概率论与数理统计7.4
理学概率论与数理统计教程茆诗松第7章
7.2.2 两个正态总体均值差的检验
检验 法
u检 验
t检 验
条 原假 件 设H 0
1, 2
已 知
1, 2
未 知
1 2
1 2 1 2 1 2
1 2 1 2 1 2
备择 检验统 假设 H 1 计量
拒绝域
1 2 1 2 1 2
1 2 1 2 1 2
x y { u u 1 }
设承受方有理由猜测甲地发送的讯号值为8, 问能否承受这猜测?
解:这是一个假设检验的问题,总体X ~N(2),
检验假设: H 0: 8v .s. H 1: 8
这个双侧检验问题的拒绝域为
|u|u1/2
取置信水平 ,那么查表知 u。
用观测值可计算得
x 8 0 1 5 ,u 5 8 .1 5 8 0 .2 1 .6 7 7 1
W |x0| snt1/2(n1)
它可以改写为
W xs n t1 /2 (n 1 )0 xs n t1 /2 (n 1 )
并且有 P0 (W) 1, 这里0并无限制.
假设让 0 在(- )内取值,就可得到
置信区间: x
s n
t1/2(n1)
的1-
反之假设有一个如上的1- 置信区间,也可获得
u 值未落入拒绝域内,故不能拒绝原假设, 即承受原假设,可认为猜测成立。
二、 未知时的t 检验
由于 未知,一个自然的想法是将〔7.2.4〕中
未知的 替换成样本标准差s,这就形成t 检验
统计量
t n x 0 s
(7.2.9)
三种假设的检验拒绝域分别为
tt1n1, t tn1, |t|t1/2n1 .
➢ 当备择假设 H 1在原假设 H 0 一侧时的检验称 为单侧检验;
概率论与数理统计
2.和(并):
3.互斥(互不相容):对立:
事件的运算:
伯努利大数定律:当试验次数n足够大时,事件发生的频率就约等于事件发生的概率。
全概率公式、贝叶斯公式
定义:
引入随机变量后,可用随机变量的
等式或不等式来表达随机事件;
随机变量的函数一般也是随机变量
0-1分布是n=1时的二项分布
定义:性质:
定义:
F(x)是X的分布函数,X是连续型随机变量,f(x)是它的概率密度函数,简称概率密度
性质:
均匀分布:
标准正态分布N(0,1)
标准正态分布的分位数
举例:
期望反映了随机变量取值的平均,又称均值。
概率论与数理统计习题详解(周概容)——习题7解
—习题解答●7.1— 7.1 假设总体X服从参数为??的泊松分布,nXXX21??是来自总体X的简单随机样本,X是样本均值,2S是样本方差,对于任意实数??,证明12SXE是??的无偏估计量.熟知,对于任何总体,样本均值X是总体数学期望的无偏估计量,样本方差2S是总体方差的无偏估计量;对于泊松分布的总体,数学期望和方差都等于分布参数??,因此.11122SXSXEEE 7.2 设总体X服从参数为??的泊松分布;21nXXX??是来自X的简单随机样本,求2??的无偏估计量.熟知XXDE.设X为样本均值,则.,2222221nnXnXnXXXEEDE 由此可见2??的无偏估计量为.XnX12?? 7.3 设21mXXX??是来自正态总体2NX的简单随机样本,统计量1121niiiXXkD 是总体方差2??的无偏估计量,求常数k.由条件知:222XE.由于统计量D是总体方差2??的无偏估计量,则.22112221112211121122222 nkkXXXXkXXkDniniiiiiniiiEEE 由此可见121nk.7.4 总体2??aNX2??bNY;基于分别来自总体X和Y的两个相互独立的简单随机样本21mXXX??和21nYYY??,得样本均值X和Y及样本方差2xS和2yS;证明总体X和Y的联合样本方差1121222yxxySnSmnmS 是总体X和Y的共同方差2??的无偏估计量,并且计算其方差.熟知,对于任意总体,样本方差2xS和2yS都是2??的无偏估计量,可见22221121yxxySnSmnmSE,—习题解答●7.2—即联合样本方差2xyS是2??的无偏估计量.由正态总体的抽样分布,知2222 xySnm?? 服从自由度为2 nm=??的2??分布;而自由度为??的2??变量的方差等于2??:事实上,设??UUU21??是独立标准正态分布随机变量,则服从自由度为??的2??分布的随机变量X可以表示为:22221??UUUX.由于10NUi,可见21102iUUUiiiEDE;.33de23e21de2122223244222 iuuuiUuuuuuUEE ??????.由此可见21UXEE.因此.22222222422222222 nmnmnmnmSnmnmSxyxy????????????DDD2 7.5 设总体X 服从参数为pm的二项分布,其中m已知;21nXXX??是来自X的简单随机样本,1 求未知参数p的最大似然估计量;2 证明所得估计量是无偏的.1 总体X的概率函数可以表示为.,若不然;,若;0 10 1Cmxpppxpxmxxm?? 参数p的似然函数为XnmnXnniXmniipppXppLi1C11;,其中X为样本均值.对数似然方程为0111ln1lnlnClnln1pXnmnpXnppLpXnm npXnpLniXmi;其解mXp即未知参数p的最大似然估计量.2 由于总体X的数学期望为mp,而对于任何总体X,样本均值X是其数学期望的无偏估计量,可见X 是mp的无偏估计量,从而mXp是未知参数p的无偏估计量.—习题解答●7.3—7.6 设总体X服从区间0??上的均匀分布,21nXXX??是来自X的简单随机样本,1 求未知参数??的最大似然估计量;2 假如所得估计量是有偏估计量,将其修正为无偏估计量. 1 总体X的概率密度函数为.,若不然;,若;001xxf 未知参数??的似然函数为,若不然.;,若;0 0111nnniiXXXfL?? 易见,似然函数??L无驻点.需要直接求??L的最大值点,记nnXXXXmax21;由于nX,且??L随??减小而增大,所以当??nX 时??L达到最大值,故??nX就是未知参数??的最大似然估计量.2 现在验证估计量??nX的无偏性.为此,首先求??nX的概率分布.总体X的分布函数为.,若,,若,若 1 0 0 0 xxxxxF 由于nXXX21??独立同分布,可见??nX的分布函数为,11nnnnnxFxXxXxXxXxXxFPPPP???? 其概率密度为.,若不然,,若0 0dd11xnxxFxFnxFxxfnnnnn 因此,有1dd01??nnxnxxxxxfXnnnnE.这样,??nX是??的有偏估计量.容易验证,??的无偏估计量为1nXnn??.7.7 已知随机变量X的概率密度为若不然.若0 101xxxf 试根据来自X的简单随机样本21nXXX??,求未知参数??的最大似然估计量.—习题解答●7.4—未知参数??的似然函数和对数似然函数为.;;10ln1lnln21n1112111niinnniiXXXXnLXXXXfL??????????由此,得似然方程n1 0lnlniiXnL;其惟一解是niinXnXXn11lnln??????.于是,就是未知参数??的最大似然估计量.7.8 设ugt??是严格单调函数且有惟一反函数.证明,若是未知参数??的最大似然估计量,则gtgT????是的最大似然估计量.设??L是未知参数??的似然函数.记th是??gt??的惟一反函数,则??LthL??.设D是函数??gt??的值域,由“是未知参数??的最大似然估计量”,可见maxmax??thLLLThLDt,即gT??是??gt??的最大似然估计量.7.9 设21nXXX??是来自总体X的简单随机样本,总体X的概率密度为:;,,,若若xxxfx0e 试求未知参数??的最大似然估计量1和矩估计量2. 1 参数??的似然函数为.nXniXniiniiiXfL??1ee11 由此可见,其似然方程无解,需要直接求其似然函数,,,若不然若0 exp211nniiXXXnXL?? 的最大值.当nXXX21??时0L,而当nXXX21??,即nXXXmin21??时??L随??的增大而增大,可见当nXXXmin21??时??L达到最大值.参数??的最大似然估计量为nXXXmin??211??.—习题解答●7.5— 2 求参数??的矩估计量.总体X 的数学期望为:.1edeeded xxxxxxxxxxxfXE 用样本均值X估计XE:1??2X,可得参数??的矩估计量为1??2??X=??.7.10设每次射击的命中率为p.接连不断独立地进行射击直到命中目标为止,nkkk21??是n轮射击各轮实际射击的次数,求命中率p 的最大似然估计量和矩估计量.1 设X表示实际射击的次数,则X服从参数为p的几何分布,而nkkk21??是来自总体X的简单随机样本.总体X的概率函数为2111xpppxpx.