公式法(二)
公式法分解因式(二)课件
例3 分解因式
1. 3ax2+6axy+3ay2 2. -x2-4y2+4xy 3. (x+y)x2+2xy(x+y)+y2(x+y)
例4 分解因式
1. a2+b2-2ab - 4(a-b)+4 2. 9(a+2b)2- 30a- 60b+25
3. x4+x2 +1
两人一组,合作编题。
编两道分解因式题,分别满足: 1. 要用到提公因式法和完全平
完全平方公式法分解因式
复习
1、因式分解定义 2、已学过的因式分解的方法
例1 判断下列多项式是不是完 全平方式,若是,请分解因式。
1. x2+12x+36 2. x2-4xy-4y2 3. (x+y)2-6(x+y)+9
例2 分解因式
1. 9a2b2+6ab+1 2. 4-12(x-y)+9(x-y)2 3. x6-10x3+25
方公式。 2. 要用到平方差公式和完全平
方公式。
看谁做得快
1. 20022-4×2002+4 2. 1.23452+0.76552 +
2.469 × 0.7655 3. 20062-4010×2006+20052
随堂测试:分解因式
(1)x2y2-6xy+9 (2)-a+2a2-a3 (3)a4-8a2b2+16b4 (4) (x2+5x)(x2+5_______ 2.我想进一步研究的问题是______
分解因式歌 首先提取公因式,然后想到用公式。 两项想到平方差,然后立方和与差。 三项考虑全平方,十字相乘不能忘。 添项拆项试一试,整体换元功能强。
公式法解一元二次方程2
-22
6.
用公式法解下列方程: 1、x2 +2x =5
2、 6t2 -5 =13t
例4
解方程: x2 3 2 3x
解: 原方程化为:x2 2 3x 3 0
a 1,b 2 3,c 3
b2 4ac
2
3
2
21
2
x1 x2 3
即
x=
用求根公式解一元二次方程的方法叫做 公式法.
求根公式 : X= (a≠0, b2-4ac≥0)
例.用公式法解方程2x2+5x-3=0
解:
a=2 b=5 c= -3
∴ b2-4ac=52-4×2×(-3)=49
用公式法解一元二次方程的一般步骤:
1、把方程化成一般形式. 并写出a, b,c的值.
25
10
4.代入:把有
28
5
x1
65;x2
2.
关数值代入公式
计算; 5.定根:写出 原方程的根.
求根公式 :x= -b b2 4ac 2a
(a≠0, b2-4ac≥0) 例2.用公式法解方程2x2+5x-3=0
解:a=2 b=5 c= -3 ∴ b2-4ac=52-4×2×(-3)=49
x -5 49 -5 7
思考题:
1、关于x的一元二次方程ax2+bx+c=0 (a≠0). 当a,b,c 满足什么条件时,方程 的两根为互为相反数?
2、m取什么值时,方程 x2+(2m+1)x+m2-4=0 有两个相等的实数解
想一想:
关于一元二次方程 ax2 bx c 0 a 0 ,当
a,b,c满足什么条件时,方程的两根互
解: a 2,b 7,c c
15.4.2公式法因式分解(二)
a 2ab b
2
2
我们把” 平方, “首” “尾” 两倍中间放.
2 2 首 2首尾 尾
判别下列各式是不是完全平方式
1x 2 xy y 是 2 2 2A 2 AB B 是 2 2 是 3甲 2 甲乙 乙 2 2 4 2 是
小结: (1)掌握常用公式
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2 a2-b2=(a+b)(a-b)
(2)灵活运用完全平方公式分解因式 (3) 因式分解的步骤: “一提” :有公因式,先提公因式; “二套”:提公因式后,括号内(套)用 公式法分解; “三查”:检查每个括号能否继续分解。
A.
2 2
2
D.
x y 6 xy 9 (3 xy )
2 2
2
例1 分解因式: (1) 16x2+24x+9;
(2) –x2+4xy–4y2.
分析:在(1)中,16x2=(4x)2,9=32, 24x=2· 4x · 3,所以16x2+24x+9是一个完全 平方式,即 16x2+24x+9=(4x)2+2· 4x· 3+32 a· a2 +2 · b + b2
小结:
完全平方式的特点:
分解有怎样的过程?
(1) “一提” :有公因式,先提公因式;
(2) “二套”:提公因式后,括号内(套) 用公式法分解。
(3) “三查”:检查每个括号能否继续分 解。
3 4 3 4 1. 计算(107 )2+(92 )2+(107 )×(92 )×2 7 7 7 7
公式法解一元二次方程 (2)
公式法
4.一元二次方程ax2+bx+c=0(a≠0)的求根公式是
b b2 4ac
_x_=_
2a_____,条件是 b2-4ac≥0 .
5.当x=___4___时,代数式x2-8x+12的值是-4.
6.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一 根为0,则m的值是__-_3__. 7.用公式法解关于x的方程:x2-2ax-b2+a2=0.
公式法
本课应掌握:
(1)求根公式的概念及其推导过程; (2)公式法的概念; (3)应用公式法解一元二次方程; (4)初步了解一元二次方程根的情况.
b b2 4ac 就得到方程的根. 2a
(2)这个式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
(4)由求根公式可知,一元二次方程最多有两个实数根.
