溶剂效应介绍 PPT

合集下载

高中化学竞赛 中级无机化学 质子理论 溶剂体系理论及其拉平效应和区分效应(共24张PPT)

高中化学竞赛 中级无机化学 质子理论 溶剂体系理论及其拉平效应和区分效应(共24张PPT)

(酸)
2)3HCO3- +3H2O → 3H2O + 3CO2 + 3OH- (碱) 3)3H3O+ + 3OH- → 6H2O
1)+2)+3) :
Fe3+ + 3HCO3- → Fe(OH)3↓ + 3CO2 ↑
NH3 中
CH3COOH + NH3 → CH3COO- + NH4+ (酸)
KH + NH3 → K+ + H2↑ + NH2-
2. 溶剂的拉平效应和区分效应
溶剂不能辨别不同酸碱相对强度的效应叫做溶剂的拉平 效应。
溶剂能辨别不同酸碱相对强度的效应叫做溶剂的区分效 应。
在水中为强酸的物质:如HClO4,HBr,HCl,HI 在水中不能存在 不能区分酸强度:把质子转移给H2O,形成H3O+
Ka > 1
pKa < 0
——强度被水“拉平”到水合质子H3O+的强度
NH4+ + NH2-
与水相似
K = 10-33
中和反应:
水:KOH + H3OI → KI + 2H2O
NH3: KNH2 + NH4I → KI + 2NH3
两性反应:
过量OH-
水:Zn2+ + 2OH- → Zn(OH)2 → Zn(OH)42过量NH2-
NH3: Zn2+ + 2NH2- → Zn(NH2)2 → Zn(NH2)42-
① 纯H2SO4
HAc、HNO3也显碱性 CH3CO2H + H2SO4 → CH3CO2H2+ + HSO4HNO3 + 2H2SO4 → NO2+ + H3O+ + 2HSO4-

高等有机第二章-溶剂化效应

高等有机第二章-溶剂化效应
+ - + +- + -
C、偶极-诱导偶极力 具有永久偶极矩的分子或离子能诱导邻近分子,产 生诱导偶极矩,分子在被诱导的瞬间总是处于诱导 偶极的方向,两者之间有吸引力。非极性分子可极 化率越大,诱导偶极矩也越大。这对偶极分子和离 子在非极性溶剂中的体系最重要。
D、瞬间偶极-诱导偶极力(色散力〕 非极性分子由于电子不断运动,会瞬间产生小的偶极 矩,它使邻近分子产生脉冲性极化,从而产生分子间 的相互吸引力,这称为色散力。
环烷-1,3-二酮与反式烯醇结构存在平衡,由于不存在 分子内氢键,溶剂极性对平衡的影响与前面顺式烯醇 时相反。如,5,5-二甲基-1,3-环己二酮在水中95%烯醇 化,在环己烷稀溶液中烯醇化含量<2%.
O
O
HO
O
四、溶剂对均相化学反应速度的影响
溶剂 V
(C2H5)3N + C2H5I 己烷 乙醚 1 4
2、溶剂和溶质分子间的相互作用 第一类包括定向诱导力和色散力,这些力是非特异性 的,不可能完全饱和。 第二类包括氢键力和电荷转移力,或称电子对授受力。 这类作用有方向并且可以饱和生成化学计量的分子化 合物。
(1)定向诱导和色散力 A、离子-偶极力 中性偶极分子具有永久偶极矩。当偶极分子处于离子 产生的电场中时,将进行定向排列,带有和离子电荷 相反电荷的一端指向离子,这种作用称离子-偶极力, 这种作用对离子化合物在极性溶剂种最重要。作用能 可用下式表述:E= - Z u Cos a/r2 Z 离子电荷。 u永久偶极矩, r 离子到偶极分子中心距 离, a= 0 o 时,偶极分子和离子在一条直线上。 B、偶极-偶极力 两个偶极分子在一定距离内相互吸引时,可按下列二 种方式排列。 -
例:
1. (CH3)3CCl 溶剂 K相对 C2H5OH 1 CH3OH 9