命中率p的似然函数为.,1lnlnln1111111pnkpnpLpppppkppLniininknkniiniii将该式两侧对p求导数并令其等于0,得似然方程:.011dlnd1pnkpnppLnii 其惟一解niiknp1 ?? 就是命中率p的最大似然估计量. 2 设X是实际射击的次数,而nkkk21??是来自总体X的简单随机样本,则样本均值为pXknXnii111E,.于是,由pX??1 ??,得未知参数p的矩估计量niiknXp1 1??.7.11 设来自总体X的简单随机样本21nXXX??,总体X的概率分布为22112321????????X,其中0lt??lt1.试求—习题解答●7.6—1 未知参数??的最大似然估计量1;2 未知参数??的矩估计量2;3 当样本值为(112132)时的最大似然估计值1和矩估计值2. 1 求参数??的最大似然估计量.分别以2121n和表示21nXXX?? 中1,2和3出现的次数,则似然函数和似然方程为.,,01222dlnd1ln22ln22lnln1211221212121222222212122121 nLnLLnn 似然方程的惟一解就是参数??的最大似然估计量:n22??211.2 求参数??的矩估计量.总体X的数学期望为221314XE.在上式中用样本均值X估计数学期望XE,可得??的矩估计量:321??2X. 3 对于样本值(112132),由上面得到的一般公式,可得最大似然估计值;321223222??211n?????? 矩估计值326523321??2X??.7.12 设随机变量X的分布函数为.,若,,若=1 0 111xxxxF 其中参数1.设nXXX21??为来自总体X的简单随机样本,求 1 未知参数??的矩估计量;2 未知参数??的最大似然估计量.由条件知随机变量X的概率密度为.,若,,若1 0 11xxxxf 1 X的数学期望为1d11xxxXE.用样本均值X估计XE得—习题解答●7.7— 1X,1XX?? 就是未知参数??的矩估计量.2 未知参数??的似然函数和对数似然函数为;,,,若不然;若ininnnniiXnLXXXXXXXfL1211211ln1lnln 01 似然方程为0lndlnd1niiXnL??????,其唯一解niiXn1ln???? 就是未知参数??的最大似然估计量.7.13 设随机变量X的分布函数为.,,,=xxxxF 0 122 其中0.设nXXX21??为来自总体X的简单随机样本,求未知参数??的最大似然估计量.由条件知随机变量X的概率密度为.,若,,若xxxxf 0 232 未知参数??的似然函数为.若若,,,nnnnnniiXXXXXXXXXXfL ***********??????似然函数??L显然无驻点,需要直接求其最大值点.由??L值随??增大而增大,可见??L的最大值点为nXXXmin??21??.于是nXXXmin??21??就是未知参数??的最大似然估计量.7.14 为观察一种橡胶制品的耐磨性,从这种产品中各随意抽取了5件,测得如下数据:—习题解答●7.8— 185.82,175.10,217.30,213.86,198.40.假设产品的耐磨性2NX,求2和的无偏估计值.样本容量n5.经计算,得样本均值X198.10,样本方差23.3240063.1822S.于是??的无偏估计值;10.198X?? 23.3242??S是2??的无偏估计.7.15 对某种袋装食品的质量管理标准规定:每袋平均重500克,标准差10克.现在从一商店的一批这种袋装食品中随意抽取了14袋,测量每袋的重量,得如下数据:500.90,490.01,501.63,500.73,515.87,511.85,498.39,514.23,487.96,525.01,509.37,509.43,488.46,497.15.假设这种袋装食品每袋的重量X服从正态分布2N.试利用??和??的0.95置信区间,说明抽查结果是否表明这一批袋装食品每袋平均重??和标准差??符合标准.经计算样本均值,64.503??X样本标准差11.11??S正态总体的数学期望??的1置信区间的一般形式为:XX,其中??的表达式区分202已知和2??未知两种情形:未知,若,已知,若 1 00nStnun 其中??u是标准正态分布水平??双侧分位数(附表3),1??nt??是自由度为1n??的t分布水平??双侧分位数(附表4)。
《概率论与数理统计》第七章假设检验.
《概率论与数理统计》第七章假设检验.第七章假设检验学习⽬标知识⽬标:理解假设检验的基本概念⼩概率原理;掌握假设检验的⽅法和步骤。
能⼒⽬标:能够作正态总体均值、⽐例的假设检验和两个正态总体的均值、⽐例之差的假设检验。
参数估计和假设检验是统计推断的两种形式,它们都是利⽤样本对总体进⾏某种推断,然⽽推断的⾓度不同。
参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。
⽽在假设检验中,则是预先对总体参数的取值提出⼀个假设,然后利⽤样本数据检验这个假设是否成⽴,如果成⽴,我们就接受这个假设,如果不成⽴就拒绝原假设。
当然由于样本的随机性,这种推断只能具有⼀定的可靠性。
本章介绍假设检验的基本概念,以及假设检验的⼀般步骤,然后重点介绍常⽤的参数检验⽅法。
由于篇幅的限制,⾮参数假设检验在这⾥就不作介绍了。
第⼀节假设检验的⼀般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误⼀、假设检验的基本概念(⼀)原假设和备择假设为了对假设检验的基本概念有⼀个直观的认识,不妨先看下⾯的例⼦。
例7.1 某⼚⽣产⼀种⽇光灯管,其寿命X 服从正态分布)200 ,(2µN ,从过去的⽣产经验看,灯管的平均寿命为1550=µ⼩时,。
现在采⽤新⼯艺后,在所⽣产的新灯管中抽取25只,测其平均寿命为1650⼩时。
问采⽤新⼯艺后,灯管的寿命是否有显著提⾼?这是⼀个均值的检验问题。
灯管的寿命有没有显著变化呢?这有两种可能:⼀种是没有什么变化。
即新⼯艺对均值没有影响,采⽤新⼯艺后,X 仍然服从)200 ,1550(2N 。
另⼀种情况可能是,新⼯艺的确使均值发⽣了显著性变化。
这样,1650=X 和15500=µ之间的差异就只能认为是采⽤新⼯艺的关系。
究竟是哪种情况与实际情况相符合,这需要作检验。
假如给定显著性⽔平05.0=α。
在上⾯的例⼦中,我们可以把涉及到的两种情况⽤统计假设的形式表⽰出来。
《概率论与数理统计》(第三版)课后习题答案
习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。
概率论与数理统计 7.2 数理统计中的三大分布
7.2 数理统计中的三大抽样分布
在数理统计中,以标准正态变量为基石而构 造的三个著名统计量有着广泛的应用,这是因为 这三个统计量不仅有明确背景,而且其抽样分布 的密度函数有明显的数学表达式,它们被称为统 计中的“ 三大抽样分布 ” 。
1. 2 分布
数理统计
2分布是由正态分布派生出来的一种分布.
t1 (n) t (n)
o t (n)
x
t分布的上分位点t (n)可查表
求得,例t0.025(15) 2.1315.
当n 45时,对于常用的的值,可用正态近似 t (n) z
例3:X ~ t(15)
(1)求 0.01的上侧分位数; (2) P( X ) 0.05,求 ; (3)P( X ) 0.95 ,求 .
记为 t ~ t(n). t分布概率密度函数为:
f (t)
[(n 1)
2]
(1
t
2
)
n1 2
,
t
(n 2) n n
t 分布的图像
y N (0,1) 数理统计
t(n)
t分布的性质: 1. 设t ~ t(n),则E(t) 0, D(t) n (n 2) (n 2)
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
F分布的上分位点的性质:
F1 (n1, n2 )
1 F (n2 , n1 )
F分布的上分位点可查表求得.例,
F0.95 (12,9)
1 F0.05 (9,12)
1 2.80
0.357
例4. F ~ F (24,15),求 1,2 使 P(F 2 ) 0.025 P(F 1) 0.025
中国矿业大学周圣武概率论与数理统计_图文
定义2 设 都是参数θ的无偏估计量,若有
则称
有效。
例:160页,例7、例8
定义3 设
为参数θ的估计量,
若对于任意θ∈Θ,当
则称
的一致估计量。
例:由大数定律知
一致性说明:对于大样本,由一次抽样得到的估 计量 的值可作θ的近似值
例5 设 X1, X2, …, Xn 是取自总体 X 的一个样本,
⑴ 验证
试求θ的极大似然估计值。 解
极大似然估计的不变性
练习
1.设总体X在
上服从均匀分布,
X1 , X 2 ,L X n是来自X的样本,试求 q 的矩估计量
和最大似然估计.