公式法
例2.用公式法解下列方程:
(1)2x2-4x-1=0
(2)5x+2=3x2
(3)(x-2)(3x-5)=0
(4)4x2-3x+1=0
解:(1)a=2,b=-4,c=-1 b2-4ac=(-4)2-4×2×(-1)=24>0
x= (4) 24 4 2 6 2 6
22
4
2
∴x1= 2 6 2
,x2=
2 6 2
公式法
(2)将方程化为一般形式 3x2-5x-2=0 a=3,b=-5,c=-2
b2-4ac=(-5)2-4×3×(-2)=49>0
若b2-4ac≥0且4a2>0
则 b2 4ac
4a2
≥0
公式法
2122 一元二次方程的解法(二)公式法(解析版)
21.2.2一元二次方程的解法(二)公式法夯实双基,稳中求进公式法解一元二次方程知识点管理 归类探究 1 1.一元二次方程的求根公式一元二次方程()200ax bx c a ++=≠,当240b ac =->时,242b b ac x a-±-=.2.一元二次方程根的判别式一元二次方程根的判别式:24b ac =-.①当240b ac =->时,原方程有两个不等的实数根242b b acx a-±-=;②当240b ac =-=时,原方程有两个相等的实数根; ③240b ac =-<当时,原方程没有实数根. 3.用公式法解一元二次方程的步骤用公式法解关于x 的一元二次方程()200ax bx c a ++=≠的步骤:①变形:把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求△:求出24b ac -的值;④定根:240b ac -≥若,则利用公式242b b acx a-±-=求出原方程的解;若240b ac -<,则原方程无实根.题型一:一元二次方程的求根公式【例题1】(2021·全国九年级)关于x 的一元二次方程220(0,40)ax bx c a b ac ++=≠->的根是( )A B C D 【答案】D【详解】当20,40a b ac ≠->时,一元二次方程20ax bx c ++=的求根公式为x .故选D.变式训练【变式1-1】(2020·福建省福州延安中学九年级月考)x =是下列哪个一元二次方程的根( )A .23210x x +-=B .22410x x +-=C .2x 2x 30--+=D .23210x x --= 【答案】D【分析】根据一元二次方程的求根公式解答即可.【详解】解:对于一元二次方程()200ax bx c a ++=≠,方程的根为:2b x a-=.因为x =3a =,2b =-,1c =-,所以对应的一元二次方程是:23210x x --=.故选:D .【变式1-2】(2019·全国八年级课时练习)解下列方程,最适合用公式法求解的是( ) A .2(26)10x =+- B .2(14)x =+ C .2121x = D .2350x x =--【答案】D【分析】解一元二次方程的方法有:直接开平方法,公式法,配方法,因式分解法,根据每种方法的特点逐个判断即可.【详解】解:A 、用因式分解法好,故本选项错误; B 、用直接开平方法好,故本选项错误;C 、变形后用直接开平方法好,故本选项错误;D 、用公式法好,故本选项正确.故选D .【变式1-3】(2019·全国九年级课时练习)用公式法解方程3x 2+4=12x ,下列代入公式正确的是( )A .x 1、2B .x 1、2C .x 1、2D .x 1、2【答案】D【详解】∵3x 2+4=12x , ∵3x 2-12x+4=0, ∵a=3,b=-12,c=4,∵x =,故选D.题型二:公式法解一元二次方程【例题2】(2021·黑龙江齐齐哈尔市·九年级二模)解方程:()86x x +=-.【答案】14x =-24x =-【分析】将方程化为一般式,再利用公式法进行求解即可. 【详解】解:原方程可化为:2860x x ++=, ∵1,8,6a b c ===, ∵2841640∆=-⨯⨯=,∵4x ==-,∵14x =-24x =-【点睛】本题考查一元二次方程的解法,熟练掌握公式法解一元二次方程是解题的关键. 变式训练【变式2-1】(2021·黑龙江齐齐哈尔市·九年级其他模拟)解方程:2x 2=3x -1 【答案】x 1=1,x 2=12【分析】将二次方程整理为二次方程的一般式,根据二次方程根的判别式可知该方程有两个不相等的实数根,代入求根公式计算即可.【详解】解:原式整理为:2x 2-3x +1=0 ∵∵=b 2-4ac =10>, ∵方程有两个不相等的实数根,∵x =, 故1314x +=或2314x -=得x 1=1;x 2=12. 【点睛】本题主要考查一元二次方程的解法,可以根据根的判别式判断根的情况,熟知公式法解一元二次方程的方法是解题关键.【变式2-2】(2021·黑龙江齐齐哈尔市·九年级三模)解方程:()2121x x +=- 【答案】方程没有实数根【分析】首先去括号合并同类项,化为一般式,根据0<可知,方程没有实数根. 【详解】解:去括号化简得:2+20x ,224041280b ac =-=-⨯⨯=-<,∵方程没有实数根.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键. 【变式2-3】(2020·永善县墨翰中学九年级月考)解方程.2820x x --= 【详解】(1)∵1a =,8b =-,2c =- ∵2(8)4(2)720∆=--⨯-=> ∵方程有两个不相等的实数根.∵4x ===±∵14x =+24x =-判别式与方程的根的关系题型三:判别式求根的个数【例题3】(2021·江苏苏州市·苏州草桥中学九年级一模)定义运算:21m n mn mn =-+☆.例如:232323217=⨯-⨯+=☆,则方程40x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根【答案】B【分析】根据新定义运算法则以及即可求出答案. 【详解】解:由题意可知:4∵x =4x 2-4x +1=0, ∵∵=16-4×4×1=0, ∵有两个相等的实数根, 故选:B .