讲课--溶剂效应

讲课--溶剂效应

溶剂化过程可被定义为在常温下,溶质分子从 真空的一个固定位置移至溶剂中的一个固定位置 的过程。更精微地说,溶剂效应是溶质和溶剂分子 相互吸引的结果,即溶剂分子通过它们和溶质的相 互作用,累积在溶质周围的过程。这个相互作用的 性质和溶质与溶剂的本质有关。描述溶剂效应的 一个关键参数就是溶剂化自由能ΔGsol(solvation free energy),它是将溶质分子从真空移至溶剂中自 由能的变化值。 一般来说,溶剂效应的计算由三部分组成:静 电势、范德华力和孔洞能。
静电势就是讨论溶质分子与溶剂分子静电极化效 应; 范德华力包括溶质分子与溶剂分子间的吸引力 (dispersion)和排斥力(repulsion); 孔洞能是溶质分子要在溶剂分子中形成孔洞所需 要的自由能。 在对溶液体系的研究中,还有一个重要的参数就是 径向分布函数RDF(r),它用来监视溶液中溶质周围 环境结构性质的变化,它的物理意义是对于任意的 分布,在与α原子的距离为r处找到一个β原子的几 率。
其中自洽反应场方法是目前使用较多的考虑溶剂效应的 方法,即将静态理论方法和连续介质溶剂模型结合起来研究 溶液体系。Poisson-Boltzmann方法就是利用求解PB方程来 计算溶质与溶剂分子间的静电极化作用。AMSOL方法采用 Bom模型,进行分子轨道方法计算,来研究溶液体系。超分子 方法认为溶剂分子可能通过氢键或电荷转移作用与溶质分 子紧密结合在一起,然后将这些额外原子包含在一个更大的 但仍是孤立的体系中进行处理。QM/MM方法是把研究体系 设为几个区域,在中心区域进行高精度的量子化学计算(QM), 在周边区域进行半经验或分子力学计算(MM),该方法也是处 理溶液体系的一个较好的方法,分子动力学或Monte Carlo 模拟溶液体系,最适用于研究溶质分子周围溶剂分子的结构 性质,而对溶剂化自由能的计算则没有自洽反应场方法计算 得到的结果精确。

溶剂效应 Solvent Effect

溶剂效应 Solvent Effect
11
2 The born model
Based on classical electrostatic theory, the total electrostatic energy in dielectric media is defined as
G
1
8
E(r)
D(r)d 3r
D(r) E(r)
Still and co-workers (JACS, 1990), combined the two terms
above into one term and re-write the eqation as
Gelec
=
1 2
1
1
N i1
N j 1
qiq j f (rij , ai , a j )
Solvent Effect 溶剂效应
1
2
3
1 Introduction
4
Water Model Parameters
• SPC, SPC/E (Berendsen)
• TIP3P, TIP4P, TIP5P (Jorgensen)
PPCቤተ መጻሕፍቲ ባይዱ
• TIP4P/FQ, POL5 (Berne)
SPC, SPC/E, TIP3P
14
15
Traditionally, the ionic radii are determined from crystal structures. But adding 0.1 Å to the radii of anions(阴离子) and 0.85 Å to the radii of cations (阳离子)gives much better agreement with experimental data. [Rashin and Honig 1985] Increasing the radii of cations by an empirical factor of 7%.

第三章 溶剂效应

第三章 溶剂效应
-A
+A
-A
B+
A B
A- + B+
A + B+
A B+
在非极性溶剂中有利 在极性溶剂中有利 在极性溶剂中稍有利
B+
B+
+
(4) A+
( 5) A
A B+
在非极性溶剂中稍有利
对溶剂极性不敏感
+ B
A B
A B
反应物
过渡态
产物
如消去反应和亲核取代反应竞争时,溶剂起重要作用。
一般,溶剂的极性大时(如水),容易发生取代反应;
C
C X
同样,由于过渡态的电荷分散程度不同,决定了SN1反 应在极性大的溶剂中进行,E1反应则易于在极性较小 的溶剂中进行。
• 如:三甲基硫正离子的碱性水解速度
(CH3)3S+
+
100oC OH
(CH3)2S + CH3OH
vR H2O 1.0 CH3COOH 19600 • (CH3)3CCl的溶剂分解速度 (CH3)3CCl
5、溶剂化效应的类型:①静电溶剂化效应
②特殊溶剂化效应
6.静电溶剂化效应(靠溶剂的静电作用力) 溶剂化静电理论:用溶剂极性确定相对的溶 剂化能力及其对反应的影响。
(1)溶剂极性对溶质离子化过程的影响;
溶质(R-L)在溶剂S中离子化过程:
R L S [R+L-]
紧密离子对 (A)
[R+ L- ]s
CH 3I + NaCN
CH 3CN + NaI
思考题1.
溶剂: H2O
THF
V = 1.0 V = 5 x 105

