高二数学组合与组合数
3.1.3 组合和组合数( 组合和组合数的性质)(课件)高二数学(人教B版2019选择性必修第二册)
对于(1),可分为两步:第一步,完成(2)中的事情,即选择两所学校;
第二步,讲选出的学校进行全排列(有22 种方法).因为(1)的答案为23 ,
所以如果设问题(2)的答案是x,那么就能得到
23 =x22
从而得到 =
23
.
22
二 组合数
组合数的定义
从n个不同对象中取出m(m≤n)个对象的所有组合的个数,称为从n个不同对象中取
这个问题可以用我们本节所学的组合知识来解。
03 新知探索
一、组合
【尝试与发现】下面这两个问题的答案一样吗?
(1)小张要在三所大学中选择2所,分别作为自己的第一志愿和第二志愿,校长
共有多少种不同的选择方式?
(2)小张要在三所大学中选择2所,作为自己的努力的目标,小张有多少种不同
的选择方式?
选择合适的符号,分别表示出上述两题中所有的选择方式,并总结两者之间
02 新知导入
02 新知导入
【情境与问题】
高考不分文理科后,思想整理、历史、地理、物理、化学、生物这6科是选考的,
考生可以从中任选3科作为自己的高考科目,那么选考的组合方式一共有多少种
可能得情况呢?
如果用{思想政治、地理、历史}表示其中一种选考组合,你能用类似的方法表示
出所有的组合方式吗?你有更简单的表示方法吗?
【答案】D
D.5或7
四 课堂练习
【练习3】某校拟从2名教师和4名学生共6名党史知识学习优秀者中随机选取3名
,组成代表队,参加市党史知识竞赛,则要求代表队中既有教师又有学生的选法
共有
种.
【答案】16
四 课堂练习
【练习4】
【解析】
四 课堂练习
高中数学人教A版高二选修2-3教学案:1.2.2_第一课时_组合与组合数公式_Word版含解析
1.2.2组合第一课时组合与组合数公式预习课本P21~24,思考并完成以下问题1.组合的概念是什么?2.什么是组合数?组合数公式是怎样的?3.组合数有怎样的性质?[新知初探]1.组合的概念从n个不同的元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.2.组合数的概念、公式、性质[点睛]排列与组合的联系与区别联系:二者都是从n个不同的元素中取m(n≥m)个元素.区别:排列与元素的顺序有关,组合与元素的顺序无关,只有元素相同且顺序也相同的两个排列才是相同的排列.只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)从a,b,c三个不同的元素中任取两个元素的一个组合是C23.()(2)从1,3,5,7中任取两个数相乘可得C24个积.()(3)1,2,3与3,2,1是同一个组合.()(4)C35=5×4×3=60.()答案:(1)×(2)√(3)√(4)×2.C2n=10,则n的值为()A.10B.5C.3D.4答案:B3.从9名学生中选出3名参加“希望英语”口语比赛,不同选法有()A.504种B.729种C.84种D.27种答案:C4.计算C28+C38+C29=________.答案:120组合的概念[典例]判断下列问题是组合问题还是排列问题:(1)设集合A={a,b,c,d,e},则集合A的子集中含有3个元素的有多少个?(2)某铁路线上有5个车站,则这条线上共需准备多少种车票?多少种票价?(3)3人去干5种不同的工作,每人干一种,有多少种分工方法?(4)把3本相同的书分给5个学生,每人最多得1本,有几种分配方法?[解](1)因为本问题与元素顺序无关,故是组合问题.(2)因为甲站到乙站,与乙站到甲站车票是不同的,故是排列问题,但票价与顺序无关,甲站到乙站,与乙站到甲站是同一种票价,故是组合问题.(3)因为分工方法是从5种不同的工作中取出3种,按一定次序分给3个人去干,故是排列问题.(4)因为3本书是相同的,无论把3本书分给哪三人,都不需考虑他们的顺序,故是组合问题.区分排列与组合的方法区分排列与组合的办法是首先弄清楚事件是什么,区分的标志是有无顺序,而区分有无顺序的方法是:把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.[活学活用]判断下列问题是组合问题还是排列问题:(1)把5本不同的书分给5个学生,每人一本;(2)从7本不同的书中取出5本给某个同学;(3)10个人相互写一封信,共写了几封信; (4)10个人互相通一次电话,共通了几次电话.解:(1)由于书不同,每人每次拿到的也不同,有顺序之分,故它是排列问题.(2)从7本不同的书中,取出5本给某个同学,在每种取法中取出的5本并不考虑书的顺序,故它是组合问题.(3)因为两人互写一封信与写信人与收信人的顺序有关,故它是排列问题. (4)因为互通电话一次没有顺序之分,故它是组合问题.有关组合数的计算与证明[典例] (1)计算C 410-C 37·A 33; (2)证明:m C m n =n C m -1n -1.[解] (1)原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)证明:m C m n=m ·n !m !(n -m )! =n ·(n -1)!(m -1)!(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n C m -1n -1.关于组合数公式的选取技巧(1)涉及具体数字的可以直接用n n -m C m n -1=nn -m ·(n -1)!m !(n -1-m )!=n !m !(n -m )!=C m n 进行计算. (2)涉及字母的可以用阶乘式C mn =n !m !(n -m )!计算.(3)计算时应注意利用组合数的性质C m n =C n -mn简化运算.[活学活用]1.计算:C 38-n 3n +C 3n n +21的值.解:∵⎩⎪⎨⎪⎧38-n ≤3n ,3n ≤21+n ,∴9.5≤n ≤10.5.∵n ∈N *,∴n =10.∴C 38-n 3n +C 3n 21+n =C 2830+C 3031=C 230+C 131=30×292×1+31=466. 2.求使3C x -7x -3=5A 2x -4成立的x 值.解:根据排列数和组合数公式,原方程可化为 3·(x -3)!(x -7)!4!=5·(x -4)!(x -6)!,即3(x -3)4!=5x -6,即为(x -3)(x -6)=40. ∴x 2-9x -22=0,解得x =11或x =-2. 经检验知x =11时原式成立. 3.证明下列各等式. (1)C m n =m +1n +1C m +1n +1; (2)C 0n +C 1n +1+C 2n +2…+C m -1n +m -1=C m -1n +m .解:(1)右边=m +1n +1·(n +1)!(m +1)![(n +1)-(m +1)]!=m +1n +1·(n +1)!(m +1)!(n -m )!=n !m !(n -m )!=C mn =左边,∴原式成立.(2)左边=(C 0n +1+C 1n +1)+C 2n +2+C 3n +3+…+C m -1n +m -1=(C 1n +2+C 2n +2)+C 3n +3+…+C m -1n +m -1=(C 2n +3+C 3n +3)+…+C m -1n +m -1=(C3n +4+C 4n +4)+…+C m -1n +m -1=…=C m -2n +m -1+C m -1n +m -1=C m -1n +m =右边,∴原式成立.简单的组合问题[典例] 在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件中,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加; (3)甲、乙、丙三人不能参加. [解] (1)C 512=792种不同的选法.(2)甲、乙、丙三人必须参加,只需从另外的9人中选2人,共有C 29=36种不同的选法. (3)甲、乙、丙三人不能参加,只需从另外的9人中选5人,共有C 59=126种不同的选法.解答简单的组合问题的思考方法(1)弄清要做的这件事是什么事;(2)选出的元素是否与顺序有关,也就是看看是不是组合问题; (3)结合两计数原理利用组合数公式求出结果. [活学活用]一个口袋内装有大小相同的7个白球和1个黑球. (1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法? 解:(1)从口袋内的8个球中取出3个球,取法种数是C 38=8×7×63×2×1=56.