【点睛】本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型. 变式训练【变式3-1】(2021·河南二模)关于x 的一元二次方程()2220x p x p -++=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .有两个实数根D .无实数根【答案】C2 1.一元二次方程根的判别式(1)∵>0∵方程有两个不相等的实数根; (2)∵=0∵方程有两个相等的实数根; (3)∵<0∵方程没有实数根.2. 根据一元二次方程方程根的情况可以确定△的取值范围.3. 通过配方法对△进行变形可以得到含参方程的解的情况特别说明:(1)一元二次方程根的情况与判别式∵的关系是可以双向互相推导的.(2)考查一元二次方程根的情况的时候,注意讨论参数的取值,要注意题目中是否是关于未知数的一元二次方程,因此一定不要忘记讨论二次项系数为0时的情况.【分析】先计算根的判别式得到∵=[﹣(p+2)]2﹣4×2p=(p﹣2)2,再利用非负数的性质得到∵≥0,然后可判断方程根的情况.【详解】解:∵=[﹣(p+2)]2﹣4×2p=(p﹣2)2,∵(p﹣2)2≥0,即∵≥0,∵方程有两个实数根.故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与∵=b2﹣4ac有如下关系:当∵>0时,方程有两个不相等的实数根;当∵=0时,方程有两个相等的实数根;当∵<0时,方程无实数根.x x-=-的根的情况,正确的是()【变式3-2】(2021·河南九年级二模)关于x的方程()53A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A【分析】根据一元二次方程根的判别式,即可得到方程根的情况.x x-=-,即x2-5x+3=0【详解】解:∵()53∵Δ=(-5)2−4×1×3=25-12=13>0,∵原方程有两个不相等的实数根;故选择:A【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式.【变式3-3】(2021·河南焦作市·九年级二模)已知关于x的一元二次方程2-+=,其中b,c在x bx c20数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根【答案】A【分析】由数轴可知:0b >,0c <,然后计算根的判别式的值即可得出答案. 【详解】由数轴可知:0b >,0c <; ∵280b c ∆=->; ∵有两个不相等的实数根 故选:A【点睛】本题主要考查的是一元二次方程的根的判别式,熟练掌握一元二次方程的根的判别式的方法、某点在数轴上的位置确定其正负是解题的关键,属于基础知识题. 题型四:根据根的个数求参数的取值范围【例题4】(2021·南京二模)若一元二次方程20x x a -+=有实数根,则a 的取值范围是____________. 【答案】14a ≤【分析】根据判别式大于等于0即可求解. 【详解】解:一元二次方程20x x a -+=有实数根 ∵2(1)40a ∆=--≥,解得14a ≤ 故答案为14a ≤. 【点睛】此题考查了一元二次方程的根与系数的关系,熟练掌握相关基础知识是解题的关键. 变式训练【变式4-1】(2021·山东济南市·八年级期末)若关于x 的一元二次方程220x x k -+=有两个实数根,则k 的取值范围是________. 【答案】1k ≤【分析】根据一元二次方程判别式的性质,列一元一次不等式并求解,即可得到答案. 【详解】∵关于x 的一元二次方程220x x k -+=有两个实数根 ∵()2240k ∆=--≥ ∵1k ≤故答案为:1k ≤.【点睛】本题考查了一元二次方程、一元一次不等式的知识;解题的关键是熟练掌握一元二次方程判别式的性质,从而完成求解.【变式4-2】(2021·济南期末)关于x 的一元二次方程2210-+=ax x 有实数根,则a 的取值范围是( ) A .1a ≤ B .1a < C .1a ≤且0a ≠ D .1a <且0a ≠【答案】C【分析】根据一元二次方程根的判别式可得440a -≥,然后求解即可. 【详解】解:∵关于x 的一元二次方程2210-+=ax x 有实数根, ∵24440b ac a ∆=-=-≥,且0a ≠, 解得:1a ≤且0a ≠; 故选C .【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键. 【变式4-3】(2020·四川巴中市·中考真题)关于x 的一元二次方程x 2+(2a ﹣3)x +a 2+1=0有两个实数根,则a 的最大整数解是( ) A .1 B .1- C .2- D .0【答案】D【分析】根据一元二次方程根的情况,用一元二次方程的判别式代入对应系数得到不等式计算即可. 【详解】解:∵关于x 的一元二次方程22(23)10x a x a +-++=有两个实数根,∵()22(23)410a a ∆=--+≥,解得512a ≤, 则a 的最大整数值是0.故选:D .【点睛】本题主要考查一元二次方程根的判别式,解题的关键是能够熟练地掌握和运用一元二次方程根的判别式.题型五:根的判别式综合应用【例题5】(2020·全国九年级课时练习)已知关于x 的一元二次方程mx 2﹣(4m +2)x +(3m +6)=0. (1)试讨论该方程的根的情况并说明理由;(2)无论m 为何值,该方程都有一个固定的实数根,试求出这个根.【答案】(1)关于x 的一元二次方程mx 2﹣(4m +2)x +(3m +6)=0有实数根;(2)无论m 为何值,该方程都有一个固定的实数根,这个根为3【分析】(1)求出判别式的值即可判断.(2)由无论m 为何值,该方程都有一个固定的实数根,又m (x 2-4x+3)-2x+6=0,推出x 2-4x+3=0,且-2x+6=0即可解决问题.