第六章 溶剂效应

第六章  溶剂效应

O
NMe2 H O
罗丹明 B
O
C
O
DMSO、DMF、吡啶等 非质子溶剂中无色
水、甲醇、冰乙酸等 (80-100%) 质子性溶剂中红色
16
质子溶剂能和偶极离子式中的羧基负离子形成氢键而使其稳定。
溶剂效应对均相化学反应速率的影响(1)
[AB]≠ Ⅰ ΔGI ≠ G A+B A+B (a) C+D (b) C+D Ⅱ ΔGII≠
Cl-<Br-<I
负离子在质子型溶剂和非质子极性溶剂中的亲核性能刚好相反:Cl->Br->I6
各种溶剂与溶质间的相互作用:非质子溶剂(2)
非质子非极性溶剂对于离子型化合物的溶解力很小; 非质子弱极性溶剂中,正离子和负离子容易发生离子缔合作用而形成离子 对(或缔合离子),只有很少溶剂化的“独立”正离子或“独立”负离子;

溶剂的影响因素包括:介电常数、离子强度、溶剂化能力、酸碱性等。
3
有机溶剂的Parker分类法:质子溶剂和非质子溶剂
非质子非极性溶剂 脂肪烃、芳烃、烷基 卤、叔胺、二硫化碳 ε<15,μ<8.34× 10-30 C· ET(30) m, 约30~40 非氢键给体
非质子弱极性给体 醚类、羧酸酯、吡啶 ε<15,μ <8.34×10-30 C· m,非氢键给体

G GA,I GA,II -ΔGII

ΔGA ΔGB
-GI GB,I GB,II
A
B 平衡反应溶剂化自由焓图
-ΔGII + ΔGA= ΔGB - ΔGI ΔGI -ΔGII = ΔΔG = ΔGB - ΔGA = ΔΔGS 设ΔGB > ΔGA 则IΔGIII >I ΔGI I 反应在溶剂Ⅱ中的平衡位置比在溶剂1中的平衡位置更偏向B方( -ΔG=RTlnK) 15

液相色谱溶剂效应

液相色谱溶剂效应

《中国药典》2010版瑞格列奈左旋异构体液相方法 色谱柱:Chiral AGPTM手性柱,100*4.0mm,5um 进样量:20uL 波长:240nm 流动相A:pH7.0磷酸盐缓冲液 流动相B:乙腈 梯度洗脱:
样品溶剂: 纯甲醇
样品溶剂: 甲醇:磷酸盐缓冲液 =60:40
溶剂效应
什么是溶剂效应?
样品溶液的溶剂强度强于流动相溶剂强度时,可能会造成的峰展宽、峰分叉现象。
溶剂效应的现象
色谱图上较早洗脱的峰前沿或开叉,与此同时较晚洗脱的峰则较为正常。
可能发生溶剂Leabharlann 应的 情况保留弱,出峰时间早 进样量大 溶解性差异,例如《中国药典》2000年版二部盐酸环丙沙星片含量测定时,用水
作稀释剂时,色谱峰面积不稳定,峰面积重新性较差。 《中国药典》2000年版二 部改为用流动相为稀释剂后,峰面积重新性良好。 电离状态差异,例如样品的稀释剂是pH6.8溶出介质,流动相中缓冲液是pH3.0的 磷酸盐,这就可能发生保留时间不稳定及色谱峰变形的现象。
溶剂强度对色谱行为的影响
溶剂强度顺序
反向色谱中,溶剂强度洗脱顺序为:二氯甲烷>丙醇> 四氢呋喃> 乙醇> 乙腈> 甲醇> 水(最弱)。
洗脱能力差异导致的色谱行为差异
样品溶剂强于流动相时,样品溶剂可看成流 动相的一部分,溶解于强溶剂的洗脱带,一 部分样品会被强溶剂迅速洗脱出色谱柱,另 一部分在洗脱过程中溶于流动相,被流动相 洗脱出,这样会造成色谱峰的展宽或分叉。
液相色谱溶剂效应
格列吡嗪含量均匀度分析方法 色谱柱:Waters Nova-Pak C-18, 150*3.9mm,4um 进样量:20uL 波长:225nm 流速:1.0mL/min 流动相:甲醇:PH6.0磷酸盐缓冲液=45:55