(2)从口袋内取出3个球有1个是黑球,于是还要从7个白球中再取出2个,取法种数是C 27=7×62×1=21. (3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,取法种数是C 37=7×6×53×2×1=35.层级一 学业水平达标1.C 58+C 68的值为( )A .36B .84C .88D .504解析:选A C 58+C 68=C 69=C 39=9×8×73×2×1=84. 2.以下四个命题,属于组合问题的是( ) A .从3个不同的小球中,取出2个排成一列 B .老师在排座次时将甲、乙两位同学安排为同桌C .在电视节目中,主持人从100位幸运观众中选出2名幸运之星D .从13位司机中任选出两位开两辆车从甲地到乙地解析:选C 选项A 是排列问题,因为2个小球有顺序;选项B 是排列问题,因为甲、乙位置互换后是不同的排列方式;选项C 是组合问题,因为2位观众无顺序;选项D 是排列问题,因为两位司机开哪一辆车是不同的.选C .3.方程C x 14=C 2x -414的解集为( )A .4B .14C .4或6D .14或2解析:选C 由题意知⎩⎪⎨⎪⎧x =2x -4,2x -4≤14,x ≤14或⎩⎪⎨⎪⎧x =14-(2x -4),2x -4≤14,x ≤14,解得x =4或6.4.平面上有12个点,其中没有3个点在一条直线上,也没有4个点共圆,过这12个点中的每三个作圆,共可作圆( )A .220个B .210个C .200个D .1 320个解析:选A C 312=220,故选A .5.从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有( )A .60种B .48种C .30种D .10种解析:选C 从5名志愿者中选派2人参加星期六的公益活动有C 25种方法,再从剩下的3人中选派2人参加星期日的公益活动有C 23种方法,由分步乘法计数原理可得不同的选派方法共有C 25·C 23=30种.故选C .6.C 03+C 14+C 25+…+C 1821的值等于________. 解析:原式=C 04+C 14+C 25+…+C 1821 =C 15+C 25+…+C 1821=C 1721+C 1821=C 1822=C 422=7 315.答案:7 3157.若已知集合P ={1,2,3,4,5,6},则集合P 的子集中含有3个元素的子集数为________.解析:由于集合中的元素具有无序性,因此含3个元素的子集个数与元素顺序无关,是组合问题,共有C 36=20种.答案:208.不等式C 2n -n <5的解集为________.解析:由C 2n -n <5,得n (n -1)2-n <5,∴n 2-3n -10<0.解得-2<n <5.由题设条件知n ≥2,且n ∈N *, ∴n =2,3,4.故原不等式的解集为{2,3,4}. 答案:{2,3,4}9.(1)解方程:A 3m =6C 4m ; (2)解不等式:C x -18>3C x 8.解:(1)原方程等价于m (m -1)(m -2)=6×m (m -1)(m -2)(m -3)4×3×2×1,∴4=m -3,m =7.(2)由已知得:⎩⎪⎨⎪⎧x -1≤8,x ≤8,∴x ≤8,且x ∈N *,∵C x -18>3C x8,∴8!(x -1)!(9-x )!>3×8!x !(8-x )!.即19-x>3x ,∴x >3(9-x ),解得x >274,∴x =7,8.∴原不等式的解集为{7,8}.10.某区有7条南北向街道,5条东西向街道.(如图)(1)图中有多少个矩形?(2)从A 点走向B 点最短的走法有多少种?解:(1)在7条南北向街道中任选2条,5条东西向街道中任选2条,这样4条线可组成一个矩形,故可组成矩形有C 27·C 25=210(个).(2)每条东西向的街道被分成6段,每条南北向街道被分成4段,从A 到B 最短的走法,无论怎样走,一定至少包括10段,其中6段方向相同,另4段方向也相同,每种走法,即是从10段中选出6段,这6段是走东西方向的(剩下4段即是走南北方向的),共有C 610=C 410=210(种)走法.层级二 应试能力达标1.若C 4n >C 6n ,则n 的集合是( )A .{6,7,8,9}B .{0,1,2,3}C .{n |n ≥6}D .{7,8,9}解析:选A∵C 4n >C 6n,∴⎩⎪⎨⎪⎧C 4n >C 6n ,n ≥6,⇒⎩⎪⎨⎪⎧n !4!(n -4)!>n !6!(n -6)!,n ≥6.⇒⎩⎪⎨⎪⎧ n 2-9n -10<0,n ≥6,⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6. ∵n ∈N *,∴n =6,7,8,9. ∴n 的集合为{6,7,8,9}.2.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张卡片,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )A .12种B .18种C .36种D .54种解析:选B 由题意,不同的放法共有C 13C 24=3×4×32=18种. 3.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种D .66种解析:选D 和为偶数共有3种情况,取4个数均为偶数的取法有C 44=1种,取2奇数2偶数的取法有C 24·C 25=60种,取4个数均为奇数的取法有C 45=5种,故不同的取法共有1+60+5=66种.4.过三棱柱任意两个顶点的直线共15条,其中异面直线有( ) A .18对B .24对C .30对D .36对解析:选D 三棱柱共6个顶点,由此6个顶点可组成C 46-3=12个不同四面体,而每个四面体有三对异面直线则共有12×3=36对.5.方程C x 17-C x 16=C 2x +216的解集是________.解析:因为C x 17=C x 16+C x -116,所以C x -116=C 2x +216,由组合数公式的性质,得x -1=2x +2或x -1+2x+2=16,得x 1=-3(舍去),x 2=5.答案:{5}6.某书店有11种杂志,2元1本的有8种,1元1本的有3种.小张买杂志用去10元钱,则不同买法的种数为________(用数字作答).解析:由已知分两类情况: (1)买5本2元的买法种数为C 58.(2)买4本2元的、2本1元的买法种数为C 48·C 23.故不同买法种数为C 58+C 48·C 23=266. 答案:2667.已知C 4n ,C 5n ,C 6n 成等差数列,求C 12n 的值. 解:由已知得2C 5n =C 4n +C 6n ,所以2·n !5!(n -5)!=n !4!(n -4)!+n !6!(n -6)!,整理得n 2-21n +98=0, 解得n =7或n =14,要求C 12n 的值,故n ≥12,所以n =14,于是C 1214=C 214=14×132×1=91.8.已知集合A ={a 1,a 2,a 3,a 4},B ={0,1,2,3},f 是从A 到B 的映射. (1)若B 中每一元素都有原象,则不同的映射f 有多少个? (2)若B 中的元素0无原象,则不同的映射f 有多少个?(3)若f 满足f (a 1)+f (a 2)+f (a 3)+f (a 4)=4,则不同的映射f 又有多少个? 解:(1)显然映射f 是一一对应的,故不同的映射f 共有A 44=24个.(2)∵0无原象,而1,2,3是否有原象,不受限制,故A 中每一个元素的象都有3种可能,只有把A 中每一个元素都找出象,这件工作才算完成,∴不同的映射f 有34=81个.(3)∵1+1+1+1=4,0+1+1+2=4,0+0+1+3=4,0+0+2+2=4,∴不同的映射有:1+C 24A 22+C 24A 22+C 24=31个.。
2024-2025学年高二数学选择性必修第一册(配湘教版)课件4.3第1课时组合与组合数
类表达,逐类求解.
变式训练3
某医院从10名医疗专家中抽调6名参加某项义诊活动,其中这10名医疗专
家中有4名是外科专家.问:
(1)抽调的6名专家中恰有2名是外科专家的抽调方法有多少种?
(2)至少有2名外科专家的抽调方法有多少种?
(3)至多有2名外科专家的抽调方法有多少种?
同的选法.
(3)甲、乙、丙三人不能参加,只需从另外的9人中选5人,共有 C95 =126种不
同的选法.