【详解】解:(1)对于关于x 的一元二次方程mx 2﹣(4m+2)x+(3m+6)=0,∵∵=[﹣(4m+2)]2﹣4m (3m+6)=16m 2+16m+4﹣12m 2﹣24m =4m 2﹣8m+4=4(m ﹣1)2≥0, ∵关于x 的一元二次方程mx 2﹣(4m+2)x+(3m+6)=0有实数根. (2)∵无论m 为何值,该方程都有一个固定的实数根, 又∵m (x 2﹣4x+3)﹣2x+6=0, ∵x 2﹣4x+3=0,且﹣2x+6=0 解得x =3,∵无论m 为何值,该方程都有一个固定的实数根,这个根为3【点睛】本题考查根的判别式,一元二次方程的定义等知识,解题的关键是熟练掌握基本知识. 变式训练【变式5-1】(2020·全国九年级课时练习)已知关于x 的一元二次方程2(1)20x k x k +-+-=. (1)求证:方程总有两个实数根;(2)任意写出一个k 值代入方程,并求出此时方程的解. 【答案】(1)详见解析;(2)120,1x x ==-【分析】(1)先求出∵的值,再根据∵的意义即可得到结论; (2)任意取一个k 值代入,然后根据一元二次方程的解法解答即可. 【详解】解:(1)2(1)4(k 2)k ∆=---269k k =-+ ()230k =-≥∵0∆≥,∵方程总有两个实数根. (2)当2k =∵20x x +=解得120,1x x ==-【点睛】本题主要考查了一元二次方程根的判别式,正确理解公式是解答本题的关键. 【变式5-2】(2016·甘肃白银市·中考真题)已知关于x 的方程x 2+mx+m -2=0. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根. 【答案】(1)12;(2)证明见解析. 【详解】试题分析:一元二次方程ax 2+bx+c=0(a≠0)的根的判别式∵=b 2﹣4ac :当∵>0,方程有两个不相等的实数根;当∵=0,方程有两个相等的实数根;当∵<0,方程没有实数根. (1)直接把x=1代入方程x 2+mx+m ﹣2=0求出m 的值;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可. 解:(1)根据题意,将x=1代入方程x 2+mx+m ﹣2=0, 得:1+m+m ﹣2=0, 解得:m=12; (2)∵∵=m 2﹣4×1×(m ﹣2)=m 2﹣4m+8=(m ﹣2)2+4>0,∵不论m 取何实数,该方程都有两个不相等的实数根.【变式5-3】(2015·四川南充市·中考真题)已知关于x 的一元二次方程(x ﹣1)(x ﹣4)=p 2,p 为实数. (1)求证:方程有两个不相等的实数根;(2)p 为何值时,方程有整数解.(直接写出三个,不需说明理由) 【答案】(1)见解析;(2)P=0、2、-2. 【详解】解:(1)原方程可化为x 2﹣5x+4﹣p 2=0, ∵∵=(﹣5)2﹣4×(4﹣p 2)=4p 2+9>0,∵不论p 为任何实数,方程总有两个不相等的实数根;(2)原方程可化为x 2﹣5x+4﹣p 2=0,∵ ∵方程有整数解,为整数即可,∵p 可取0,2,﹣2时,方程有整数解.【点睛】本题考查了一元二次方程的根的情况,判别式∵的符号,把求未知系数的范围的问题转化为解不等式的问题是解题的关键.【真题1】(2011·广东深圳市·中考真题)如果关于x 的方程2x 2x m 0-+=(m 为常数)有两个相等实数根,那么m =______.【答案】1【详解】本题需先根据已知条件列出关于m 的等式,即可求出m 的值.解答:解:∵x 的方程x 2-2x+m=0(m 为常数)有两个相等实数根∵∵=b 2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案为1【真题2】(2021·山东泰安市·中考真题)已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k 的取值范围是( )A .14k >- B .14k < C .14k >-且0k ≠ D .14k <0k ≠ 【答案】C【分析】由一元二次方程定义得出二次项系数k ≠0;由方程有两个不相等的实数根,得出“∵>0”,解这两个不等式即可得到k 的取值范围.【详解】解:由题可得:()()2021420k k k k ≠⎧⎪⎨⎡⎤---->⎪⎣⎦⎩, 解得:14k >-且0k ≠; 故选:C .【点睛】本题考查了一元二次方程的定义和根的判别式,涉及到了解不等式等内容,解决本题的关键是能读懂题意并牢记一元二次方程的概念和根的判别式的内容,能正确求出不等式(组)的解集等,本题对学生的计算能力有一定的要求.链接中考【真题3】(2021·辽宁营口市·中考真题)已知关于x 的一元二次方程2210x x m +-+=有两个实数根,则实数m 的取值范围是_________.【答案】2m ≤【分析】利用一元二次方程根的判别式即可求解.【详解】解:∵一元二次方程2210x x m +-+=有两个实数根,∵()4410m ∆=--+≥,解得2m ≤,故答案为:2m ≤.【点睛】本题考查一元二次方程根的情况,掌握一元二次方程根的判别式是解题的关键.【真题3】(2021·四川雅安市·中考真题)若直角三角形的两边长分别是方程27120x x -+=的两根,则该直角三角形的面积是( )A .6B .12C .12或2D .6或2 【答案】D【分析】根据题意,先将方程27120x x -+=的两根求出,然后对两根分别作为直角三角形的直角边和斜边进行分情况讨论,最终求得该直角三角形的面积即可.【详解】解方程27120x x -+=得13x =,24x =当3和4分别为直角三角形的直角边时,面积为134=62⨯⨯;当4为斜边,3=13=22;则该直角三角形的面积是6或2, 故选:D . 【点睛】本题主要考查了解一元二次方程及直角三角形直角边斜边的确定、直角三角形的面积求解,熟练掌握解一元二次方程及勾股定理是解决本题的关键.