亲核取代反应中的溶剂效应

亲核取代反应中的溶剂效应
亲核取代反应的溶剂效应
任理维
一.溶剂
1. 溶剂的作用
溶解反应物
能与反应物发生相互作用。有机反应中影响到
主反应和副反应的反应速度,还会影响反应方向和
立体化学等。因此,合理地选择溶剂有非常重要的 意义。
2.溶剂的分类
从溶剂的极性和它们形成氢键的能力可分成三类 质子溶剂:能形成氢键作用的溶剂 非质子极性溶剂:分子中的氢与分子内原子结合 牢固,不易给出质子
为过渡态时电荷密度降低的反应,溶剂极性增加,
使反应速度减慢 ; 起始反应物变为过渡态时电荷密变 化很小或无变化的反应,溶剂极性的改变对反应速 度无明显形响。
CH3
CH3
反应物不带电荷的SN2反应
Nu + R-L →{Nu&+…R…l&-}#→ Nu+—R + L-
(8)
a. 过渡态电荷发生分离,能形成偶极 — 偶极健,极性越 强过渡态越稳定
•SN2反应在偶极溶剂中进行比在质子溶剂中快。
总结:起始反应物变为过渡态时电荷密度增加的反
应,溶剂极性增加,使反应速度加快 ;起始反应物变
a.过渡态电荷分散,形成的偶极—偶极健变弱
b.离去基团为中性,溶剂化程度下降
2 .溶剂对SN2反映的影响
有带电荷的反应物的SN2反应 Nu- + R-L →{Nu&-…R…l&-}#→ Nu—R + LNu: + R-L+ →{Nu&+…R…l&+}#→ Nu+—R + L Nu- + R-L+ →{Nu&-…R…l&+}#→ Nu—R + L (5) (6) (7)

第六章溶剂效应

第六章溶剂效应

H O
H
H + Cl- H O H
(CH3)3C+ + Cl- H O R
[(CH3)2N]3P=O + ClMg CH2 C6H5
[(CH3)2N]3P+ O- MgCl + CH2 C6H5-
一种好的溶剂应当是介电常数高,而且是良好的EPD和EPA溶剂:
水——极强离子化能力、良好EPD、EPA溶剂,又是离解性介质
O H O CH2
OC
溶于乙二醇和烃类混合溶剂
O
溶于吡啶:水=1:1混合溶剂
11
胶束溶剂化作用
表面活性剂在稀水溶液中高度聚集形成聚集体,成为胶束; 聚集体憎水部分形成胶束中心,而极性头部则与水分子接触; 某些不溶或微溶于水的物质,加入表面活性剂后易溶; 在反应介质中加入表面活性剂,不但影响溶解度,而且还影响有机反应
溶质 A
非极性 非极性
极性 极性
溶质溶剂性质对溶解度的影响
溶剂 B
非极性 极性
非极性 极性
相互作用
A···A A···B
B···B












A在B中的溶解度
高 低 低 高
9
溶剂化作用
溶剂化作用指每一个溶质分子或离子被溶剂分子包围的现象,对于水分子 称为水合作用;
溶解热可以用晶格能和溶剂化能之差表示:
在非质子强极性溶剂中,离子型化合物中的正离子和负离子溶剂化程度不 同,正离子溶剂化更容易,正离子体积越小,越容易溶剂化:
O HCN (C H 3 )2
O ( 位 阻 小 )
O M
M +

讲课--溶剂效应

讲课--溶剂效应

Born模型
玻恩(波兰)
Onsager模型
这种模型在概念上是很简单的,但是并不非常可靠。它 也有一些缺点:
1. 这种模型为了在分子模拟中真正地有用,必需精确和有效的 计算SASA和它相对于原子坐标的梯度。 2. 表面矢量参数σ是用实验测定的自由能来拟和的,这些σ值 总结后放在一些分子数据集中。显然地,这个模型的准确性 很大程度上依赖于所用的数据集的准确性,因此这个模型有 一定的局限性。 3. 因为这个模型完全以紧密接触的表面为基础的,仅仅在溶质 表面上的原子才会受溶剂效应的影响,所以不能够计算长 程效应,例如在极性溶剂中支配溶剂化过程的电介质屏蔽效 应。 人们已试图通过轻微地修改方程(2-6)的形式或者通过在计算中 合并溶质占据的体积来修正上面的不足。Eisenberg也发展了 该模型,参数σ考虑了五类原子:碳、中性氧和氮、带电氧、带电 氮和硫,可用于研究蛋白质和配位键。但是处理静电作用的问 题仍遗留下来。