(4)甲、乙、丙三人只能有 1 人参加,分两步,先从甲、乙、丙中选 1 人,有C31 =3
种选法,再从另外的 9 人中选 4 人,有C94 种选法,共有C31 C94 =378 种不同的选法.
(5)(方法 1 直接法)可分为三类:
!
kC =k·
!·(-)!
=
n≥2).
·(-1)!
-1
=nC-1 .
(-1)!·(-)!
探究点三 组合问题的实际应用
【例3】在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人
去参加市级培训.在下列条件下,有多少种不同的选法?
(1)任意选5人;
(2)甲、乙、丙三人必须参加;
2×1
=
2
C100
1
+ C200
=
100×99
+200=5
2×1
150.
-1
+1
(2)求证:C+1 + C +2C = C+2
(n,m∈N+).
分析 式子中涉及字母,可以用阶乘式证明.
!
高二数学人选修课件时组合与组合数公式
02 03
案例二
假设有一个边长为1的正方形区域,任意投掷一个点,求 该点落在正方形内切圆内的概率。根据二维几何概型的计 算方法,内切圆的面积为π/4,正方形的面积为1,因此该 事件的概率为π/4。
案例三
假设有一个半径为1的球体,任意投掷一个点,求该点落 在球体内接正方体内的概率。根据三维几何概型的计算方 法,内接正方体的体积为2/√3,球体的体积为4π/3,因 此该事件的概率为(2/√3) / (4π/3) = √3/(2π)。
互斥事件的概率加法公式
若事件A与事件B互斥,则$P(A cup B)=P(A)+P(B)$。
对立事件的概率
若事件A与事件B对立,则$P(A)=1-P(B)$,$P(B)=1-P(A)$。
案例分析
案例一
掷一枚质地均匀的骰子,观察出现的 点数。求事件A(出现偶数点)的概 率。
案例三
某射手进行射击训练,每次射击命中 目标的概率为0.8,现连续射击5次, 求事件C(至少命中4次)的概率。
A
计算机科学
在算法设计和分析中,组合数学提供了许多有 用的工具和方法,如动态规划、分治法等。
物理学
在量子力学和统计力学中,组合数学用于 描述微观粒子的状态和相互作用。
B
C
化学
在化学中,组合数学可用于计算分子的可能 构型和化学键的组合方式。
生物学
在遗传学和生物信息学中,组合数学用于分 析基因序列的组合和变异情况。
常见问题类型
01
求组合数
直接利用组合数公式进行计算。
02
验证组合数性质Leabharlann 如验证C(n,m) = C(n,n-m),C(n,0) + C(n,1) + ... + C(n,n) = 2^n等。
组合与组合数(课件)高二数学(人教A版2019选择性必修第三册)
解法二:抽出的3件中至少有1件是次品的抽法种数,就是从100件产品中抽出3
件的抽法种数减去3件都是合格品的抽法种数,即:
3
100
−
3
98
98 × 97 × 96
= 161700 −
= 9604
3!
探究新知
题型探究
题型一
有限制条件的组合问题
[学透用活]
[典例 1]
课外活动小组共 13 人,其中男生 8 人,女生 5 人,并且男、女
解:分两类情况:
第一类:没有队长被选上,从除去两名队长之外的 11 名学生中选取 5 人
有 C511=462 种选法.
第二类:一名队长被选上,分女队长被选上和男队长被选上,
有 C411+C411=660 种选法.
所以至多有 1 名队长被选上的方法有 462+660=1 122 种.
探究新知
2. 有男运动员 6 名,女运动员 4 名,其中男女队长各 1 名.选派 5 人外出比赛,
典型例题
例2 五行学说是华夏民族创造的哲学思想,是华夏文明的重要组成部分.古人
认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、
木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素
,则2类元素相生的选取方案共有多少种?
解:从5类元素中任选2类元素, 它们相生的选取有:火土,土金,金水,
思考:(1)分别观察例1中(1)与(2),(3)与(4)的计算结果,
有什么发现?
分析:例1中(1)与(2)的计算结果相同,(3)与(4)的计算结果相同.
(1)与(2)都是从10个元素中取部分元素的组合,其中,(1)取出3个元素,
(2)取出7个元素,二者取出元素之和为总元素个数10.(3)与(4)同理.
人教版数学高二《组合与组合数公式》 名师课件
(2)原方程可化为Cx+3x-2=110Ax+33, 即Cx+35=110Ax+33,8分 ∴5!x+x-32!!=x1+0·x3!!, ∴120x-1 2!=10·xx-11·x-2!, ∴x2-x-12=0,10分 解得x=4或x=-3, 经检验:x=4是原方程的解.12分
高中数学
• [题后感悟] 含有组合数的方程或不等式的 解法:
=2×6+52× ×41=32.
高中数学
(3)方法一:原式=Cn+1n·Cn1=
n+1! n!
·n=
n+1·n! n!
·n
=(n+1)n=n2+n.
方法二:原式=(Cnn+Cnn-1)·Cnn-1=(1+Cn1)·Cn1=(1+ n)n=n2+n.
高中数学
(1)已知C15m-C16m=107C7m,求C8m. (2)解方程:Cx+2x-2+Cx+2x-3=110Ax+33.
• (2)从1,2,3,…,9九个数字中任取3个,然后
把这三个数字相加得到一个和,这样的和共有
多少个?
高中数学
• 解答本题主要是分清取出的这m个(2个或3 个)是进行排列还是组合,即确定是与顺序 有关还是无关.
高中数学
• [解题过程] (1)当取出3个数字后,如果改变 三个数字的顺序,会得到不同的三位数,此问 题不但与取出元素有关,而且与元素的安排顺 序有关,是排列问题.
高中数学
练考题、验能力、轻巧夺冠
高中数学
• ②五个队进行单循环比赛的分组情况;
• ③由1,2,3组成两位数的不同方法数;
• ④由1,2,3组成无重复数字的两位数.
• A.①③
B.②④
• C.①②
高中数学D.①②④
• 2.如果Cn2=28,则n的值为( )
高二人数学选修课件时组合与组合数公式
考生需要理解组合问题在实际生活中 的应用,如分组、选举、比赛等问题 。
掌握组合数的计算公式
考生需要熟练掌握组合数的计算公式 ,并能够运用公式解决简单的组合问 题。
历年高考真题解析
题目类型
高考中组合问题的题目类型主要 包括选择ห้องสมุดไป่ตู้、填空题和解答题。
考查内容
历年高考真题中,主要考查了组 合数的计算、组合的性质、组合
插空法是一种求解排列组合问题的常用方法,其基本思想 是将没有限制的元素先进行排列,再将有限制的元素插入 到已排好的元素之间的空隙中。
优点
能够简化问题,降低计算难度。
适用范围
适用于至少有一个元素位置不受限制的情况。
缺点
需要注意插入元素后是否满足题目的限制条件,否则容易 出错。
捆绑法
定义
捆绑法是将相邻的元素看作一 个整体,与其余元素进行排列 组合,然后再考虑相邻元素内
排列与组合关系
排列与组合的联系
排列和组合都是研究从n个不同元素中取出m个元素的问题, 但排列考虑元素的顺序,而组合不考虑元素的顺序。
排列与组合的区别
排列数公式为A(n,m) = n! / (n-m)!,而组合数公式为C(n,m) = n! / [m!(n-m)!]。可以看出,排列数考虑了元素的顺序, 因此比组合数多了一个m的阶乘。
在信息论中,组合数学用于研究 信源编码、信道编码和密码学等 问题。
统计学与概率论
在统计学和概率论中,组合数学 提供了计算概率和期望等统计量 的方法和工具。
计算机科学
在计算机算法设计和分析中,组 合数学提供了许多有用的工具和 方法,如排序算法、搜索算法、 图论算法等。
数学物理与化学
在数学物理和化学中,组合数学 用于研究分子结构、化学反应和 物质性质等问题。
组合、组合数 课件-高二下学期数学人教A版(2019)选择性必修第三册
例如,从3个不同元素中取出2个元素的组合数表示为C23,从4个不同元素中取出3
个元素的组合数表示为C34.