【真题5】(2021·山东菏泽市·中考真题)关于x 的方程()()2212110k x k x -+++=有实数根,则k 的取值范围是( )A .14k >且1k ≠B .14k ≥且1k ≠C .14k >D .14k ≥ 【答案】D【分析】根据方程有实数根,利用根的判别式来求k 的取值范围即可.【详解】解:当方程为一元二次方程时,∵关于x 的方程()()2212110k x k x -+++=有实数根,∵()()22121410k k ∆=+-⨯⨯≥-,且 1k ≠, 解得,14k ≥且1k ≠, 当方程为一元一次方程时,k =1,方程有实根 综上,14k ≥故选:D .【点睛】本题考查了一元二次方程方程的根的判别式,注意一元二次方程方程中0a ≠,熟悉一元二次方程方程的根的判别式的相关性质是解题的关键.【拓展1】(2021·东莞外国语学校九年级一模)已知:关于x 的方程2x (k 2)x 2k 0-++=,(1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长a=1,两个边长b ,c 恰好是这个方程的两个根,求∵ABC 的周长.【答案】(1)证明见解析;(2)∵ABC 的周长为5.【分析】(1)根据一元二次方程根与判别式的关系即可得答案;(2)分a 为底边和a 为腰两种情况,当a 为底边时,b=c ,可得方程的判别式∵=0,可求出k 值,解方程可求出b 、c 的值;当a 为一腰时,则方程有一根为1,代入可求出k 值,解方程可求出b 、c 的值,根据三角形的三边关系判断是否构成三角形,进而可求出周长.【详解】(1)∵判别式∵=[-(k+2)]²-4×2k=k²-4k+4=(k -2)²≥0,∵无论k 取任何实数值,方程总有实数根.满分冲刺(2)当a=1为底边时,则b=c,∵∵=(k-2)²=0,解得:k=2,∵方程为x2-4x+4=0,解得:x1=x2=2,即b=c=2,∵1、2、2可以构成三角形,∵∵ABC的周长为:1+2+2=5.当a=1为一腰时,则方程有一个根为1,∵1-(k+2)+2k=0,解得:k=1,∵方程为x2-3x+2=0,解得:x1=1,x2=2,∵1+1=2,∵1、1、2不能构成三角形,综上所述:∵ABC的周长为5.【点睛】本题考查一元二次方程根的判别式及三角形的三边关系.一元二次方程根的情况与判别式∵的关系:当∵>0时,方程有两个不相等的实数根;当∵=0时,方程有两个相等的实数根;当∵<0,方程没有实数根;三角形任意两边之和大于第三边,任意两边之差小于第三边;熟练掌握根与判别式的关系是解题关键.。
一元二次方程的解法(公式法2)全面版
议一议
方程根的情况:
当 b2 4ac0时,方程有两个不相等的实数根; 当 b2 4ac0时,方程有两个相等的实数根; 当 b24ac0时,方程没有实数根.
例1.不解方程,判别方程 5 x2 1 x0
的根的情况______________
解:5x2 x50
方程要先化 为一般形式
例5.一元二次方程 m 1 x 2 2 m m x 2 0
有两个不等的实数根,则m的取值 范围是______________
变
解 2 m 2 4 m 1 m 2
4 m 24 m 24 m 8
4m8 0 m2
1、已知a,b,c是△ ABC的三边,且 关于x的方程x2-2cx+a2+b2=0有两 个相等的实数根. 求证:这个三角形是直角三角形.
2:已知关于x的方程:
2x2-(4k+1)x+2k2-1=0
想一想,当k取什么值时: (1)方程有两个不相等的实数根, (2)方程有两个相等的实数根, (3)方程没有实数根,
C.没有实数根
b24ac 0
D.根的情况无法
例3.已知关于x的方程
x22 m2 x m 40
证明:不论m为何值,这个方程总有两个 不相等的实数根
解 : b 2 4 a 4 m c 2 4 2 m 4
4m28m16
4m 2 2 m 1 12
4.2一元二次方程的解法
用公式法解一元二次方程的步骤:
1、把方程化成一般形式,并写出a,b,c的值. 2、求出b2-4ac的值. 3、代入求根公式 :
xbb24ac(a0,b24ac0) 2a
4、写出方程的解x1与x2.
22.2.2公式法解一元二次方程(二)
b 2 b 2 4ac (x ) 2a 4a 2 当 0 时,对于 ax2 bx c 0(a 0)
b b 4ac x , 2a
2
一元二次方程的 求根公式
用求根公式解一元二次方程的方法叫做公式法
由求根公式可知,一元二次方程的根不可能
多于两个。
例题讲解
b b 2 4ac (4) 44 x 2 11, 2a 2 1
即
x1 2 11, x2 2 11
(2)2x 2 2 x 1 0
2
(2) a 2, b 2
2, c 1
2 ) 4 2 1 0
2
∴ b2 4ac (2
∴方程有两个相等的实根
b 2 2 2 x1 x2 2a 2 2 2
(3)5x 3x x 1
2
(3)原方程可化为 ∴
5x 2 4 x 1 0
a 5, b 4, c 1
∴ b2 4ac (4) 2 4 5 (1) 36 >0 ∴方程有两个不等的实根
b b 4ac (4) 36 4 6 x , 2a 25 10
2
1 即 x1 1, x2 5
(4) x 17 8x
2
(4)原方程可化为
x 8x 17 0
2
∴ a 1, b 8, c 17
∴ b
2
4ac (8) 4 117 4 <0
2
有两个不等的实数根. (2)当 0 时,方程 ax2 (3)当
bx c 0(a 0)
有两个相等的实数根.
0 时,方程 ax2 bx c 0(a 0)
公式法 第二课时-数学七年级下册同步教学课件(冀教版)
x
1 2
2
C.x 2-2x+4=(x-2)2
D.4x 2-y 2=(4x+y )(4x-y )
8 分解因式:mn 2-2mn+m=_m___(_n_-__1_)_2__. 9 因式分解:-2x 2y+16xy-32y=-__2__y_(_x_-__4__)_2. 10 若一个长方形的面积是x 3+2x 2+x (x>0),且一
1 2
2
=
3m
1 2
2
.
