1000HZ ,2000HZ, 30000JHZ 的交流电源是输出信号的波形图分别如下:输出与输入的倍数关系分别是2倍,1.4倍然后是截至了,趋于0.滤波器的滤波效果已经达到,截至频率是2000HZ。

小于2000HZ时,输出波放大2倍。

参考文献1.童诗白华成英编《模拟电子技术基础》[M] 高等教育 20082.彭介华编《电子技术实验与课程设计》[M] 高等教育 20033. 青木英彦(日)著周难生译《模拟电路设计与制作》[M] 科学 19984. 王港元编《电工电子实践指导》[M] 科学技术 20005.徐发强等. RC二阶有源滤波器的新型实验方法[J] 现代电子技术,2008,26. 许素贞.杜群羊.吴海青等编《模拟电子技术基础与应用实例》[M]..北京航空航天 20047.劳五一.劳佳. 编《模拟电子电路分析、设计与仿真》[M] 清华大学 2003 8.薛鹏骞等.频分复用有源滤波电路的EWB仿真设计【J】工程技术大学学报,2006,附录一芯片介绍:产品型号:LM324N1.概述与特点LM324是由四个独立的运算放大器组成的电路。

它设计在较宽的电压围单电源工作,但亦可在双电源条件下工作。

本电路在家用电器上和工业自动化及光、机、电一体化领域中有广泛的应用。

其特点如下:●具有宽的单电源或双电源工作电压围;单电源3V~30V,双电源±1.5V~±15V ●含相位校正回路, 外围元件少●消耗电流小:Icc=0.6mA (典型值, RL=∞)●输入失调电压低:±2mV (典型值)●电压输出围宽:0V ~ Vcc—1.5V●共模输入电压围宽:0V ~ Vcc—1.5V●封装形式:DIP14图5 LM324N实物图附录二元件清单附录三实物图。

相关文档
最新文档