探究:前面已经提到,组合和排列有关系,我们能否利用这种关系,由排列数A
来求组合数C 呢?
前面,我们利用“元素相同、顺序不同的两个组合相同”“元素相同、顺序不同的
(2)由于不考虑两个端点的顺序,因此将(1)中端点相同、方向不同的2条有向线段
作为一条线段,就是以平面内4个点中的2个点为端点的线段的条数,共有如下6条:
AB,AC,AD,BC,BD,CD.
高中数学
选择性必修第三册
RJ·A
思考:利用排列和组合之间的关系,以“元素相同”为标准分类,你能建立起
例5(1)中排列和(2)中组合之间的对应关系吗?
用能力和分析问题、解决问题的能力.
核心素养:逻辑推理、数学运算、数学建模.
高中数学
选择性必修第三册
RJ·A
新知学习
探究:从甲、乙、丙3名同学中选2名去参加一项活动,有多少种不同的选法?
这一问题与6.2.1节的问题1有什么联系与区别?
从6.2.1节问题1的6种选法中,存在“甲上午、乙下午”和“乙上午、甲下午”2种不同
第六章
6.2
排列与组合
6.2.3 组合
6.2.4 组合数
高中数学
选择性必修第三册
RJ·A
学习目标
1.理解组合、组合数的概念及组合和排列之间的区别与联系.
2.能利用计数原理推导组合数公式,并熟练掌握组合数公式及组合数的性质,能运用
组合数的性质化简、计算、证明.
3.能运用排列数公式、组合数公式和计数原理解决一些简单的应用问题,提高数学应
高二数学(选修-人教B版)-组合(2)
典型例题
例3 在产品质量检验时,常从产品中抽出一部分进行检查,现 在从98件正品和2件次品共100件产品中,任意抽出3件检查: (3)至少有一件是次品的抽法有多少种?
有次品
有次品
无次品
典型例题
例3 在产品质量检验时,常从产品中抽出一部分进行检查,现
在从98件正品和2件次品共100件产品中,任意抽出3件检查:
不同的分组方法数:C39 C36 C33=1 680
典型例题
例4 (3)甲、乙、丙各得3本.
追问:若只是把这9本不同的书平均分成3组,有多少种不同
的分组方法?
把这9本不同的书平均分成3组,设有x种不同的分组方法.
再将3组书分配给甲、乙、丙三人:A33 种方法.
所以,甲、乙、丙各得3本的分法共有 x A33种.
典型例题
例3 在产品质量检验时,常从产品中抽出一部分进行检查,现 在从98件正品和2件次品共100件产品中,任意抽出3件检查:
(1)共有多少种不同的抽法?
解:(1) 所求不同的抽法数,即从100个不同元素中任取3个元素的组
合数,共有
C3 100
100 99 98 3 2 1
=
161
700(种).
排列问题
2A22 2 2 1 = 4 (场).
典型例题
例2 某次足球赛共12支球队参加,分三个阶段进行. (3)决赛:两个胜队参加决赛一场,决出胜负.
解:(3)决赛只需比赛1场,即可决出胜负. 所以全部赛程共需比赛
30+4+1=35(场).
小结
1.解简单的组合应用题时,首先要判断它是不是组合问题, 组合问题与排列问题的根本区别在于排列问题与取出元素的 顺序有关,而组合问题与取出元素的顺序无关; 2.解决组合应用题的基本思路是“化归”,即由实际问题建 立组合模型,再由组合数公式计算结果,从而得出实际问题 的解.
高二数学人教A版选修23讲义第一章12第3课时组合与组合数公式
第3课时组合与组合数公式[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P21~P25的内容,回答下列问题.从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?这一问题与教材P14问题1有什么区别和联系?提示:教材P14问题1是求“从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动”的选法种数,由于“甲上午、乙下午”与“乙上午、甲下午”是两种不同的选法,因此解决这个问题时,不仅要从3名同学中选出2名,而且还要将他们按照“上午在前,下午在后”的顺序排列.这是上一节研究的排列问题.本节要研究的问题只是从3名同学中选出2名去参加一项活动,而不需要排列他们的顺序.2.归纳总结,核心必记(1)组合及组合数的概念①组合:一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.②组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号C m n表示.(2)组合数公式及其性质(1)你能说说排列与组合之间的区别和联系吗?提示:从排列与组合的定义可以知道,两者都是从n个不同元素中取出m(m≤n)个元素,这是排列、组合的共同点;它们的不同点是:排列与元素的顺序有关,组合与元素的顺序无关.只有元素相同且顺序也相同的两个排列才是相同的;只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合.(2)“abc”和“acb”是相同的排列还是相同的组合?提示:由于“abc”与“acb”的元素相同,但排列的顺序不同,所以“abc”与“acb”是相同的组合,但不是相同的排列.(3)我们知道,“排列”与“排列数”是两个不同的概念,那么,“组合”与“组合数”是同一个概念吗?为什么?提示:“组合”与“组合数”是两个不同的概念,“组合”是指“从n个不同元素中取出m(m≤n)个元素合成一组”,它不是一个数,而是具体的一件事;“组合数”是指“从n 个不同元素中取出m(m≤n)个元素的所有不同组合的个数”,它是一个数.[课前反思](1)组合及组合数的概念:;(2)组合数公式:;(3)组合数的性质:.组合概念的理解知识点1[思考1]两个组合是相同组合的充要条件是什么?名师指津:只要两个组合中的元素完全相同,不管顺序如何,这两个组合就是相同的组合.[思考2]判断组合与排列的依据是什么?名师指津:判断组合与排列的依据是看是否与顺序有关,与顺序有关的是排列问题,与顺序无关的是组合问题.讲一讲1.判断下列问题是排列问题还是组合问题,并求出相应的排列数或组合数.(1)10个人相互写一封信,共写出了多少封信?(2)10个人相互通一次,共通了多少次?(3)10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次?(4)从10个人中选3人去开会,有多少种选法?(5)从10个人中选出3人担任不同学科的科代表,有多少种选法?[尝试解答](1)是排列问题,因为发信人与收信人是有顺序区别的,排列数为A210=90.(2)是组合问题,因为甲与乙通一次,也就是乙与甲通一次,没有顺序区别,组合数为C210=45.(3)是组合问题,因为每两支球队比赛一次,没有顺序的区别,组合数为C210=45.(4)是组合问题,因为选出的3个人之间没有顺序的区别,组合数为C310=120.(5)是排列问题,因为3个人担任哪一科的科代表是有区别的,排列数为A 310=720. —————————类题·通法—————————————— 区分排列与组合的方法是看事件是否有顺序,而区分事件有无顺序的方法是:把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,若对结果产生影响,即说明有顺序,是排列问题;若对结果没有影响,即说明无顺序,是组合问题.练一练1.给出下列问题:(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票? (2)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票价?(往返票价相同)(3)a ,b ,c ,d 四支足球队之间进行单循环比赛,共需比赛多少场? (4)a ,b ,c ,d 四支足球队争夺冠、亚军,有多少种不同的结果?(5)从全班40人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?(6)从全班40人中选出3人参加某项劳动,有多少种不同的选法? 在上述问题中,哪些是组合问题?哪些是排列问题? 解:(1)飞机票与起点、终点有关,有顺序,是排列问题. (2)票价与起点、终点无关,没有顺序,是组合问题.