2.设X1,X2,…Xn是取自总体X的一个样本
其中 >0, 求 的极大似然估计.
课堂练习
P156:5,6
作业
P178:1,2,5,6
Fisher
最大似然法的基本思想:
问题:请推断兔子 是谁打中的?
例6 袋中放有白球和黑球共4个,今进行3次有放回 抽样,每次抽取1个,结果抽得2次白球1次黑球,试 估计袋中白球个数。 解 设袋中白球个数为m,
X为3次抽样中抽得的白球数,则
当袋中白球数m分别为1,2,3时, p对应的值分别为1/4,2/4,3/4, X对应的分布律见下表
中国矿业大学周圣武概率论与数理统计_图文 .ppt
第七章 参数估计
§7.1 点估计 §7.2 估计量的评选标准 §7.3 区间估计 §7.4 单个正态总体参数的区间估计 §7.4 两个正态总体参数的区间估计
统计推断
矩估计 点估计 最大似然估计
参数估计
最小二乘估计
区间估计
参数假设检验
假设检验 非参数假设检验
《概率论与数理统计》教案
《概率论与数理统计》教案第一章:概率的基本概念1.1 随机现象与样本空间1.2 事件及其运算1.3 概率的定义与性质1.4 条件概率与独立性第二章:随机变量及其分布2.1 随机变量的概念2.2 离散型随机变量及其分布2.3 连续型随机变量及其分布2.4 随机变量的数字特征(期望、方差)第三章:多维随机变量及其分布3.1 多元随机变量的概念3.2 联合分布及其性质3.3 独立性及其检验3.4 随机向量的数字特征(协方差、相关系数)第四章:大数定律与中心极限定理4.1 大数定律4.2 中心极限定理4.3 样本均值的分布4.4 样本方差的分布第五章:假设检验与置信区间5.2 常用的检验方法5.3 置信区间的估计5.4 功效分析与错误类型第六章:抽样调查与样本分布6.1 抽样调查的基本概念6.2 随机抽样方法6.3 样本分布的性质6.4 抽样误差的估计第七章:回归分析与相关分析7.1 线性回归模型7.2 回归参数的估计7.3 回归模型的检验与诊断7.4 相关分析与判定系数第八章:时间序列分析8.1 时间序列的基本概念8.2 平稳时间序列的模型8.3 时间序列的预测8.4 季节性分析与指数平滑第九章:非参数统计与生存分析9.1 非参数统计的基本概念9.2 非参数检验方法9.4 生存函数与生存分析的估计第十章:贝叶斯统计与统计软件应用10.1 贝叶斯统计的基本原理10.2 贝叶斯参数估计与预测10.3 贝叶斯统计的应用10.4 统计软件的使用与实践重点和难点解析一、随机现象与样本空间补充说明:事件的关系与包含关系,概率的基本性质(互补性、传递性等),概率的计算方法。
二、随机变量及其分布补充说明:概率质量函数与概率密度函数的区别与联系,分布函数的性质,随机变量的期望与方差的计算。
三、多维随机变量及其分布补充说明:二维随机变量的联合分布函数,条件概率的计算,独立性的数学表述与检验方法。
四、大数定律与中心极限定理补充说明:大数定律的数学表述及其含义,中心极限定理的条件与结论,样本均值与标准差的性质。
2020年大学必修课概率论与数理统计期末考试卷及答案(精华版)
2020年大学必修课概率论与数理统计期末考试卷及答案(精华版)一、单选题1、在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为的样本,则下列说法正确的是___ __(A)方差分析的目的是检验方差是否相等 (B)方差分析中的假设检验是双边检验(C)方差分析中包含了随机误差外,还包含效应间的差异(D)方差分析中包含了随机误差外,还包含效应间的差异【答案】D2、设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为(A )()211n i i X X n =-∑ (B )()2111n i i X X n =--∑ (C )211n i i X n =∑ (D )2X 【答案】A3、设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121ni i n mi i n m V n =+=+X =X ∑∑服从的分布是(A) (,)F m n (B) (1,1)F n m -- (C) (,)F n m (D)(1,1)F m n -- 【答案】C4、若X ~()t n 那么2χ~A )(1,)F nB )(,1)F nC )2()n χD )()t n 【答案】A5、设离散型随机变量(,)X Y 的联合分布律为 (,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3X Y P αβ且Y X ,相互独立,则A ) 9/1,9/2==βαB ) 9/2,9/1==βαim 211.()im r e ij i i j S y y ===-∑∑2.1()rA i i i S m y y ==-∑C ) 6/1,6/1==βαD ) 18/1,15/8==βα 【答案】A6、在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为的样本,则下列说法正确的是___ __(A)方差分析的目的是检验方差是否相等 (B)方差分析中的假设检验是双边检验(C)方差分析中包含了随机误差外,还包含效应间的差异(D)方差分析中包含了随机误差外,还包含效应间的差异【答案】D7、在假设检验问题中,犯第一类错误的概率α的意义是( ) (A)在H 0不成立的条件下,经检验H 0被拒绝的概率 (B)在H 0不成立的条件下,经检验H 0被接受的概率 (C)在H 00成立的条件下,经检验H 0被拒绝的概率 (D)在H 0成立的条件下,经检验H 0被接受的概率 【答案】C8、在一次假设检验中,下列说法正确的是______ (A)既可能犯第一类错误也可能犯第二类错误(B)如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误 (C)增大样本容量,则犯两类错误的概率都不变(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 【答案】A9、对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受00:H μμ=,那么在显著水平0.01下,下列结论中正确的是(A )必须接受0H (B )可能接受,也可能拒绝0H (C )必拒绝0H (D )不接受,也不拒绝0H 【答案】A10、设12,,,n X X X ⋅⋅⋅是取自总体X 的一个简单样本,则2()E X 的矩估计是im 211.()im r e ij i i j S y y ===-∑∑2.1()rA i i i S m y y ==-∑(A )22111()1n i i S X X n ==--∑(B )22211()n i i S X X n ==-∑(C )221S X + (D )222S X + 【答案】D 二、填空题1、设随机变量X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分布,X 2服从正态分布N (0,22),X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则D (Y )=,则D (Y )= 【答案】462、设X的概率密度为2()xf x -=,则()D X =【答案】1/23、设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令221234()(),Y X X X X =++- 则当C = 时CY ~2(2)χ。
概率论与数理统计课后习题答案 第七章
习题 7.2 1. 证明样本均值 是总体均值
证:
的相合估计
由定理
知 是 的相合估计
2. 证明样本的 k 阶矩
是总体 阶矩
证:
的相合估计量
3. 设总体 (1)
(2)
是
的相合估计
为其样品 试证下述三个估计量
(3)
都是 的无偏估计,并求出每一估计量的方差,问哪个方差最小? 证:
都是 的无偏估计
故 的方差最小.
大?(附
)
解: (1) 的置信度为 的置信区间为
(2) 的置信度为 故区间长度为
的置信区间为
解得
四、某大学从来自 A,B 两市的新生中分别随机抽取 5 名与 6 名新生,测其身高(单位:厘米)后,算的
.假设两市新生身高分别服从正态分布:
,
其中 未知 试求
的置信度为 0.95 的置信区间.(附:
解:
.从该车床加工的零件中随机抽取
4 个,测得长度分别为:12.6,13.4,12.8,13.2.
试求: (1)样本方差 ;(2)总体方差 的置信度为 95%的置信区间.
(附:
解: (1)
(2) 置信度 的置信区间为
三、设总体
抽取样本
为样本均值
(1) 已知
求 的置信度为 的置信区间
(2) 已知
问 要使 的置信度为 的置信区间长度不超过 ,样本容量 n 至少应取多
施磷肥的
620 570 650 600 630 580 570 600 600 580
设不施磷肥亩产和施磷肥亩产均服从正态分布,其方差相同.试对施磷肥平均亩产与不施磷肥平均
亩产之差作区间估计(
).
解:
查表知
概率论与数理统计第七章
参数估计
湖南商学院信息系 数学教研室
第七章
第一节
第二节
参数估计
矩估计
极大似然估计
第三节
第四节
估计量的优良性准则
正态总体的区间估计(一)
第五节
正态总体的区间估计(二)
总体是由总体分布来刻画的.