孔洞能是溶质分子要在溶剂分子中形成孔洞 所需要的能量。本质上,这一项属于熵效应。它说 明了由于在非极性溶质分子周围水分子的重新分 布而使得熵减少了。尤其对于水,熵减少是因为一 个非氢键溶质的出现而使有利于形成氢键的方法 减少了,孔洞能还包括溶剂分子与溶剂分子间吸 引-排斥相互作用的改变,而这个变化是由于孔洞 内溶剂分子的遗漏以及局部的溶剂结构的改变。 因为熵减少,孔洞能对于溶剂化是不利的。 分子的运动对溶剂化自由能也有贡献,它包括 零点能(ZEP),热振动、转动、平动。这些贡献一 般不被明确地考虑,如果计算程序(例如,G98)提供 振动频率、标准统计力学计算,那么这些项的计算 就被增加到其他自由能的项中一起计算。

正确地对待溶剂化自由能对于理解溶液化学 是至关重要的。对于化学反应,反应物和生成物的 自由能可以确定化学平衡,过渡态和生成物的自由 能的差额能够控制反应速率因子,溶液结构,例如 径向分布函数RDF(r),也能够从溶剂化自由能中得 到。但溶剂化自由能是很复杂的,为了使得计算易 处理,需做许多假设和近似,一个关键的假设就是我 们能够把溶剂化自由能分成不同的部分,短程范德 华作用能,熵效应和长程静电作用能。

溶剂效应资料

溶剂效应资料

溶剂效应
溶剂效应是化学中一个重要的概念,指的是在不同溶剂中溶质的溶解度和化学
性质会发生改变的现象。

溶剂可以对溶质的结构和性质产生影响,从而影响化学反应的进行和速率。

溶剂对溶质溶解度的影响
不同溶剂对溶质的溶解度会有很大的差异。

溶剂的极性、溶解能力、分子大小
等性质会影响溶质在其中的溶解度。

通常具有相似极性的物质会更容易溶解在一起。

溶剂分子与溶质分子之间的相互作用可以通过键合、吸附、复合物等方式发生,从而影响溶质溶解度的大小。

溶剂对化学反应的影响
在化学反应中,溶剂可以作为反应的介质或溶剂。

不同的溶剂对反应的进行和
速率都会有影响。

一些反应只能在特定溶剂条件下进行,溶剂可以改变反应物质之间的相互作用和反应速率。

有些溶剂还可以通过稀释、溶解、促进离子活化等方式催化反应过程。

溶剂效应的应用
溶剂效应在化学合成、催化反应、溶液制备等方面有广泛的应用。

通过选择合
适的溶剂可以提高化学反应的产率和选择性,减少副产物的生成,促进反应的进行。

在生物化学、有机合成、实验室研究等领域都有溶剂效应的应用。

总结
溶剂效应是化学中一个重要的概念,通过控制溶剂的选择和使用可以影响化学
反应的进行和结果。

了解溶剂对溶质的影响,可以更好地设计实验方案,优化化学反应的条件,提高反应的效率和产率。

对溶剂效应的深入研究有助于我们更好地理解化学现象,推动化学领域的发展和应用。

高等有机第二章-溶剂化效应

高等有机第二章-溶剂化效应

21
CHCl3
1.0
4.8
CH3NO2 3.4
36
HNEt2
1.0
5.0 DMF
3.8
38
Et2O
1.1
4.8 DMSO 3.9
45
HCO2H 1.5
57
PhNO2 4.3
35
CH2Cl2
1.6
9
三、溶剂对均相体系化学平衡的影响
1、对酸、碱平衡的影响 改变溶剂可影响酸碱的解离平衡。例如醋酸在水中为 弱酸,而在液氨中则几乎完全解离。
一、基本概念 1、选择性溶剂化 若在两种溶剂的混合物中,二元盐的两种离子同样优 先地为同种溶剂所溶剂化,称同选择性溶剂化。
例: CaCl2在水-甲醇体系中,Ca2+ 和Cl – 都优先被 水溶剂化。
如阳离子优先被一种溶剂溶剂化,而阴离子优先被另 一种溶剂溶剂化,则称异选择性溶剂化。 例:硝酸银在乙腈-水体系中,Ag+优先被乙腈溶剂 化, 而NO3-优先被水溶剂化。
2、有机物在气相和溶液中的酸碱性
气态中物质的酸碱性是物质的固有性质,而在溶液中
存在溶剂化效应。
气态中碱性:NH3<RNH2<R2NH<R3N 在水中: NH3<RNH2<R2NH>R3N 溶液中铵离子通过氢键被稳定,氢键越多,胺碱性越
大。
3、溶剂对互变异构平衡的影响
1,3-二羰基化合物可能存在三种互变异构体:
Cl
Cl Me
Me
+
Cl
Cl Me
Me
O
Me
红色络合物
黄色
无色
在两个键已饱和的分子间形成一个附加的成键作用必 须是在电子给体分子中存在一个能量足够高的已占据 分子轨道,而在电子受体分子中存在一个能量足够底 的未占据分子轨道。