(3)单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题. (4)冠、亚军是有顺序的,是排列问题.(5)3人分别担任三个不同职务,有顺序,是排列问题. (6)3人参加某项相同劳动,没有顺序,是组合问题.知识点2组合数公式讲一讲2.(1)计算:①3C 38-2C 25. ②C 38-n 3n +C 3n 21+n . ③C 33+C 34+…+C 310. (2)证明:C m +1n +C m -1n +2C m n =C m +1n +2. [尝试解答] (1)①3C 38-2C 25=3×8×7×63×2×1-2×5×42×1=148. ②∵⎩⎪⎨⎪⎧38-n ≤3n ,3n ≤21+n ,∴≤n ≤10.5,∵n ∈N *,∴n =10,∴C 38-n 3n +C 3n 21+n =C 2830+C 3031=30!28!×2!+31!30!=466.③法一:原式=C 33+C 45-C 44+C 46-C 45+…+C 411-C 410=C 411=330.法二:原式=C 44+C 34+C 35+…+C 310=C 45+C 35+…+C 310=C 46+C 36+…+C 310=…=C 410+C 310=C 411=330.(2)证明:法一:左边=n !(m +1)!(n -m -1)!+n !(m -1)!(n -m +1)!+2n !m !(n -m )!=n !(m +1)!(n -m +1)![(n -m )(n -m +1)+m (m +1)+2(m +1)(n -m +1)]=n !(m +1)!(n -m +1)!(n +2)(n +1)=(n +2)!(m +1)!(n -m +1)!=C m +1n +2=右边,原结论得证.法二:利用公式C m n =C m n -1+C m -1n -1推得左边=(C m +1n +C m n )+(C m n +C m -1n )=C m +1n +1+C m n +1=C m +1n +2=右边. —————————类题·通法——————————————————— (1)有关组合数的两个公式的应用范畴是有所区别的,C mn =A m n A m m常用于n ,m 为具体自然数的题目,一般偏向于具体组合数的计算;公式C m n =n !m !(n -m )!常用于n ,m 为字母或含有字母的式子的题目,一般偏向于方程的求解或有关组合数的恒等式的证明.(2)关于组合数的性质1(C m n =C n -mn )①该性质反映了组合数的对称性,即从n 个不同的元素中取出m 个元素的每一个组合,都对应着剩下的n -m 个元素的一个组合,反过来也一样,这是一一对应的关系.②当m >n2时,通常不直接计算C m n ,而改为计算C n -mn .(3)关于组合数的性质2(C m n +1=C m n +C m -1n )①形式特点:公式的左端下标为n +1,右端下标为n ,相差1,上标左端与右端的一个相同,右端的另一个比它们少1;②作用:常用于有关组合数式子的化简或组合数恒等式的证明.应用时要注意公式的正用、逆用和变形用.正用是将一个组合数拆成两个,逆用则是“合二为一”,使用变形C m -1n =C m n +1-C mn ,为某些项前后抵消提供了方便,在解题中要注意灵活应用.练一练2.(1)求值:C 5-n n +C 9-n n +1;(2)求证:C m n=m +1n -m C m +1n . 解:(1)⎩⎪⎨⎪⎧5-n ≤n ,5-n ≥0,9-n ≤n +1,9-n ≥0,解得4≤n ≤5.又因为n ∈N +,所以n =4或n =5.当n =4时,原式=C 14+C 55=5, 当n =5时,原式=C 05+C 46=16.(2)证明:因为C m n =n !m !(n -m )!, m +1n -m C m +1n =m +1(m +1)!·n !(n -m )(n -m -1)! =n !m !(n -m )!,所以C m n =m +1n -m C m +1n. 3.计算:(1)C 58+C 98100·C 77; (2)C 05+C 15+C 25+C 35+C 45+C 55; (3)C n n +1·C n -1n .解:(1)原式=C 38+C 2100×1=8×7×63×2×1+100×992×1 =56+4 950=5 006.(2)原式=2(C 05+C 15+C 25)=2(C 16+C 25)=2×⎝ ⎛⎭⎪⎫6+5×42×1=32. (3)原式=C 1n +1·C 1n =(n +1)n =n 2+n .知识点3简单的组合应用题讲一讲3.(1)集合{0,1,2,3}的含有3个元素的子集的个数是( ) A .4 B .5 C .7 D .8(2)五个点中任何三点都不共线,则这五个点可以连成________条线段;如果是有向线段,共有________条.(3)有10名教师,其中6名男教师,4名女教师.①现要从中选2名去参加会议,有________种不同的选法;②现要从中选出男、女教师各2名去参加会议,有________种不同的选法.[尝试解答] (1)由于集合中的元素是没有顺序的,一个含有3个元素的子集就是一个从{0,1,2,3}中取出3个元素的组合,这是一个组合问题,组合数是C 34=4.(2)从五个点中任取两个点恰好连成一条线段,这两个点没有顺序,所以是组合问题,连成的线段共有C 25=10(条).再考虑有向线段的问题,这时两个点的先后排列次序不同则对应不同的有向线段,所以是排列问题,排列数是A 25=20.所以有向线段共有20条.(3)①从10名教师中选2名去参加会议的选法数,就是从10个不同元素中取出2个元素的组合数,即C 210=10×92×1=45(种). ②从6名男教师中选2名的选法有C 26种,从4名女教师中选2名的选法有C 24种.根据分步乘法计数原理,共有不同的选法C 26×C 24=6×52×1×4×32×1=90(种). 答案:(1)A (2)10 20 (3)①45 ②90—————————类题·通法————————————————— 解答简单的组合问题的思路:(1)弄清楚做的这件事是什么;(2)分析这件事是否需分类或分步完成;(3)结合两计数原理利用组合数公式求出结果.练一练4.一个口袋里装有除颜色外完全相同的7个白球和1个红球,从口袋中任取5个球. (1)共有多少种不同的取法?(2)其中恰有1个红球,共有多少种不同的取法? (3)其中不含红球,共有多少种不同的取法?解:(1)从口袋里的8个球中任取5个球,不同取法的种数是C 58=C 38=8×7×63×2×1=56. (2)从口袋里的8个球中任取5个球,其中恰有1个红球,可以分两步完成: 第1步,从7个白球中任取4个白球,有C 47种取法; 第2步,把1个红球取出,有C 11种取法.故不同取法的种数是C 47C 11=C 47=C 37=35.(3)从口袋里任取5个球,其中不含红球,只需从7个白球中任取5个白球即可,不同取法的种数是C 57=C 27=21.—————————————[课堂归纳·感悟提升]————————1.本节课的重点是组合的概念、组合数公式及其性质、简单的组合应用问题,难点是组合数的性质及应用.2.本节课要重点掌握的规律方法 (1)组合概念的理解,见讲1;(2)组合数公式及性质的应用,见讲2; (3)会解决简单的组合应用题,见讲3.3.本节课的易错点是利用组合数性质C x n =C yn 解题时,易误认为一定有x =y ,从而导致解题错误.事实上,C xn=C y n⇔⎩⎪⎨⎪⎧x =y 或x +y =n ,x ≤n ,y ≤n ,x ,y ∈N *.课下能力提升(五) [学业水平达标练]题组1 组合概念的理解1.下列问题中是组合问题的个数是( ) ①从全班50人中选出5名组成班委会;②从全班50人中选出5名分别担任班长、副班长、团支部书记、学习委员、生活委员; ③从1,2,3,…,9中任取出两个数求积; ④从1,2,3,…,9中任取出两个数求差或商. A .1 B .2 C .3 D .4解析:选B ①③与顺序无关,属于组合问题;②④与顺序有关,属于排列问题,故选B.2.下列各事件是组合问题的有________.