总体分布类型的判断──在实际问题中, 我们根据问题本身的专业知识或以往的经验 或适当的统计方法,有时可以判断总体分布 的类型.
本章讨论:
参数估计的常用方法.
估计的优良性准则. 若干重要总体的参数估计问题.
参数估计问题的一般提法 设有一个统计总体,总体的分布函数 为 F(x, ),其中 为未知参数 ( 可以是 向量) . 现从该总体抽样,得样本 X1, X2 , … , Xn
要依据该样本对参数 作出估计,或估计
(m=1,2, ,k)
步骤二、 算出m阶样本原点矩:
1 n m Am X i m 1,2, , k n i 1 步骤三、令 am (1,2,,k) = Am
(m=1,2, ,k)得关于 1,2,,k的 方程组 步骤四、解这个方程组,其解记为
ˆ ( X , X ,, X ) i 1 2 n ,i 1,2, , k
n
1 2 ˆ : ˆ 其中 (X i X ) n i 1
矩法的优点是简单易行,并不需要 事先知道总体是什么分布 . 缺点是,当总体类型已知时,没有 充分利用分布提供的信息 . 一般场合下, 矩估计量不具有唯一性 .
其主要原因在于建立矩法方程时, 选取那些总体矩用相应样本矩代替带 有一定的随意性 .
数和2的矩估计为
例如 求正态总体 N(,2)两个未知参
概率论和数理统计(李慧斌)复习大纲-第7章-置信区间-Confidence-Intervals
概率论与数理统计(李慧斌)复习大纲Chapter 7 Confidence Intervals置信区间7.1 Sampling Distribution 抽样分布统计量的分布称为抽样分布。
在本节中,我们将从正态分布推导出随机样本的样本方差分布,以及样本均值和样本方差的各种函数的分布。
复习:Thm 5.5.2若X1, X2,…, X n独立且满足,i= 1,2,…,n,若C1, C2,…, C n不全为零,则Corollary 5.5.2 设随机变量X1, X2,…, X n组成随机样本,满足正态分布,其中均值μ和方差σ2,则7.2 χ2Distribution卡方分布定义:若随机变量X1, X2,…, X n独立同分布且其中每个随机变量都满足标准正态分布,所以有着以n阶自由度卡方分布(χ2distribution with n degrees of freedom),记作,n来源于独立随机变量中以n阶自由度的χ2分布的概率密度函数其中欧拉函数定义为χ2分布的性质:定理1定理2 (χ2分布的可加性)若X ~χ2 (n) , Y ~χ2(m),X, Y独立,则X+Y ~ χ2 (n+m)例:设X1, X2,…, X n是正态分布的随机样本,证明Thm 7.3.1 设X1, X2,…, X n是正态分布的随机样本,则:(1)与独立;(2)注:,虽然基于n个,但是它们之和为0,所以指定数量的n-1确定剩余值。
因此有n-1阶自由度。
结果表明,只有从正态分布中抽取随机样本,样本均值和样本方差才是独立的。
证明如下:的联合概率分布函数为其中A为正交矩阵(orthogonal matrix),且的联合概率分布函数为因此独立且⇒与独立且7.4 The t Distribution t分布定义:设X ~ N(0, 1), Y ~χ2 (n)且X和Y独立,则随机变量所满足的分布称为n阶自由度t分布,记作,其中的概率密度函数为t分布的性质:(1)f(x)图像呈钟型,且中心为0;(2)它的一般形状类似于平均分布0的正态分布的概率密度函数。
概率论和数理统计(第三学期)第7章数理统计的基本概念
n i1
i
1 n
n
Ei
i1
D
D 1 n
n i 1
i
1 n2
n
Di
i 1
2
n
2
S~ 1 n
n i 1
i
2
1 n
n i 1
i2 2i
2
1 n
n
i2
i 1
2
n
i
i 1
n
2
1 n
n
i2
i 1
2
2
2
1 n
n
i2
i 1
2
E S~2
E
1 n
n
i2
i 1
23
.209
2
2 0.95
20
10
.851
当自由度n 45时,可用下面近似公式去求2 n:
x2 n
1 2
u
2
2n 1
例3
求
2 0.05
60 .
解
2 0.05
60
1 2
u0.05
2
2 60 1
1 1.645
2
119 78.798
2
3、t分布的上侧分位点
对于给定的α(0<α<1),使
2
e
xi 2 2
2
(2
) e 2
n 2
1
2 2
n i1
xi 2
在数理统计中,总体的分布往往是未知的,需 要通过样本找到一个分布来近似代替总体分布。
§7.3 分布的估计
频率分布 例 某炼钢厂生产的钢由于各种因素的影响,各炉
钢的含硅量可以看作是一个随机变量,现记录了 120炉钢的含硅量百分数,求出这个样本的频数分 布与频率分布。
7.4单个正态总体均值与方差的区间估计
2
(n 1)S 2
2 1
/
2
(n
1)
1,
P
(n 1)S 2
2
/
2
(n
1)
(n
2 1
/2
1)S 2 (n
1)
1
,
即标准差 的置信水平为1 α 的一个置信区间为
n 1S ,
2 / 2(n 1)
n
2 1 /
1S 2(n
1)
.
11
概率论与数理统计
例2 (续例1) 求例1中总体标准差 的置信度为0.95 的置信区间.
506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496
设袋装糖果的质量服从正态分布, 试求总体均值
的置信度为 0.95 的置信区间.
(1) 2 38.44; (2) 2未知. 解: 1 0.95, 0.05
6
概率论与数理统计
b
3
概率论与数理统计
由P
z
/
2
X
/
n
z /2
1,
P X
n
z / 2
X
n
z
/
2
1
.
即的一个置信水平为1 的置信区间为
X
n
z / 2 , X
n
z / 2 .
置信区间的长度为
2
n
z / 2 .
4
概率论与数理统计
2 2未知
“枢轴量”
X ~ t(n 1)
1
S/ n
由
P{tα
2(n 1)
X S
概率论与数理统计习题集及答案
《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ;2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= .(2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: .(3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: .(5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: .2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A ,(4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= .2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
概率论与数理统计试题及答案
考试科目:概率论与数理统计考试时间:120分钟试卷总分100分一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共5小题,每小题3分,总计15分)1.掷一枚质地均匀的骰子,则在出现奇数点的条件下出现1点的概率为( A ). (A)1/3 (B)2/3 (C)1/6 (D)3/6 2.设随机变量的概率密度,则K=( B )。
(A)1/2 (B)1 (C)—1 (D)3/2 3.对于任意随机变量,若,则( B )。
(A) (B)(C) 一定独立(D)不独立5.设,且,,则P{-2<<4}=( A )。
(A)0。
8543 (B)0。
1457 (C)0.3541 (D)0。
2543 二、填空题(在每个小题填入一个正确答案,填在题末的括号中,本大题共5小题,每小题3分,总计15分)1.设A、B为互不相容的随机事件则( 0.9 ).2.设有10件产品,其中有1件次品,今从中任取出1件为次品的概率为( 1/10 )。
3.设随机变量X的概率密度则( 8/10 )。
4.设D()=9, D()=16,,则D()=( 13 )。
*5.设,则( N(0,1) )。
三、计算题(本大题共6小题,每小题10分,总计60分)1.某厂有三条流水线生产同一产品,每条流水线的产品分别占总量的25%,35%,40%,又这三条流水线的次品率分别为0.05,0。
04,0.02。
现从出厂的产品中任取一件,问恰好取到次品的概率是多少?(1)全概率公式2.设连续型随机变量的密度为(1)确定常数A (2)求(3)求分布函数F(x).(2)①故A=5 。
②(3分)③当x<0时,F(x)=0; (1分)当时, (2分)故。