物理有机化学 第3章、溶剂效应

物理有机化学 第3章、溶剂效应

这个标度的主要优点是该标准化合物的电荷转移吸收带比科绍 尔染料的处于更长的波长,以至产生一个更大的溶剂化显色范 围 ( 从 二 苯 醚 的 810nm , ET=35.3KJmol-1 , 到 水 的 453nm , ET=63.1KJmol-1).
ET与 Z值之间有着线性关系. 用取代的染料如下列结构可把这种标度推到非极性溶剂:
§3.1 溶剂效应的定性理论
溶剂效应第一个满意的定性理论,是Hughes-Ingold 于1935年提出的静电模型.在亲核取代反应和消去 反应的研究中,他们提出,与初始态相比,在反应 的过渡态中,如果产生了电荷或者电荷更集中了, 则反应速率随介质的极性增加而增加.反之,当与 起始态相比,在反应的过渡态中如果电荷消失了或 电荷更分散了,则反应速率随介质的极性增加而降 低.
例:
从表中可见,当溶剂的类型改变时,如醇改变为腈,则溶剂对 反应速率影响是较大的,这可能由于含羟基的溶剂稳定了带电 荷的亲核试剂,即溶剂效应不仅与介电常数的宏观性质有关, 而且也与氢键有关.
§3.2 溶剂极性参数
3.2.1 Winstein-Grunwald的Y值 在SN1 溶剂解反应中,化合物在不同溶剂中的离解速 率是不一样的.这与溶剂的极性及反应物的结构有 关. Winstein 等提出下列方程式来定量地表示这种关 系.
溶剂化显色物质一般是那些具有高度极化的基态和极性小得多 的激发态的化合物.可近似地认为激发态的自由能在任何溶剂 中是恒定的,而基态的自由能是随着溶剂极性的增大而大幅度 地改变,即溶剂极性越大,溶剂化作用越强,自由能越低,因 此激发所需要的能量从也将越大,即λmax向光谱的蓝端移动.
E.M.Kosower首先尝试用一个染料的电子跃迁来建立一套溶 剂极性标度.他选择碘化l-乙基-4-甲氧羰基吡啶盐.

高等有机化学课件电子效应和溶剂效应

高等有机化学课件电子效应和溶剂效应
电子效应分类
电子效应可以分为诱导效应、共轭效 应、超共轭效应和场效应等。这些效 应在有机分子中广泛存在,对分子的 物理和化学性质产生重要影响。
电子效应对分子性质影响
对分子极性和酸碱性的影响
电子效应可以改变分子的极性和酸碱性。例如,当分子中引入吸电子基团时, 分子的极性增强,酸性也增强;而引入给电子基团时,分子的极性减弱,碱性 增强。
随着计算化学方法的不断发展和完善,计算 化学将在有机合成中发挥越来越大的作用, 为实验提供有力的理论支持。
THANKS FOR WATCHING
感谢您的观看
对分子反应活性的影响
电子效应还可以影响分子的反应活性。例如,在芳香族亲电取代反应中,富电 子的芳香烃比缺电子的芳香烃更容易发生取代反应。
电子效应在有机反应中应用
在合成中的应用
利用电子效应可以预测和控制有机反应的方向和速率,从而 实现有机化合物的定向合成。例如,在药物合成中,通过引 入特定的官能团来调整分子的电子性质,进而改变其生物活 性。
在机理研究中的应用
电子效应也有助于揭示有机反应的机理。例如,在研究周环 反应时,通过分析反应物和产物中电子的流动情况,可以推 断出反应的可能机理。
02 溶剂效应基础知识
溶剂效应概念及产生原因
溶剂效应定义
溶剂效应是指溶剂对于化学反应速率、平衡和机理的影响。溶剂不仅作为反应介 质,还可能参与反应,改变反应历程和产物分布。
引导学员运用所学知识,对实际问题 进行分析和解答,提高学员的综合素 质和应用能力。
提供针对有机反应中常见问题的解决 思路,如反应条件的选择、副产物的 处理等。
学员参与互动讨论环节
鼓励学员积极参与课堂讨论,提出自己的观点和 问题。
组织小组讨论或研讨会,让学员在交流中互相学 习、互相启发。