①8个朋友聚会,每两人握手一次,一共握手多少次? ②8个朋友相互写一封信,一共写了多少封信?③从1,2,3,…,9这九个数字中任取3个,组成一个三位数,这样的三位数共有多少个? ④从1,2,3,…,9这九个数字中任取3个,组成一个集合,这样的集合有多少个? 解析:①每两人握手一次,无顺序之分,是组合问题.②每两人相互写一封信,是排列问题,因为发信人与收信人是有顺序区别的.③是排列问题,因为取出3个数字后,如果改变这3个数字的顺序,便会得到不同的三位数.④是组合问题,因为取出3个数字后,无论怎样改变这3个数字的顺序,其构成的集合都不变.答案:①④ 题组2 组合数公式3.下列计算结果为28的是( )A .A 24+A 26B .C 77 C .A 28D .C 28解析:选D C 28=8×72=4×7=28. 4.若C 2n =36,则n 的值为( ) A .7 B .8 C .9 D .10解析:选C ∵C 2n =36,∴12n (n -1)=36,即n 2-n -72=0,∴(n -9)(n +8)=0.∵n ∈N *,∴n =9.5.C 26+C 57=________.解析:C 26+C 57=6!4!×2!+7!2!×5!=6×52+7×62=15+21=36. 答案:366.已知A 2n =4C 2n -1,则n =________.解析:因为A 2n =4C 2n -1,所以n (n -1)=4×(n -1)(n -2)2,解得n =4(n =1舍去). 答案:47.已知C 4n ,C 5n ,C 6n 成等差数列,求C 12n 的值. 解:由已知得2C 5n =C 4n +C 6n ,所以2·n !5!(n -5)!=n !4!(n -4)!+n !6!(n -6)!,整理得n 2-21n +98=0, 解得n =7或n =14,要求C 12n的值,故n ≥12, 所以n =14,于是C 1214=C 214=14×132×1=91. 题组3 简单的组合应用题8.某新农村社区共包括8个自然村,且这些村庄分布零散,没有任何三个村庄在一条直线上,现要在该社区内建造“村村通”工程,共需建公路的条数为( )A .4B .8C .28D .64解析:选C 由于公路的修建问题是组合问题.故共需要建C 28=28条公路. 9.某施工小组有男工7名,女工3名,现要选1名女工和2名男工去支援另一施工小组,不同的选法有( )A .C 310种B .A 310种C .A 13A 27种D .C 13C 27种解析:选D 每个被选的人都无顺序差别,是组合问题.分两步完成:第一步,选女工,有C 13种选法;第二步,选男工,有C 27种选法.故共有C 13C 27种不同的选法.10.若x ∈A ,则1x ∈A ,就称集合A 具有伙伴关系.集合M =-1,0,13,12,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25解析:选A 将集合M 中除0,4外的元素分为四组,即-1;1;12,2;1314+C 24+C 34+C 44=15,故选A. 11.某单位需同时参加甲、乙、丙三个会议,甲需2人参加,乙、丙各需1人参加,从10人中选派4人参加这三个会议,不同的安排方法有________种.解析:从10人中选派4人有C 410种方法,对选出的4人具体安排会议有C 24C 12种方法,由分步乘法计数原理知,不同的选派方法种数为C 410C 24C 12=2 520.答案:2 52012.一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:(1)这位教练从这17名学员中可以形成多少种学员上场方案?(2)在选出11名上场队员时,还要确定其中一人为守门员,那么教练员有多少种方法做这件事情?解:(1)由于上场学员没有角色差异,所以可以形成的学员上场方案有C 1117=12 376(种). (2)教练员可以分两步完成这件事情.第1步, 从17名学员中选出11人组成上场小组,共有C 1117种选法;第2步,从选出的11人中再选出1名守门员,共有C 111种选法.所以教练员做这件事情的方法数有C 1117×C 111=136 136(种).[能力提升综合练]1.(C 2100+C 97100)÷A 3101的值为( )A .6B .101 C.16 D.1101解析:选C (C 2100+C 97100)÷A 3101=(C 2100+C 3100)÷A 3101=C 3101÷(C 3101A 33)=1A 33=16. 2.有两条平行直线a 和b ,在直线a 上取4个点,在直线b 上取5个点,以这些点为顶点作三角形,这样的三角形共有( )A .70个B .80个C .82个D .84个解析:选A 分两类,第1类:从直线a 上任取一个点,从直线b 上任取两个点,共有C 14C 25种方法;第2类:从直线a 上任取两个点,从直线b 上任取一个点,共有C 24C 15种方法.故满足条件的三角形共有C 14C 25+C 24C 15=70(个).3.假设200件产品中有3件次品,现在从中任取5件,其中至少有2件次品的抽法有( )A .C 23C 2198种B .(C 23C 3197+C 33C 2197)种 C .(C 3200-C 4197)种 D .(C 5200-C 13C 4197)种 解析:选B 分为两类:第一类,取出的5件产品有2件次品3件合格品,有C 23C 3197种抽法;第二类,取出的5件产品有3件次品2件合格品,有C 33C 2197种抽法.因此共有(C 23C 3197+C 33C 2197)种抽法.4.从进入决赛的6名选手中决出1名一等奖、2名二等奖、3名三等奖,则可能的决赛结果共有________种.解析:根据题意,知所有可能的决赛结果有C 16C 25C 33=6×5×42×1=60(种). 答案:605.某城市纵向有6条道路,横向有5条道路,构成如图所示的矩形道路网(图中黑线表示道路),则从西南角A 地到东北角B 地的最短路线共有________条.解析:要使路线最短,只能向右或向上走,途中不能向左或向下走.因此,从A 地到B 地归结为走完5条横线段和4条纵线段.设每走一段横线段或纵线段为一个行走时段,从9个行走时段中任取4个时段走纵线段,其余5个时段走横线段,共有C 49C 55=126种走法,故从A 地到B 地的最短路线共有126条.答案:1266.若C 4n >C 6n ,则n 的集合是________.解析:∵C 4n >C 6n,∴⎩⎪⎨⎪⎧C 4n >C 6n ,n ≥6,⇒⎩⎪⎨⎪⎧n !4!(n -4)!>n !6!(n -6)!,n ≥6,⇒⎩⎪⎨⎪⎧ n 2-9n -10<0,n ≥6,⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6.∵n ∈N *,∴n =6,7,8,9. ∴n 的集合为{6,7,8,9}. 答案:{6,7,8,9}7.从1,2,3,4,5,6六个数字中任选3个后得到一个由这三个数组成的最小三位数,则可以得到多少个不同的这样的最小三位数?解:从6个不同数字中任选3个组成最小三位数,相当于从6个不同元素中任选3个元素的一个组合,故所有不同的数的个数为C 36=6×5×43×2×1=20. 8.(1)在桥牌比赛中,发给4名参赛者每人一手由52张牌的四分之一(即13张牌)组成的牌.一名参赛者可能得到多少手不同的牌(用排列数或组合数表示)?(2)某人决定投资8种股票和4种债券,经纪人向他推荐了12种股票和7种债券.问:此人有多少种不同的投资方式?解:(1)本题实质上是从52个元素中任选13个元素作为一组的组合问题,共有C 1352种不同的可能.即一名参赛者可能得到C 1352手不同的牌.(2)需分两步:第1步,根据经纪人的推荐在12种股票中选8种,共有C 812种选法;第2步,根据经纪人的推荐在7种债券中选4种,共有C 47种选法.根据分步乘法计数原理,此人有C 812·C 47=17 325种不同的投资方式.。
【高中数学】组合与组合数 课件 高二下学期数学人教A版(2019)选择性必修第三册
(2)从口袋内取出3个球,使其中含有1个黑球,
有多少种取法?