(1分)3.设二维随机变量()的分布密度求关于和关于的边缘密度函数。
(3)4.设连续型随即变量的概率密度,求E(x),D(x)(4) (4分)(3分)(3分)四.证明题(本大题共2小题,总计10分)2.设是独立随机变量序列,且,试证服从大数定理。
《概率论与数理统计》第三版_科学出版社_课后习题答案.所有章节
第二章 随机变量 2.12.2解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=11220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P{0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++ =11[1()]1441314k k lim →∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--= 2.6解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=X 2 3 4 5 6 7 8 9 10 11 12P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.7 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e - (2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.8解:设应配备m 名设备维修人员。
概率论与数理统计(理工类第四版)吴赣昌主编课后习题答案第七章
写在前面:由于答案是一个个复制到word中,比较耗时耗力,故下载收取5分,希望需要的朋友给予理解和支持!PS:网上有一些没经我同意就将我的答案整合、转换成pdf,放在文库里的,虽然是免费的,但是窃取了我的劳动成果,希望有心的朋友支持我一下,下载我的原版答案。
第七章假设检验7.1 假设检验的基本概念习题1样本容量n确定后,在一个假设检验中,给定显著水平为α,设此第二类错误的概率为β,则必有(). (A)α+β=1;(B)α+β>1;(C)α+β<1;(D)α+β<2.解答:应选(D).当样本容量n确定后,α,β不能同时都很小,即α变小时,β变大;而β变小时,α变大.理论上,自然希望犯这两类错误的概率都很小,但α,β的大小关系不能确定,并且这两类错误不能同时发生,即α=1且β=1不会发生,故选(D).习题2设总体X∼N(μ,σ2),其中σ2已知,若要检验μ,需用统计量U=X¯-μ0σ/n.(1)若对单边检验,统计假设为H0:μ=μ0(μ0已知),H1:μ>μ0,则拒绝区间为;(2)若单边假设为H0:μ=μ0,H1:μ<μ0,则拒绝区间为(给定显著性水平为α,样本均值为X¯,样本容量为n,且可记u1-α为标准正态分布的(1-α)分位数).解答:应填(1)U>u1-α;(2)U<uα.由单侧检验及拒绝的概念即可得到.习题3如何理解假设检验所作出的“拒绝原假设H0”和“接受原假设H0”的判断?解答:拒绝H0是有说服力的,接受H0是没有充分说服力的. 因为假设检验的方法是概率性质的反证法,作为反证法就是必然要“推出矛盾”,才能得出“拒绝H0”的结论,这是有说服力的,如果“推不出矛盾”,这时只能说“目前还找不到拒绝H0的充分理由”,因此“不拒绝H0”或“接受H0”,这并没有肯定H0一定成立. 由于样本观察值是随机的,因此拒绝H0,不意味着H0是假的,接受H0也不意味着H0是真的,都存在着错误决策的可能.当原假设H0为真,而作出了拒绝H0的判断,这类决策错误称为第一类错误,又叫弃真错误,显然犯这类错误的概率为前述的小概率α:α=P(拒绝H0|H0为真);而原假设H0不真,却作出接受H0的判断,称这类错误为第二类错误,又称取伪错误,它发生的概率β为β=P(接受H0|H0不真).习题4犯第一类错误的概率α与犯第二类错误的概率β之间有何关系?解答:一般来说,当样本容量固定时,若减少犯一类错误的概率,则犯另一类错误的概率往往会增大.要它们同时减少,只有增加样本容量n.在实际问题中,总是控制犯第一类错误的概率α而使犯第二类错误的概率尽可能小.α的大小视具体实际问题而定,通常取α=0.05,0.005等值.习题5在假设检验中,如何理解指定的显著水平α?解答:我们希望所作的检验犯两类错误的概率尽可能都小,但实际上这是不可能的. 当样本容量n固定时,一般地,减少犯其中一个错误的概率就会增加犯另一个错误的概率. 因此,通常的作法是只要求犯第一类错误的概率不大于指定的显著水平α,因而根据小概率原理,最终结论为拒绝H0较为可靠,而最终判断力接受H0则不大可靠,其原因是不知道犯第二类错误的概率β究竟有多少,且α小,β就大,所以通常用“H0相容”,“不拒绝H0”等词语来代替“接受H0”,而“不拒绝H0”还包含有再进一步作抽样检验的意思.习题6在假设检验中,如何确定原假设H0和备择假设H1?解答:在实际中,通常把那些需要着重考虑的假设视为原假设H0,而与之对应的假设视为备择假设H1.(1)如果问题是要决定新方案是否比原方案好,往往将原方案取假设,而将新方案取为备择假设;(2)若提出一个假设,检验的目的仅仅是为了判断这个假设是否成立,这时直接取此假设为原假设H0即可.习题7假设检验的基本步骤有哪些?解答:根据反证法的思想和小概率原理,可将假设检验的步骤归纳如下:(1)根据问题的要求,提出原理假设H0和备择假设H1.(2)根据检验对象,构造检验统计量T(X1,X2,⋯,Xn),使当H0为真时,T有确定的分布.(3)由给定的显著水平α,查统计量T所服从的分布表,定出临界值λ,使P(∣T∣>λ)=α,或P(T>λ1)=P(T<λ2)=α/2,从而求出H0的拒绝域:∣T∣>λ或T>λ1,T<λ2.(4)由样本观察值计算统计量T的观察值t.(5)作出判断,将t的值与临界值比较大小作出结论:当t∈拒绝域量时,则拒绝H0,否则,不拒绝H0,即认为在显著水平α下,H0与实际情况差异不显著.习题8假设检验与区间估计有何异同?解答:假设检验与区间估计的提法虽不同,但解决问题的途径是相通的. 参数θ的置信水平为1-α的置信区间对应于双边假设检验在显著性水平α下的接受域;参数θ的置信水平为1-α的单侧置信区对应于单边假设检验在显著性水平α下的接受域.在总体的分布已知的条件下,假设检验与区间估计是从不同的角度回答同一个问题. 假设检验是判别原假设H0是否成立,而区间估计解决的是“多少”(或范围),前者是定性的,后者是定量的.习题9某天开工时,需检验自动包装工作是否正常. 根据以往的经验,其装包的质量在正常情况下服从正态分布N(100,1.52)(单位:kg).现抽测了9包,其质量为:99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.0,100.5.问这天包装机工作是否正常?将这一问题化为假设检验问题. 写出假设检验的步骤(α=0.05).解答:(1)提出假设检验问题H0:μ=100,H1:μ≠100;(2)选取检验统计量U:U=X¯-1001.59,H0成立时, U∼N(0,1);(3)α=0.05,uα/2=1.96,拒绝域W={∣u∣>1.96};(4)x¯≈99.97,∣u∣=0.06.因∣u∣<uα/2=1.96,故接受H0,认为包装机工作正常.习题10设总体X∼N(μ,1),X1,X2,⋯,Xn是取自X的样本. 对于假设检验H0:μ=0,H1:μ≠0,取显著水平α,拒绝域为W={∣u∣>uα/2},其中u=nX¯,求:(1)当H0成立时, 犯第一类错误的概率α0;(2)当H0不成立时(若μ≠0),犯第二类错误的概率β.解答:(1)X∼N(μ,1),X¯∼N(μ,1/n),故nX¯=u∼N(0,1).α0=P{∣u∣>uα/2∣μ=0}=1-P{-uα/2≤u≤uα/2}=1-[Φ(uα/2)-Φ(-uα/2)]=1-[(1-α2)-α2]=α,即犯第一类错误的概率是显著水平α.(2)当H0不成立,即μ≠0时,犯第二类错误的概率为β=P{∣u∣≤uα/2∣E(X)=μ}=P{-uα/2≤u≤uα/2∣E(X)=μ}=P{-uα/2≤nX¯≤uα/2∣E(X)=μ}=P{-uα/2-nμ≤n(X¯-μ)≤uα/2-nμ∣E(X)=μ}=Φ(uα/2-nμ)-Φ(-uα/2-nμ).注1当μ→+∞或μ→-∞时,β→0.由此可见,当实际均值μ偏离原假设较大时,犯第二类错误的概率很小,检验效果较好.注2当μ≠0但接近于0时,β≈1-α.因α很小,故犯第二类错误的概率很大,检验效果较差.7.2 单正态总体的假设检验习题1已知某炼铁厂铁水含碳量服从正态分布N(4.55,0.1082).现在测定了9炉铁水,其平均含碳量为4.484.如果估计方差没有变化,可否认为现在生产的铁水平均含碳量仍为4.55(α=0.05)?