总结
因式分解时,要注意综合运用所学的分解方法, 常用的分析思路是: ① 提公因式法; ② 公式法.有 时,需要反复利用公式法因式分解,直至每一个因式 都不能分解为止.注意综合利用乘法公式,既用到平 方差公式又用到完全平方公式.
1 把下列各式分解因式:
(1)6xy-x 2-9y 2;(2)-m 3+2m 2-m; (3)3x 2-6x+3; (4)4xy 2+4x 2y+y 3. 解:(1)6xy-x 2-9y 2=-(x 2-6xy+9y 2)=-(x-3y )2. (2)-m 3+2m 2-m=-m (m 2-2m+1)=-m (m-1)2. (3)3x 2-6x+3=3(x 2-2x+1)=3(x-1)2. (4)4xy 2+4x 2y+y 3=y (4x 2+4xy+y 2)=y (2x+y )2.
5 若x 2-14x+m 2是完全平方式,则m=__±__7___. 6 若关于x 的二次三项式x 2+ax+ 1 是完全平方式,则a 的
4 值是__±__1____.
知识点 2 用完全平方公式分解因式
我们把多项式a 2+2ab+b 2及a 2-2ab+b 2叫做完
全平方式.在运用完全平方公式进行因式分解时,关 键是判断这个多项式是不是一个完全平方式. 例如:
九上数用公式法求解一元二次方程(2
解得; x1 4, x2 24 (舍)
答:路宽为4米
随堂即练
如图1,在宽为20米,长为32米的矩形地面上修筑同样 宽的道路(图中阴影部分),余下的部分种上草坪.要使 草坪的面积为540平方米,求道 路的宽.
解:设道路宽为x米,由平移 得到图2,则宽为(20-x)米, 长为(32-x)米,列方程,得
你能帮小亮求出图中的x吗? 解:依题意可得:
4 x2 1 1612
42
化简得: x2 96
Hale Waihona Puke 解得:x146
, x2
4
6
(舍)
答:半径为 4 6 米
你还有其他的设计方案吗?与同伴交流。
同学们会有很多设计方案
对于本课花园设计问题,小颖的设计方案如图所示, 你能帮她求出图中的x吗?
解:依题意可得:(16 x)(12 x) 1 1612
小明的设计方案如图所示,其中花园四 周小路的宽度都相等。
为了求出小路的 宽度?如何设未知数? 怎样列方程?
解:设四周小路宽为x,依题意得:
(16-2x)(12-2x)= 1 1216 2
化简得:x2 14x 24 0
解得:x1 2, x2 12(舍)
答:四周小路的宽为2米。
小亮的设计方案如图所示,其中花园每个角上的 扇形都相同。
(20-x)(32-x)=540,
整理,得 x2-52x+100=0,
解得 x1=50(舍去),x2=2. 答:道路宽为2米.
课堂总结
几何图形
用常见几何图形面积建立 等量关系
利用一元 二次方程 解决面积 问题
花坛面积问题
类型 相框宽度问题
14.3《因式分解 公式法》(二)
a 2ab b a b 2 2 2 a 2ab b a b
2 2 2
完全平方式
熟知公式特征! 用公式法正确分解因式关键是什么? 完全平方式 a2 ±2a b + b2 = ( a ± b ) 2
(一数) 2 ± 2(一数)(另一数)+(另一数)2=(一数±另一数)2
- 版权所有-
3.已知x2+4x+y2-2y+5=0,求 x-y 的值。
解:由x +4x+y -2y+5=(x +4x+4)+(y -2y+1) =(x+2) +(y-1) =0得 x+2=0,y-1=0 ∴x=-2,y=1
-y -1 2 2 2 2 2 2
1 ∴x =(-2) = 2
- 版权所有-
分解因式:
1. x 8x 16
2
=-(x+4)
2
2. 4 x 2 x y 2 4 x x y =(3x+y)2
3.
ax 2a x a
2 2
3
=a(x+a)
2
- 版权所有-
把下列各式因式分解
解:原式=ax (x2-1)
=ax (x+1)(x-1)
(有公因式,先提公因式。) (因式分解要彻底。) - 版权所有-
课前复习:
2.除了平方差公式外,还学过了哪些公式?
(a b) a 2ab b
2
2
2
(a b) a 2ab b
2
2
2
- 版权所有-
-(x-y)
2
2
公式法因式分解2(完全平方公式)
用完全平方公式分解因式的关键是:在判断一个多项式 是不是一个完全平方式。 做一做:下列多项式中,哪些是完全平方式?
(1) x2 6x 9 (2) (3) m2n2 4 4mn
x2 x1
4
(4)4x2 2xy y2
已知a+b=7,a2+b2=29,求 (a-b)2 值。
已知a、b、c是三角形的三边,请你判断 a2-b2+c2-2bc的值的正负
解: a2-b2+c2-2bc=a2-(b+c)2
=(a-b-c)(a+b+c) a-b-c<0,a+b+c﹥0 ∴ (a-b-c)(a+b+c) <0
将4x2+1再加上一项,使它成为完全 平方式,你有几种方法?
完全平方公式: 完全平方公式
(a+b)2 = a²+2ab+ b² 反过来就是:
(a-b)2 = a²-2ab+ b²
两个数的平方 和,加上(或减
去)这两数的积
整式乘法
的2倍,等于这
a²+2ab+ b²= (a+b)2 两数和(或差)的 平方。
a²-2ab+ b²= (a-b)2
因式分解
我们把多项式a²+2ab+b²和 a²-2ab+b²叫做完全平方式。
(4)(2x+y) 2-6 (2x+y)+9
注意啦!首先要考虑能不能提取公因式!