(3)从口袋内取出3个球,使其中不含黑球,有
多少种取法?
作业布置:
1.总结一下知识点
2.同步练习册19页到20页随堂检
测1-5题做完。
3.课时跟踪检测第105页做完
总结归纳:
1.组合的定义,
3. 组合数公式:
①组合数乘积式公式:C
=
(−1)(−2)........(−+1)
=
!
=
(−)(−)........(−+)(−)⋯⋯⋯⋯×××
=
!(−)!
②组合数阶乘式公式:C
!
!(−)!
=
××
7
8
把5本不同的书分给5个学生,每人一本。
从7本不同的书中取出5本给某个学生。
9 从1,3,5,9中任取两个数相加,所得不同的和
1.组合数的概念:
1.组合数的定义:
2.符号:C
3.组合数公式:前边讲过的例题我们回过头来回顾一
下:
若3人发言无顺序有多少种选择方案?分析:在解决第一题时我们知道每三个按照
第六章
6.2.3-6.2.4
教学目标:
1.理解和掌握组合和组合数的概念
2.会运用组合数的公式及性质化简证
明和求值,解决简单的组合问题
探究一:组合的定义
情景导入:
在某次团代会上,某班级需要
从5名候选人中选择3人担任代
表上台发言
问题:(1)若3人发言有顺序
组合,组合数(课件)-高二数学教材配套学案 课件
经典例题
总结
题型三 “含有”或“不含有”、“至少”或“至多”组问题
1.“含有”或“不含有”某些元素的组合问题: “含”,则先将这些元素取出,再由另外元素补足; “不含”,则先将这些元素剔除,再从剩余元素中去取. 2.“至少”或“至多”含有几个元素的问题: “至多”“至少”问题的常用解题方法有两种:(1)直接分类法,注 意分类要细、要全;(2)间接法,注意找准对立面,确保不重不漏.
单的应用问题,提高学生的数学应用能力与分析
问题、解决问题的能力.(数学建模)
自主学习
一、组合的相关概念 1.组合:一般地,从n个不同元素中取出m(m≤n)个元素作为一组,叫做从n个 不同元素中取出m个元素的一个 组合.
2.相同组合:两个组合只要元素相同,不论元素的顺序如何,都是相同的. 3. 排列与组合的区别与联系 (1)共同点:两者都是从n个不同元素中取出m(m≤n)个元素. (2)不同点:排列与元素的顺序有关,组合与元素的顺序无关.
经典例题
题型一 组合概念的理解与应用
解:(1)每两人握手一次,无顺序之分,是组合问题. (2)每两人相互写一封信,是排列问题,因为发信人与收信人是有顺序区别 的. (3)是排列问题,因为取出3个数字后,如果改变这3个数字的顺序,便会得到 不同的三位数. (4)是组合问题,因为取出3个数字后,无论怎样改变这3个数字的顺序,其构 成的集合都不变.
例3 在一次数学竞赛中,某学校有12人通过了初试,学校要从中选 出5人参加市级培训,在下列条件下,各有多少种不同的选法? (1)任意选5人; (2)甲、乙、丙三人必须参加; (3)甲、乙、丙三人不能参加; (4)甲、乙、丙三人只能有1人参加.
经 典 例 题 题型三 “含有”或“不含有”、“至少”或“至多”组问题
6.2.3-6.2.4 组合与组合数(课件)高二数学(人教A版2019选择性必修第三册)
1
2
3
C6 C5 C3
3
) A3 90
(法1)先分组,后分配:(
3
A3
2
2
2
C
C
C
(法2)甲、乙、丙分步选: 6
4
2 90
2.分组及分配问题——③部分均匀分组
[例2]有6本不同的书,
(5)分给5个人,每人至少一本,有___种不同的分法.
先分组(2,1,1,1,1),后分配:
4
4
6
5
6
6
C
无外科专家: 6 1
共90 24 1 115
共C106 80 15 115
2.分组及分配问题——①完全不均匀分组
[例2]有6本不同的书,
(1)分成3份,每份各1本、2本、3本,有___种不同的分法;
C C C 60
1
6
2
5
3
3
(2)分给甲、乙、丙3人, 一人1本, 一人2本, 一人3本, ___种不同的分法;
(法1)先选2本为一组,其余4本各成1组;再对5组书进行分配.
C62 A55 1800
(法2)依次分组(涉及均匀分组);再对5组书进行分配.
C61 C51 C41 C31 C22 5
部分均匀分组:各组依次选取,
A
1800
5
4
有k组均匀, 则除以k的全排列.
A4
2.分组及分配问题——③部分均匀分组
2
3.从4男3女中选出4人担任亚青会志愿者,若选出的4人中既有男生又
有女生,则不同的选法共有_____种.
7 65
高二数学选修课件时组合与组合数公式
适用范围
适用于组合元素个数较少,且 可以直观列举出所有可能结果 的情况。
优点
直观、易懂,能够直接得到问 题的答案。
缺点
当组合元素个数较多时,列举 过程可能变得繁琐,容易出错
。
插空法
01
定义
插空法是一种求解组合问题的 方法,它适用于某些特殊的组 合问题,如“不相邻”问题等 。该方法的基本思想是将需要 排列的元素先排好,然后将需 要插入的元素插入到已排好元 素的空隙中。
存在问题分析
在教学过程中,我发现部分学生在理解和运用组合数公式时存在一定困难。这可能是由于学生对阶乘运算和代数 运算掌握不够熟练所致。针对这些问题,我将加强相关知识点的讲解和练习,帮助学生更好地掌握所学知识。
XX
THANKS
感谢观看ቤተ መጻሕፍቲ ባይዱ
REPORTING
图论算法
图论算法是解决图论问题的有效方法 ,如最短路径算法、最小生成树算法 等。这些算法在组合优化问题中也有 广泛应用。
组合优化问题
组合优化是图论与组合数学的重要交 叉点,涉及如何在满足一定条件下寻 找最优的组合方案。例如,旅行商问 题、最小生成树问题等。
代数结构与组合设计
代数结构基础
代数结构是研究数学对象之间运算规律的数学分支,如群、环、域等。这些结构与组合数学中的计数、排列、组合等 问题密切相关。
,可以吸引玩家的兴趣并提高游戏的趣味性。例如,一些益智类游戏就
需要运用组合数学的知识来设计关卡和难度等级。
XX
PART 05
拓展:组合数学与其他学 科联系
REPORTING
图论与组合优化
图论基本概念
图论是研究图的结构、性质及其应用 的数学分支,与组合数学密切相关。 图由顶点和边组成,可用于表示对象 之间的关系。
高二数学必修三组合知识点
高二数学必修三组合知识点组合是高二数学必修三中的重要知识点之一,本篇文章将详细介绍组合的概念、性质以及应用。
一、组合的概念在概率论中,组合指的是从一个集合中选取若干个元素组成一个子集。
组合的数量可以用组合数来表示,记作C(n, k),其中n为集合的大小,k为选取的元素个数。
组合数的计算公式为C(n, k) = n! / (k! * (n-k)!),其中"!"表示阶乘运算。
二、组合的性质1. 对称性:C(n, k) = C(n, n-k),即从n个元素中选取k个与选取n-k个的组合数相等。
2. 互补性:C(n, k) + C(n, k+1) = C(n+1, k+1),即从n个元素中选取k个的组合数加上选取k+1个的组合数等于从n+1个元素中选取k+1个的组合数。
3. 递推性:C(n, k) = C(n-1, k-1) + C(n-1, k),即从n个元素中选取k个的组合数等于从n-1个元素中选取k-1个的组合数加上选取k个的组合数。
三、组合的应用1. 排列组合问题:组合数可以用于计算排列组合问题,如从n 个元素中选取k个元素进行排列的方式数目。
2. 概率计算:组合数可用于计算事件发生的概率,如从一副扑克牌中抽取几张牌中包含某个特定的组合的概率。
3. 数学证明:组合数在数学证明中有广泛的应用,可以用于推导和证明各种数学定理。
四、组合的例题解析例题1:某班有10个男生和8个女生,从中选取5个同学参加运动会,其中至少有2个男生。
问有多少种可能的选择方案。
解析:根据题意,我们可以分别计算选取2个男生加上3个女生、3个男生加上2个女生、4个男生加上1个女生、5个男生这四种情况的组合数,然后将它们相加即可得到总的方案数。
例题2:从整数1到10中选取3个数,求这3个数的和为偶数的方案数。
解析:我们可以分别计算奇数个数和偶数个数的选取情况,并将它们相加。
选取奇数个数的情况即从5个奇数中选取3个数的组合数;选取偶数个数的情况即从5个偶数中选取1个数的组合数乘以从5个奇数中选取2个数的组合数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
課堂練習:
8.九张卡片分别写着数字0,1,2,…,8,从中取出三 张排成一排组成一个三位数,如果6可以当作9使用,问 可以组成多少个三位数?