解答:本问题是在α=0.05下检验假设H0:μ=4.55,H1:μ≠4.55.由于σ2=0.1082已知,所以可选取统计量U=X¯-4.550.108/9,在H0成立的条件下,U∼N(0,1),且此检验问题的拒绝域为∣U∣=∣X¯-4.550.108/9∣>uα/2,这里u=4.484-4.550.108/9≈-1.833,uα/2=1.96.显然∣u∣=1.833<1.96=uα/2.说明U没有落在拒绝域中,从而接受H0,即认为现在生产之铁水平均含碳量仍为4.55.习题2要求一种元件平均使用寿命不得低于1000小时,生产者从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时. 已知该种元件寿命服从标准差为σ=100小时的正态分布,试在显著性水平α=0.05下确定这批元件是否合格?设总体均值为μ,μ未知,即需检验假设H0:μ≥1000,H1:μ<1000.解答:检验假设H0:μ≥1000,H1:μ<1000.这是单边假设检验问题. 由于方差σ2=0.05,故用u检验法. 对于显著性水平α=0.05,拒绝域为W={X¯-1000σ/n<-uα.查标准正态分布表,得u0.05=1.645.又知n=25,x¯=950,故可计算出x¯-1000σ/n=950-1000100/25=-2.5.因为-2.5<-1.645,故在α=0.05下拒绝H0,认为这批元件不合格.习题3打包机装糖入包,每包标准重为100kg.每天开工后,要检验所装糖包的总体期望值是否合乎标准(100kg).某日开工后,测得9包糖重如下(单位:kg):99.398.7100.5101.298.399.799.5102.1100.5打包机装糖的包得服从正态分布,问该天打包机工作是否正常(α=0.05)?解答:本问题是在α=0.05下检验假设H0:μ=100,H1:μ≠100.由于σ2未知,所以可选取统计量T=X¯-100S/n,在H0成立的条件下,T∼t(n-1),且此检验问题的拒绝域为∣T∣=∣X¯-100S/n∣>tα/2(n-1),这里t=x¯-100s/n≈99.978-1001.2122/9≈-0.0544,t0.025(8)=2.306.显然∣t∣=0.0544<2.306=t0.025(8),即t未落在拒绝域中,从而接受H0,即可以认为该天打包工作正常.习题4机器包装食盐,假设每袋盐的净重服从正态分布,规定每袋标准含量为500g,标准差不得超过10g.某天开工后,随机抽取9袋,测得净重如下(单位:g):497,507,510,475,515,484,488,524,491,试在显著性水平α=0.05下检验假设:H0:μ=500,H1:μ≠500.解答:x¯=499,s≈16.031,n=9,t=(x¯-μ0)sn=499-50016.0319=-0.1871,α=0.05,t0.025(8)=2.306.因∣t∣<t0.025(8),故接受H0,认为该天每袋平均质量可视为500g.习题5从清凉饮料自动售货机,随机抽样36杯,其平均含量为219(mL),标准差为14.2mL,在α=0.05的显著性水平下,试检验假设:H0:μ=μ0=222,H1:μ<μ0=222.解答:设总体X∼N(μ,σ2),X代表自动售货机售出的清凉饮料含量,检验假设H0:μ=μ0=222(mL),H1:μ<222(mL).由α=0.05,n=36,查表得t0.05(36-1)=1.6896,拒绝域为W={t=x¯-μ0s/n<-tα(n-1).计算t值并判断:t=219-22214.2/36≈-1.27>-1.6896,习题6某种导线的电阻服从正态分布N(μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008Ω,对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?解答:本问题是在α=0.05下检验假设H0:σ2=0.0052,H1:σ2≠0.0052.选取统计量χ2=n-1σ2S2,在H0成立的条件下,χ2∼χ2(n-1),且此检验问题的拒绝域为χ2>χα/22(n-1)或χ2<χ1-α/22(n-1).这里χ2=9-10.0052s2=80.0052×0.0082=20.48,χ0.9752(8)=2.18,χ0.0252(8)=17.5.显然χ2落在拒绝域中,从而拒绝H0,即不能认为这批导线电阻的标准差仍为0.005.习题7某厂生产的铜丝,要求其折断力的方差不超过16N2.今从某日生产的铜丝中随机抽取容量为9的样本,测得其折断力如下(单位:N):289,286,285,286,285,284,285,286,298,292设总体服从正态分布,问该日生产的铜线的折断力的方差是否符合标准(α=0.05)?解答:检验问题为H0:σ2≤16,H1:σ2>16,n=9,s2≈20.3611,χ2=8×s216≈10.181,α=0.05,χ0.052(8)=15.507.因χ2<χ0.052(8)=15.507,故接受H0,可认为铜丝的折断力的方差不超过16N2.习题8过去经验显示,高三学生完成标准考试的时间为一正态变量,其标准差为6min.若随机样本为20位学生,其标准差为s=4.51,试在显著性水平α=0.05下,检验假设:H0:σ≥6,H1:σ<6.解答:H0:σ≥6,H1:σ<6.α=0.05,n-1=19,s=4.51,χ0.952(19)=10.117.拒绝域为W={χ2<10.117}.计算χ2值χ2=(20-1)×4.51262≈10.74.因为10.74>10.117,故接受H0,认为σ≥6.习题9测定某种溶液中的水分,它的10个测定值给出s=0.037%,设测定值总体服从正态分布,σ2为总体方差,σ2未知,试在α=0.05水平下检验假设:H0:σ≥0.04%,H1:σ<0.04%.解答:在α=0.05下,拒绝域为W={(n-1)S2σ02<χ1-α2(9).查χ2分布表得χ0.952(9)=3.325.计算得(n-1)s2σ02=(10-1)×(0.037\per)2(0.04\per)2≈7.7006>3.325,未落入拒绝域,故接受H0.sw=(5-1)×(1.971)2+(4-1)×(1.167)25+4-2≈1.674.查表得t0.005(7)=1.895.算得t=2.86-2.075-01.67415+14≈0.699<1.895.因为0.699<1.895,故不拒绝H0,认为此药无效.习题3据现在的推测,矮个子的人比高个子的人寿命要长一些.下面给出美国31个自然死亡的总统的寿命,将他们分为矮个子与高个子2类,列表如下:矮个子总统8579679080高个子总统6853637088746466606078716790737177725778675663648365假设2个寿命总体均服从正态分布且方差相等,试问这些数据是否符合上述推陈出推测(α=0.05)?解答:设μ1,μ2分别为矮个子与高个子总统的平均寿命,则检验问题为H0:μ1≤μ2,H1:μ1>μ2,n1=5,x¯=80.2,s1≈8.585,n2=26,y¯≈69.15,s2≈9.315,sw=4×8.5852+9.315229≈9.218,n1n2n1+n2≈2.048,t=(80.2-69.15)9.218×2.048≈2.455,α=0.05,t0.05(29)=1.6991,因t>t0.05(29)=1.6991,故拒绝H0,认为矮个子总统的寿命比高个子总统寿命长.习题4在20世纪70年代后期人们发现,酿造啤酒时,在麦芽干燥过程中形成致癌物质亚硝基二甲胺(NDMA).到了20世纪80年代初期,人们开发了一种新的麦芽干燥过程,下面给出了分别在新、老两种过程中形成的NDMA含量(以10亿份中的份数计):故拒绝H0,认为新、老过程中形成的NDMA平均含量差大于2.习题5有两台车床生产同一种型号的滚珠. 根据过去的经验,可以认为这两台车床生产的滚珠的直径都服从正态分布. 现要比较两台车床所生产滚珠的直径的方差,分别抽出8个和9个样品,测得滚珠的直径如下(单位:mm).甲车床xi:15.014.515.215.514.815.115.214.8乙车床yi:15.215.014.815.215.015.014.815.114.8问乙车床产品的方差是否比甲车床的小(α=0.05)?解答:以X,Y分别表示甲,乙二车床产品直径.X∼N(μ1,σ12),Y∼N(μ2,σ22),X,Y独立. 检验假设H0:σ12=σ22,H1:σ22<σ22.用F检验法, 在H0成立时F=S12S22∼F(n1-1,n2-1).由已知数据算得x¯≈15.01,y¯≈14.99,s12≈0.0955,s22≈0.0261,n1=8,n2=9,α=0.05.拒绝域为Rα={F>Fα(n1-1,n2-1)}.查F分布表得F0.05(8-1,9-1)=3.50.