灵活地把(2x+y)看成一个整体,这需要你 的智慧哟。
(3)ax2 2a2 x a3 (4) 3x2 6xy 3y2
(5) (a+b)4-10(a+b)2+25
Байду номын сангаас3.用简便方法运算。
北师大版八年级下册数学第四章 因式分解第3节《公式法(2)》参考教案
4.3.2 公式法(二)●教学目标(一)教学知识点1.使学生会用完全平方公式分解因式.2.使学生学习多步骤,多方法的分解因式.(二)能力训练要求在导出完全平方公式及对其特点进行辨析的过程中,培养学生观察、归纳和逆向思维的能力.(三)情感与价值观要求通过综合运用提公因式法、完全平方公式,分解因式,进一步培养学生的观察和联想能力.●教学重点让学生掌握多步骤、多方法分解因式方法.●教学难点让学生学会观察多项式的特点,恰当地安排步骤,恰当地选用不同方法分解因式.●教学方法观察—发现—运用法●教具准备投影片两张第一张(记作§4.3.2 A)第二张(记作§4.3.2 B)●教学过程Ⅰ.创设问题情境,引入新课[师]我们知道,因式分解是整式乘法的反过程,倒用乘法公式,我们找到了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?在前面我们不仅学习了平方差公式(a+b)(a-b)=a2-b2而且还学习了完全平方公式(a±b)2=a2±2ab+b2本节课,我们就要学习用完全平方公式分解因式.Ⅱ.新课1.推导用完全平方公式分解因式的公式以及公式的特点.[师]由因式分解和整式乘法的关系,大家能否猜想出用完全平方公式分解因式的公式呢?[生]可以.将完全平方公式倒写:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.便得到用完全平方公式分解因式的公式.[师]很好.那么什么样的多项式才可以用这个公式分解因式呢?请大家互相交流,找出这个多项式的特点.[生]从上面的式子来看,两个等式的左边都是三项,其中两项符号为“+”,是一个整式的平方,还有一项符号可“+”可“-”,它是那两项乘积的两倍.凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解.[师]左边的特点有(1)多项式是三项式;(2)其中有两项同号,且此两项能写成两数或两式的平方和的形式;(3)另一项是这两数或两式乘积的2倍.右边的特点:这两数或两式和(差)的平方.用语言叙述为:两个数的平方和,加上(或减去)这两数的乘积的2倍,等于这两个数的和(或差)的平方.形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.投影(§4.3.2 A)项;其中有两项同号且能写成两个数或式的平方;另一项是这两数或式乘积的2倍.[生](1)是.(2)不是;因为4x不是x与2y乘积的2倍;(3)是;(4)不是.ab不是a与b乘积的2倍.(5)不是,x2与-9的符号不统一.(6)是.2.例题讲解[例1]把下列完全平方式分解因式:(1)x2+14x+49;(2)(m+n)2-6(m +n)+9.[师]分析:大家先把多项式化成符合完全平方公式特点的形式,然后再根据公式分解因式.公式中的a,b可以是单项式,也可以是多项式.解:(1)x2+14x+49=x2+2×7x+72=(x+7)2(2)(m +n)2-6(m +n)+9=(m +n)2-2·(m +n)×3+32=[(m +n)-3]2=(m +n-3)2.[例2]把下列各式分解因式:(1)3ax2+6axy+3ay2;(2)-x2-4y2+4xy.[师]分析:对一个三项式,如果发现它不能直接用完全平方公式分解时,要仔细观察它是否有公因式,若有公因式应先提取公因式,再考虑用完全平方公式分解因式.如果三项中有两项能写成两数或式的平方,但符号不是“+”号时,可以先提取“-”号,然后再用完全平方公式分解因式.解:(1)3ax 2+6axy+3ay 2=3a (x 2+2xy+y 2)=3a (x+y )2(2)-x 2-4y 2+4xy=-(x 2-4xy+4y 2)=-[x 2-2·x·2y+(2y )2]=-(x -2y )2Ⅲ.课堂练习a.随堂练习1.解:(1)是完全平方式x 2-x+41=x 2-2·x·21+(21)2=(x -21)2 (2)不是完全平方式,因为3ab 不符合要求.(3)是完全平方式41m 2+3 m n+9n 2 =(21 m )2+2×21 m×3n+(3n )2 =(21 m +3n )2 (4)不是完全平方式2.解:(1)x 2-12xy+36y 2=x 2-2·x·6y+(6y )2=(x -6y )2;(2)16a 4+24a 2b 2+9b 4=(4a 2)2+2·4a 2·3b 2+(3b 2)2=(4a2+3b2)2(3)-2xy-x2-y2=-(x2+2xy+y2)=-(x+y)2;(4)4-12(x-y)+9(x-y)2=22-2×2×3(x-y)+[3(x-y)]2 =[2-3(x-y)]2=(2-3x+3y)2b.补充练习投影片(§4.3.2 B)这节课我们学习了用完全平方公式分解因式.它与平方差公式不同之处是:(1)要求多项式有三项.(2)其中两项同号,且都可以写成某数或式的平方,另一项则是这两数或式的乘积的2倍,符号可正可负.同时,我们还学习了若一个多项式有公因式时,应先提取公因式,再用公式分解因式.Ⅴ.课后作业习题4.51.解:(1)x 2y 2-2xy+1=(xy -1)2;(2)9-12t+4t 2=(3-2t )2;(3)y 2+y+41=(y+21)2; (4)25m 2-80 m +64=(5 m -8)2;(5)42x +xy+y 2=(2x +y )2; (6)a 2b 2-4ab+4=(ab -2)22.