解:可以分为两类情况:①
若取出6,则有2(A
2 8
+
C12C17C17 )
种方法;
②若不取6,则有
C17
组合数计算公式
复习
(1)C m
Am n
n(n 1)(n 2)(n m 1)
n
An
m!
(2)C m m n!
n m!(n m)!
组合数性质1: C
m n
C nm n
c c c 组合数性质2: m m m1
n1
n
n
C
0 n
=1
常用的组合数性质公式还有:
补充
1、Cn0 Cn1 Cnn 2n 2、Cn0 Cn2 Cn1 Cn3 3、kCnk nCnk11
3.一个集合有5个元素,则该集合的非空真子集共有 30 个.
4.平面内有两组平行线,一组有m条,另一组有n条,这
两组平行线相交,可以构成 Cm2 Cn2 个平行四边形 .
5.空间有三组平行平面,第一组有m个,第二组有n个,
第三组有t个,不同两组的平面都相交,且交线不都平行,
可构成
Cm2 Cn2C
2 t
2 6
C
2 4
C
2 2
=
90
种方法;
②“1、2、3型”即(4)中的分配情况,有C16
C
2 5
C33
A
3 3
=
360
种方法;
③“1、1、4型”,有
C
4 6
A
3 3
=
90
种方法,
所以,一共有90+360+90=540种方法.
例題講解:
例2、(1)10个优秀指标分配给6个班级,每个班级至少 一个,共有多少种不同的分配方法?
种分法C16.+ 2C62 + 3C36 + C64 = 126
例題講解:
例3.(1)四个不同的小球放入四个不同的盒中,一共 有多少种不同的放法? (2)四个不同的小球放入四个不同的盒中且恰有一个空 盒的放法有多少种?
解:(1)根据分步计数原理:一共有 44 = 256 种方法;
(2)(捆绑法)第一步:从四个不同的小球中任取两个
一般地:将mn个元素均匀分成n组(每
组m个元素),共有
Cmmn
Cm mn-m
……
A
n n
Cmm
种方法
例題講解:
例1.6本不同的书,按下列要求各有多少种不同 的选法:
(3)分为三份,一份1本,一份2本,一份3本; (4)分给甲、乙、丙三人,一人1本,一人2本, 一人3本;
解:(3)这是“不均匀分组”问题,一共有
(2)10个优秀指标分配到一、二、三3个班,若名 额数不少于班级序号数,共有多少种不同的分配方法?
分析:(1)这是同种元素的“不平均分组”问题.本小题可
构造数学模型 ,用5个隔板插入10个指标中的9个空隙,
既有 C59 种方法。按照第一个隔板前的指标数为1班的
指标,第一个隔板与第二个隔板之间的指标数为2班的指
2n1
例題講解:
例1.6本不同的书,按下列要求各有多少种 不同的选法: (1)分给甲、乙、丙三人,每人2本;
解:(1)根据分步计数原理得到:
C
2 6
C24
C
2 2
=
90 种
例題講解:
例1.6本不同的书,按下列要求各有多少种 不同的选法:
(2)分为三份,每份2本;
(2)分给甲、乙、丙三人,每人两本有 C26C24C22 种方法,
C16
C
2 5
C33
=
60
种方法.
(4)在(3)的基础上再进行全排列,所以一共有
C16
C52
C
3 3
A
3 3
=
360 种方法.
例題講解:
例1.6本不同的书,按下列要求各有多少种不同 的选法: (5)分给甲、乙、丙三人,每人至少1本
解:(5)可以分为三类情况:
①“2、2、2型”即(1)中的分配情况,有C
这个过程可以分两步完成:第一步分为三份,每份两本,
设有x种方法;第二步再将这三份分给甲、乙、丙三名同
学有
A
3 3
种方法.根据分步计数原理
可得:C26C24C22
=
xA
3 3
,所以.
x=
C26
C24 C22
A
3 3
= 15
因此,分为三份,每份两本一共有15种方法
点评:
本题是分组中的“均匀分组”问题.
个平行六面体
課堂練習:
6.高二某班第一小组共有12位同学,现在要调换座位, 使其中有3个人都不坐自己原来的座位,其他9人的座位
不变,共有C132×2 = 440种不同的调换方法
7.某兴趣小组有4名男生,5名女生: (1)从中选派5名学生参加一次活动,要求必须有2名男 生,3名女生,且女生甲必须在内,有 36 种选派方法; (2)从中选派5名学生参加一次活动, 要求有女生但人 数必须少于男生,有__4_5_种选派方法; (3)分成三组,每组3人,有__2_8_0___种不同分法.
“捆绑”在一起看成一个元素有C
2 4
种方法;第二步:从
四个不同的盒中任取三个将球放入有
A
3 4
种方法,以,
一共有
C
2 4
A
3 4
=144种方法
例題講解:
例4.马路上有编号为1,2,3,…,10的十盏路 灯,为节约用电又不影响照明,可以把其中3盏灯 关掉,但不可以同时关掉相邻的两盏或三盏,在 两端的灯都不能关掉的情况下,有多少种不同的 关灯方法?
解:(插空法)本题等价于在7只亮着的路灯之间
的6个空档中插入3只熄掉的灯,故所求方法总数
为C
3 6
=
20
种方法
課堂練習:
1.5个人分4张同样的足球票,每人至多分一张,而且
票必须分完,那么不同的分法种数是 C54 = 5 .
2.某学生要邀请10位同学中的6位参加一项活动,其中 有2位同学要么都请,要么都不请,共有 98 种邀请方法.
组合与组合数
复习
从n个不同元素中取出m(m≤n)个元素
并成一组,叫做从n个不同元素中取出m 个元素的一个组合
注 ①n个不同元素
②m≤n
③组合与元素的顺序无关 排列与元素的顺序有关
④两个组合的元素完全相同为相同组合
从n个不同元素中取出m(m≤n)个元素的
所有组合的个数,叫做从n个不同元素中取
出m个元素的组合数 表示方法 Cmn
标,以此类推,因此共有
C
5 9
= 126
种分法.
例題講解:
(2)先拿3个指标分给二班1个,三班2个,然后,问题
转化为7个优秀指标分给三个班,每班至少一个.由(1)
可知共有
C
2 6
=
15
种分法
注:第一小题也可以先给每个班一个指标,
然后,将剩余的4个指标按分给一个班、两
个班、三个班、四个班进行分类,共有