计算F值F=s12/s22=0.0955/0.0261≈3.66.因为3.66>3.50,故应否定H0,即认为乙车床产品的直径的方差比甲车床的小.习题6某灯泡厂采用一项新工艺的前后,分别抽取10个灯泡进行寿命试验. 计算得到:采用新工艺前灯泡寿命的样本均值为2460小时. 样本标准差为56小时;采用新工艺后灯泡寿命的样本均值为2550小时,样本标准差为48小时. 设灯泡的寿命服从正态分布,是否可以认为采用新工艺后灯泡的平均寿命有显著提高(α=0.01)?解答:(1)检验假设H0:σ12=σ22,H1:σ12≠σ22.应选取检验统计量F=S12/S22,若H0真, 则F∼F(m-1,n-1);对于给定的检验水平α=0.01,查自由度为(9,9)的F分布表得F0.005(9,9)=6.54;已知m=n=10,s1=56,s2=48,由此得统计量F的观察值为F=562/482≈1.36;因为F<F0.005(9,9),所以接受原假设H0,即可认为这两个总体的方差无显著差异.(2)检验假设H0′:μ1=μ2,H1′:μ1<μ2.按上述关于双总体方差的假设检验的结论知这两个总体的方差未知但相等,σ12=σ22,所以应选取检验统计量:T=X¯-Y¯(m-1)S12+(n-1)S22m+n-2(1m+1n),若H0′真,则T∼t(m+n-2);对给定的检验水平α=0.01,查自由度为m+n-2=18的t分布表得临界值计算t值t=z¯-0sz/n=-0.1-00.141/5≈-1.59>-2.776,故接受H0:μz=0,即在α=0.05下,认为两种分析方法所得的均值结果相同.7.4 关于一般总体数学期望的假设检验习题1设两总体X,Y分别服从泊松分布P(λ1),P(λ2),给定显著性水平α,试设计一个检验统计量,使之能确定检验H0:λ1=λ2,H1:λ1≠λ2的拒绝域,并说明设计的理论依据.解答:因非正态总体,故宜用大样统计,设X¯=1n1∑i=1n1Xi,S12=1n1-1∑i=1n1(Xi-X¯)2;Y¯=1n2∑i=1n2Yi,S22=1n2-1∑i=1n2(Yi-Y¯)2.\because(X¯-Y¯)-(λ1-λ2)S12n1+S22n2→N(0,1)∴可选用样本函数u=(X¯-Y¯)-(λ1-λ2)S12n1+S22n2作为拒绝域的检验统计量.习题2设某段高速公路上汽车限制速度为104.6km/h,现检验n=85辆汽车的样本,测出平均车速为x¯=106.7km/h,已知总体标准差为σ=13.4km/h,但不知总体是否服从正态分布. 在显著性水平α=0.05下,试检验高速公路上的汽车是否比限制速度104.6km/h显著地快?解答:设高速公路上的车速为随机变量X,近似有X∼N(μ,σ2),σ=13.4km/h,要检验假设H0:μ=μ0=104.6,H1:μ>104.6.α=0.05,n=85,uα=u0.05=1.645.拒绝域W={u=x¯-μ0σ/n>uα.由x¯=106.7,σ=13.4,μ0=104.6,n=85得u=106.7-104.613.4/85≈1.44<1.645.因为1.44<1.645,所以接受H0,即要α=0.05显著性水平下,没有明显的证据说明汽车行驶快于限制速度.习题3某药品广告上声称该药品对某种疾病和治愈率为90%,一家医院对该种药品临床使用120例,治愈85人,问该药品广告是否真实(α=0.02)?解答:设该药品对某种疾病的治愈率为p,随机变量X为X={1,临床者使用该药品治愈0,反之则X∼b(1,p),问题该归结为检验假设:H0:p=0.9,H1:p≠0.9.由于n=120足够大,可以用u检验法,所给样值(x1,x2,⋯,x120)中有85个1,35个0,所以x¯=1120∑i=1120xi=1120∑i=1851=85120≈0.71,又p0=0.9,以之代入统计量U得U的观察值为∣u∣=∣0.71-0.9∣0.9×0.1120=6.94>u0.01=2.33,故拒绝H0,即认为该药品不真实.习题4一位中学校长在报纸上看到这样的报道:“这一城市的初中学生平均每周看8小时电视.”她认为她所领导的学校,学生看电视时间明显小于该数字. 为此,她向她的学校的100名初中学生作了调查,得知平均每周看电视的时间x¯=6.5小时,样本标准差为s=2小时,问是否可以认为这位校长的看法是对的(α=0.05)?解答:检验假设H0:μ=8,H1:μ<8.由于n=100,所以T=X¯-μS/n近似服从N(0,1)分布,α=0.05,u0.05=1.645.又知x¯=6.5,s=2,故计算得t=6.5-82/100=-7.5,否定域W={X¯-8S/n<-u0.05.因为-7.5<-1.645,故否定H0,认为这位校长的看法是对的.习题5已知某种电子元件的使用寿命X(h)服从指数分布e(λ),抽查100个元件,得样本均值x¯=950(h),能否认为参数λ=0.001(α=0.05)?解答:由题意知X∼e(λ),E(X)=1/λ,D(X)=1/λ2,故当n充分大时u=x¯-1/λ1nλ=(x¯-1λ)λn=(λx¯-1)n(0,1).现在检验问题为H0:λ=0.001,H1:λ≠0.001,样本值u=(0.001×950-1)×100=0.5,α=0.05,u0.025=1.96.因∣u∣<u0.025=1.96,故接受H0,即可认为参数λ=0.001(即元件平均合适用寿命为1000h).习题6某产品的次品率为0.17,现对此产品进行新工艺试验,从中抽取400检查,发现次品56件,能否认为这项新工艺显著地影响产品质量(α=0.05)?解答:检验问题为H0:p=0.17,H1:p≠0.17,由题意知⌢p=mn=56400=0.14,u=(⌢p-p0)p0q0n=0.14-0.170.17×0.83×400≈-1.597,α=0.05,u0.025=1.96.因∣u∣<u0.025=1.96,故接受H0,即认为新工艺没有显著地影响产品质量.习题7某厂生产了一大批产品,按规定次品率p≤0.05才能出厂,否则不能出厂,现从产品中随机抽查50件,发现有4件次品,问该批产品能否出厂(α=0.05)?解答:问题归结为在α=0.05下,检验假设H0:p≤0.05,H1:p>0.05.这是一个单侧检验问题,用u检验法,H0的拒绝域为U=X¯-p0p0(1-p0)n>uα.已知n=50,p0=0.05,x¯=450=0.08,代入U的表达式得u=0.08-0.050.05×0.9550≈0.97<uα=u0.05=1.645,故接受H0,即认为这批产品可以出厂.习题8从选区A中抽取300名选民的选票,从选区B中抽取200名选民的选票,在这两组选票中,分别有168票和96票支持所提候选人,试在显著水平α=0.05下,检验两个选区之间对候选人的支持是否存在差异. 解答:这是两个比率的比较问题,待检假设为H0:p1=p2,H1:p1≠p2.由题设知n=300,μn=168,m=200,μm=96,p1 =168320=0.56,p2 =96200=0.48,p=μn+μmm+n=264500=0.528.U0∼=p1 -p2 p(1-p)(1n+1m)=0.56-0.480.528×0.472×1120≈1.755,由P{∣U∼∣>1.96}=α=0.05,得拒绝域∣U∼∣>1.96,因为U0∼=1.755<1.96,故接受H0,即两个选区之间无显著差异.7.5 分布拟合检验Ai k概率pi npi频数fi(fi-npi)2(fi-npi)2npiA001/108085250.3125A111/108093169 2.1125A221/108084160.2A331/10807910.0125A441/10807840.05A551/108069121 1.5125A661/108074360.45A771/10807181 1.0125A881/108091121 1.5125A991/108076160.2∑18007.375由于当H0为真时,χ2=∑i=0k(fi-npi)2npi∼χ2(k-1-r),且此检验问题的拒绝域为χ2≥χα2(k-1-r).这里χ2=7.375,查表知χ0.052(10-1-0)=χ0.052(9)=16.9,显然χ2=7.375<16.9=χ0.052(9),即χ2未落在拒绝域中,所以接受H0,即认为这个正20面体是由均匀材料制面的.习题2根据观察到的数据疵点数0 1 2 3 4 5 6频数fi 14 27 26 20 7 3 3检验整批零件上的疵点数是否服从泊松分布(α=0.05).解答:设X表示整批零件上的疵点数,则本问题是在α=0.05下检验假设H0:P{X=i}=λie-λi!,i=0,1,2,⋯.由于在H0中参数λ未具体给出,所以先估计λ的值. 由极大似然估计法得λ =x¯=1100(0×14+1×27+2×26+3×20+4×7+5×3+6×3)=2.