亲核取代反应中的溶剂效应

亲核取代反应中的溶剂效应

为过渡态时电荷密度降低的反应,溶剂极性增加,
使反应速度减慢 ; 起始反应物变为过渡态时电荷密变 化很小或无变化的反应,溶剂极性的改变对反应速 度无明显形响。
ቤተ መጻሕፍቲ ባይዱ
起始反应物变为过渡态时电荷密度增加的反应溶剂极性增加使反应速度加快起始反应物变为过渡态时电荷密度增加的反应溶剂极性增加使反应速度加快
亲核取代反应的溶剂效应
任理维
一.溶剂
1. 溶剂的作用
溶解反应物
能与反应物发生相互作用。有机反应中影响到
主反应和副反应的反应速度,还会影响反应方向和
立体化学等。因此,合理地选择溶剂有非常重要的 意义。
2.溶剂的分类
从溶剂的极性和它们形成氢键的能力可分成三类 质子溶剂:能形成氢键作用的溶剂 非质子极性溶剂:分子中的氢与分子内原子结合 牢固,不易给出质子
非极性溶剂:不给出质子,与溶质的作用力弱
二.亲核取代反应的溶剂效应
亲核取代反应的一般表达式为:
RX + Nu → RNu + X:
Ingold提出:
1. SN1机理
2. SN2机理 亲核取代反应的过渡态一般是偶极型过渡态。 Houghes-Ingold规则:通过过渡态理论来处理溶 剂对亲核取代反应的影响。
1.溶剂对SN1反应的影响
亲核受体不带电荷的SN1 R-L → {R&+…L&-}# → R+ + LR+ + Nu- → R-Nu a.过渡态与溶剂形成偶极—偶极健 (1) (2)
b.L- 溶剂化,电荷分散更稳定
亲核受体带有正电荷的SN1
R-L+→ {R&+…L&+}# → R+ + L (3) R+ + Nu- → R-Nu (4)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