解:(1)(x+y )2+6(x+y )+9=[(x+y )+3]2=(x+y+3)2;(2)a 2-2a (b+c )+(b+c )2=[a -(b+c )]2=(a -b -c )2;(3)4xy 2-4x 2y -y 3=y (4xy -4x 2-y 2)=-y(4x2-4xy+y2)=-y(2x-y)2;(4)-a+2a2-a3=-(a-2a2+a3)=-a(1-2a+a2)=-a(1-a)2.3.解:设两个奇数分别为x、x-2,得x2-(x-2)2=[x+(x-2)][x-(x-2)]=(x+x-2)(x-x+2)=2(2x-2)=4(x-1)因为x为奇数,所以x-1为偶数,因此4(x-1)能被8整除.Ⅵ.活动与探究写出一个三项式,再把它分解因式(要求三项式含有字母a和b,分数、次数不限,并能先用提公因式法,再用公式法分解因式.分析:本题属于答案不固定的开放性试题,所构造的多项式同时具备条件:①含字母a和b;②三项式;③可提公因式后,再用公式法分解.参考答案:4a3b-4a2b2+ab3=ab(4a2-4ab+b2)=ab(2a-b)2●板书设计参考练习把下列各式分解因式1.-4xy-4x2-y2;2.3ab2+6a2b+3a3;3.(s+t)2-10(s+t)+25;4.0.25a2b2-abc+c2;5.x2y-6xy+9y;6.2x3y2-16x2y+32x;7.16x5+8x3y2+xy4参考答案:解:1.-4xy-4x2-y2=-(4x2+4xy+y2)=-(2x+y)2;2.3ab2+6a2b+3a3=3a(b2+2ab+a2)=3a(a+b)2;3.(s+t)2-10(s+t)+25=[(s+t)-5]2=(s+t-5)2;4.0.25a2b2-abc+c2=(0.5ab-c)2;5.x2y-6xy+9y=y(x2-6x+9)=y(x-3)2;6.2x3y2-16x2y+32x=2x(x2y2-8xy+16)=2x(xy-4)2;7.16x5+8x3y2+xy4=x(16x4+8x2y2+y4)=x(4x2+y2)2.。
运用公式法(2)
(a – b)2 =
x + 2xy + y = 的式子称为完
2
2
④
(x+y)2 + 6(x+y) + 9
⑤ 4xy2 – 4x2y – y3
⑥
- a + 2a2 – a3
3.阅读课本 P57 页回答:形如 全平方式
2、把下列各式分解因式 4.下列多项式哪些是完全平方式?若是写成 a +2ab + b 的形式。
2 2
二、小组学习:(依靠集体智慧解决疑难问题)
1、若 x2 + kx + 25 是完全平方式,则 k = 你认为呢? 2 若 x2 – 2(m + 3)x + 25 是完全平方式,则 k = 。小明说:k = 10,小英说:k = -10
三、展示反馈 (认真做吧,你一定行!)
1、把下列各式分解因式 ① 9 - 12t + 4t2 ② x2y2 – 2xy + 1 ③ - 2xy – x2 –y2
1 ○
2 2
1 ○
m4 – 1
2 ○
5x2 – 20
3 ○
Hale Waihona Puke 12xy2 – 12x2y – 3y3
x2 + 6x + 9
2 ○
x2 + x +
1 4
3 ○
9a2b2 – 3ab + 1 教 学 反 思
5、自学例 3,并仿照例 3 分解因式
1 ○ x2 – 12xy + 36y2 2 ○ 16a4 + 24a2b2 +9b4 3 ○ 4 – 12(x-y) + 9(x-y)2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
(a+b) .
2 2
形如a +2ab+b 与a –2ab+b 的式子称为 完全平方式.
把下列各式因式分解:
2
(1)x 2–4x+4 (2)9a +6ab+b
2 2
(3)m 2 – 2 m + 1 9 3 2 (4)(m+n) +8(m+n)+16
注意:完全平方公式中a与b不仅可以表示 单项式,也可以表示多项式
2
2ቤተ መጻሕፍቲ ባይዱ2
2
(4)4–12(x–y)+9(x–y)2 解:原式=[2–3(x–y)] =[2–3x+3y]
2
解:原式= –(x 2+2xy+y 2)
=–(x+y) 2
2
(1)m2 -12mn+n2 .
从今天的课程中,你学到了哪些知识? 掌握了哪些方法? 你认为分解因式中的平方差公式以及完全平方公式与乘法公式有什么关系? 由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以 用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法. 注意:(1)有公因式则先提取公因式; (2)整式乘法的完全平方公式与因式分解的完全平方公式是互逆关系; (3)完全平方公式中的a与b既可以是单项式,又可以是多项式.
填空: (1)(a+b)(a–b) = a –b (2)(a+b) =
2
2 2
; ;
2
a +2ab+b
2 2
2
2
(3)(a–b) = a – 2ab+b
. ;
;
根据上面式子填空: 2 2 (1)a –b = (a+b)(a–b) (2)a –2ab+b =
2 2
2
(a–b)
2
2
(3)a +2ab+b =
课本第54页习题2.5第1、2、3题
将下列各式因式分解:
(1)3ax
2
2 +6axy+3ay
2–4y 2+4xy (2)–x 注意:提公因式法是分解因式首先应当考虑的方法
1、把下列各式因式分解: (1)m 2–12mn+36n
2
(2)16a 4 +24a 2 b 2 +9b 4
解:原式=(m–6n)
(3)–2xy–x 2–y
2
解:原式=(4a +3b )