溶剂
乙醇
甲醇 甲酸

介电常数
24.55
32.7
58.5 78.39
相对反应速度 1
9
12200 33500
上述静电溶剂化理论是一个简单的定性的纯静电理论,
有一定的局限性。它忽略反应中的熵变以及溶剂与溶剂的 相互作用等等。因此,有些情况例外。
7.3 特殊溶剂化效应
特殊溶剂化可分为负离子的特殊溶剂化和正离子的
渡态与溶剂分子间的静电作用,以比较起始反应物和过
渡态电荷分离程度的大小,从而可以预测溶剂极性对离
子型反应速率的影响。对过渡态比起始物分子具有较大
电荷分离程度的反应,溶剂极性的增加使反应速率加快;
而对于过渡态比起始反应物分子电荷分离程度减少的反
应,溶剂极性的增加使反应速率减慢。对溶剂极性减少
的情况来说,则情况刚好是相反的。能量变化与溶剂极
7 溶剂效应
大多数有机反应是在溶剂中进行的。很早以前人们 就知道溶剂对化学反应有重要的影晌。但作为一个溶剂 理论,却是在60年代才发展起来的,比电子理论的发展 慢得多。最近一.二十年运用近代科学技术对溶剂效应 展开了系统的和广泛的研究,得到了一些有关溶剂化的 规律和理论,它们对进一步深入认识化学反应具有重要 的指导意义。例如,1983年有人报导了OH—对CH3Br的亲 核取代反应,观察了溶剂分子H2O的数目对OH-亲核性的 影响。发现一个赤裸的OH—的亲核性比它在水溶液中大 16个数量级[即使有一个水分子在旁也能使它的亲核活 性减少几十倍。
5
大家好
R L S R L s R ‖ L s R s L s
溶质
紧密离 子对
(A)
溶剂分离 离子对
(B)
溶剂 溶剂 化正 化负 离子 离子
(C)
ε<15 ε(15~40) ε>40
溶剂极性不仅对溶质离子化过程有影响,而且对某
些反应速度也有影响。为此就要考察反应物的始态和过
质子溶剂含有结合在强电负性原子上的氢原子,因
此它们是氢键给体,并且大多数具有极性。由于它们有 形成氢键的能力,因此是优良的负离子溶剂化剂。具有 未共用电子对而半径较小的负离子(F-,Cl-, OH-)是强 的氢键受体。大的负离子或电荷分散的负离子(I-)是 弱的氢键受体。一些负离子在质子溶剂中的溶剂化程度:
不同的溶剂使正离子溶剂化的强度按下列次序减弱,这 与它们的给电子能力一致。
HMPA〉 DMSO 〉DMAc〉 DMF〉 CH3CN〉 CH3NO2
正离子越小越易被溶剂化,因它接受负电荷的能力是
随单位体积所具有正电荷的增大而增加。
卤素负离子在极性非质子溶剂中的亲核性和碱性次序为:
F-〉Cl-〉Br-〉I-
大家好
4
大家好
溶剂的性质主要有:极性、氢键以及酸碱性等。 按溶剂的性质和它与溶质间相互作用力的性质,分
别讨论两类不同的溶剂化效应:
1)静电溶剂化效应或静电溶剂效应; 2)特殊溶剂化效应或专一溶剂化效应。
7.2 静电溶剂化效应
这是一种溶剂化的静电理论。它主要是用溶剂极性来
确定相对的溶剂化能力及其对化学反应性的影响。极性溶 剂(如水或乙醇)可有效地把离子溶剂化,因此可降低其活 化能而使之稳定。使溶质的离解反应易于进行。在非极性 溶剂中(如苯或己烷等),离子不能很好地被溶剂化,因此 溶质的离解反应具有较高的活化能。溶质(R—L)在溶剂S 中全部离子化需经过如下式所示几个阶段:
1
大家好
溶质和溶剂相互作用叫做溶剂化。它是指溶液中溶 质被附近的溶剂分于包围起来的现象。例如溶质R+L-和 溶剂水作用的示意图如下:
溶剂对反应速率、化学平衡及反应机理的影响叫溶剂效 应。
7.1 溶剂的分类和性质
溶剂的分类方法有两种,一种是根据溶剂的极性进
行分类,另一种是根据溶剂是否具有形成氢键的能力进
特殊溶剂化两种。前者是靠氢键结合力,后者是靠电子
给体与受体之间的作用力。特殊的结构效应可使反应物
或过渡态特别强烈地被溶剂化.这比前述的溶剂静电效
应要强烈很多。
9
大家好
其原因是,氢键的形成及由电子对的给予和接受而产生的 作用.比溶利因静电作用所产生的分子间作用力要大得多。
7.3.1 负离子的特殊溶剂化
7.3.2 正离子的特殊溶剂化
正离子的特殊溶剂化剂的一般是具有电子给体的化合 物。如冠醚。
11
大家好
12
大家好
13
大家好
这些溶剂的特点是正端被基团包围在内,而负端裸露 在外,故它们容易与正离子发生离子-偶极相互作用。 故使正离子溶剂化,同时也使试剂的负离子具有很好 的亲核性。从而加快反应速度。例如碘甲烷与氰化钠 的氰代反应,在极性非质子溶剂DMF中比在水中反应 快5*105倍。
溶剂效应对化学反应的影响,除了反应活性以外,有时
也影响反应机理。如溴甲烷在乙醇的水溶液中水解,是
按SN2机理进行,而在极性更强的离子型溶剂如在甲酸中
反应时,机理要变为SN114 .
大家好
Bye Bye
F-〉Cl-〉Br-〉OH-
CH3O- 〉I- 〉CN-
负离子溶剂化程度越大,亲核性越小。
在某些亲核取代反应中,离去基团的溶剂化也是非常重 要的。质子溶剂的氢键作用优先发生,因此质子溶剂对 亲核取代反应一般都有加速作用,故卤代烷与磺酸酯的 亲核取代反应一般都需10要用水、醇或羧酸作为溶剂。大家好
如对甲苯磺酸—2—甲基—2-(4—甲氧基苯基)丙酯在 几种溶剂中的相对离子化速度如下:
行分类。
2
大家好
7.1.1 根据溶剂的极性分类

极性(ε>15)如硝基苯,水。

非极性(ε<15)如苯,氯仿,乙醚等。
7.1.2 氢键

质子溶剂(含质子给予体)如水、醇、羧酸等

非质子溶剂(不含质子给予体)如乙醚、
DMF、DMAc等。
两种分类方法结合将溶剂分为:
极性质子
溶 剂
非极性质子
极性非质子
非极性非3 质子
性的关系图所示。 6
大家好
溶剂极性使速度增加
溶剂极性使速度降低
溶剂极性对电荷类型不同的反应有不同的影响,大体有如下 几种情况:
非极性溶剂中有利
极性溶剂中有利
7
大家好
在极性溶剂中略为有利 在非极性溶剂中略为有利 对溶剂极性不敏感
乙醇
k
19600
8
水 1
大家好
如叔丁基氯的溶剂分解反应
C 3 3 C H C C l 3 3 C δ H C δ + l C - 3 3 C H C 产 l
相关文档
最新文档