将试验的所有可能结果分为7个互不相容的事件A0,A1,⋯,A7, 当H0成立时,P{X=i}有估计值p0=P{X=0}=e-2≈0.135335,p1=P{X=1}=2e-2≈0.27067,p2=P{X=2}=2e2≈0.270671,p3=P{X=3}≈0.180447,p4=P{X=4}=2/3e-2≈0.090224,p5=P{X=5}=4/15e-2≈0.036089, p6=P{X=6}=4/45e-2≈0.0120298. 列表如下:Ai k 概率pi npi 频数fi (fi-npi)2 (fi-npi)2npiA0 A1 A2 A3 A4 A5 A6 0 1 2 3 4 5 6 0.1353350.270671 0.270671 0.180447 0.090224 0.036089 0.0120298 13.5335 27.0671 27.0672 18.0447 9.02243.60891.2029813.83428 14 27 26 2073313 0.2176 0.0045 1.1387 3.8232 0.6960 0.01608 0.000166 0.04207 0.2118740.050310∑1000.3205当H0为真时,χ2=∑i=0k(fi-npi)2npi ∼χ2(k-1-r),且此检验问题的拒绝域为χ2≥χα2(k-1-r), 这里χ2=0.3205, 查表知χ0.052(5-1-1)=χ0.052(3)=7.815. 显然 χ2=0.3205<7.815=χ0.052(3).即χ2未落在拒绝域中,接受H0, 故可认为整批零件上的疵点数服从泊松分布.习题3检查了一本书的100页,记录各页中印刷错误的个数,其结果为错误个数fi123456 ≥7含fi 个错误的页数 36 4019221问能否认为一页的印刷错误个数服从泊松分布(取α=0.05)? 解答:检验假设H0: 一页的印刷错误个数X 服从泊松分布, P{X=i}=λie -λi!,i=0,1,2,⋯.H0 不成立. 先估计未知参数λλ =x¯=1/100(0×36+1×40+2×19+3×2+4×0+5×2+6×1)=1. 在H0成立下p =P{X=i}=(λ )ie -λ i !=e-1i!,i=0,1,2,⋯. 用χ2检验法χ2=∑i=1k(fi -np )2np ∼χ2(k -r-1). 本题中r=1, 其中fi 为频数. H0的拒绝域为 Rα={χ2>χα2(k -r-1)}. 列表计算如下:n=100, 对每个{X=i}计算 p ,np ,fi -np ,(fi -np )2/(np )(i=1,2,⋯,7). 要求每一个np ≥5.计算χ2值χ2=0.0170+0.2801+0.0202+1.1423=1.4596.习题6下表记录了2880个婴儿的出生时刻:试问婴儿的出生时刻是否服从均匀分布U[0,24](显著性水平α=0.05)?解答:原假设H0:F0(x), 由F0(x)算得pi=F0(i)-F0(i-1)=124,npi=2880×124=120 (i=1,2,⋯,24),于是χ2=∑i=124(fi-npi)2npi≈40.47,对α=0.05, 自由度n-1=23, 查χ2-分布表,得χα2(n-1)=35.17,因为χ2=40.47>35.17, 所以拒绝H0, 即可以认为婴儿出生时刻不服从均匀分布U[0,24].总习题解答习题1下面列出的是某工厂随机选取的20只部件的装配时间(min):9.8,10.4,10.6,9.6,9.7,9.9,10.9,11.1,9.6,10.2,10.3,9.6,9.9,11.2,10.6,9.8,10.5,10.1,10.5,9.7.设装配时间的总体服从正态分布N(μ,σ2),μ,σ2均未知,是否可以认为装配时间的均值显著地大于10(取α=0.05)?解答:检验假设H0:μ≤μ0=10,H1:μ>10.已知n=20,α=0.05,由数据算得x¯=10.2,s≈0.5099.因σ2未知,故用t检验法,拒绝域为W={X¯-μ0S/n>tα(n-1).计算得x¯-μ0s/n=10.2-100.5099/20≈1.7541.查t分布表得t0.05(19)=1.7291.因为1.7541>1.7291,故拒绝H0,可以认为装配时间的均值显著地大于10.习题2某地早稻收割根据长势估计平均亩产为310kg,收割时,随机抽取了10块,测出每块的实际亩产量为x1,x2,⋯,x10,计算得x¯=110∑i=110xi=320.如果已知早稻亩产量X服从正态分布N(μ,144),显著性水平α=0.05,试问所估产量是否正确?解答:这是一个正态分布总体,方差已知,对期望的假设检验问题,如果估计正确,则应有μ=310,因此我们先将问题表示成两个假设:①H0:μ=310,H1:μ≠310.接下来就要分析样本值来确定是接受H0,还是接受H1.当H0为真时,统计量②U=X¯-31012/10∼N(0,1),从而有③P{∣U∣>1.96}=0.05,拒绝域为(-∞,-1.96)∪(1.96,+∞).④计算U0=∣320-310∣12/n≈2.64>1.96,即拒绝H0,也就是有理由不相信H0是真的,故认为估产310kg不正确.习题3设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,样本标准差为15分,问在显著水平0.05下,是否可认为这次考试全体考生的平均成绩为70分?并给出检验过程.(1)设这次考试全体考生的平均成绩X∼N(μ,σ2),则待检验假设H0:μ=70,备择假设H1:μ≠70;(2)在H0成立条件下选择统计量T=X¯-μ0S/n∼t(n-1);(3)在显著性水平0.05下,查t分布表,找出临界值tα/2(n-1)=t0.025(35)=2.0301,则拒绝域为(-∞,-2.0301)∪(2.0301,+∞);(4)计算t=∣66.5-70∣15/36=1.4∈(-2.0301,2.0301),故接受H0,因此可认为这次考试全体考生的平均成绩为70分.习题4设有来自正态总体的容量为100的样本,样本均值x¯=2.7,μ,σ2均未知,而∑i=1n(xi-x¯)2=225,在α=0.05水平下,检验下列假设(1)H0:μ=3,H1:μ≠3;(2)H0:σ2=2.5,H1:σ2≠2.5.解答:(1)由题意知n=100,x¯=2.7,s=199×225≈1.508,t=(2.7-3)1.508×100≈-1.9894,α=0.05,t0.025(99)≈t0.025(100)=1.984.因∣t∣=1.9894>t0.025(99)=1.984,故拒绝H0,即认为μ≠3.(2)由题意知χ2=∑i=1n(x1-x¯)22.5=2252.5=90,α=0.05,χ0.0252(99)≈χ0.0252(100)=129.56,χ0.9752(99)≈χ0.9752(100)=74.22,因χ0.9752(99)<χ2=90<χ0.0252(99),故接受H0,即可以认为σ2=2.5.习题5设某大学的男生体重X为正态总体,X∼N(μ,σ2),欲检验假设:H0:μ=68kg,H1:μ>68kg.已知σ=5,取显著性水平α=0.05,若当真正均值为69kg时,犯第二类错误的概率不超过β=0.05,求所需样本大小.解答:由第一类、第二类错误及分位数的定义,易于证明:对于某个给定的δ>0(∣μ-μ0∣≥δ),样本容量n应满足:n≥(uα+uβ)2σ2δ2.因为α=β=0.05,故uα=uβ=1.645,对其对立假设μ=69而言,取δ=1,则n=(uα+uβ)2σ2δ2=(1.645+1.645)2×251≈270.6,故取n=271.某装置的平均工作温度据制造厂家称不高于190∘C.今从一个由16台装置构成的随机样本测得工作温度的平均值和标准差分别为195∘C和8∘C,根据这些数据能否说明平均工作温度比制造厂所说的要高?(设α=0.05,并假设工作温度近似服从正态分布.)解答:设X为工作温度,则X∼N(μ,σ2).①待检假设H0:μ≤190,备择假设H1:μ>190;②在H0成立条件下,选择统计量T=X¯-μ0S/n≈t(n-1);③在显著性水平0.05下,查t分布表,找出临界值tα(n-1)=t0.05(15)=1.75,拒绝域为(1.75,+∞);④计算t=X¯-μ0S/n=195-1908/16=2.5>1.75,所以否定原假设H0,说明平均工作温度比制造厂所说的要高.习题7电工器材厂生产一批保险丝,抽取10根试验其熔断时间,结果为42657578715957685455假设熔断时间服从正态分布,能否认为整批保险丝的熔断时间的方差不大于80(α=0.05)?解答:①待检假设H0:σ2≤80,备择假设H1:σ2>80;②在H0成立时,选取统计量χ2=(n-1)S2σ02∼χ2(n-1);③由α=0.05,n-1=9,查χ2分布表,χα2(n-1)=χ0.052(9)=16.919;④计算样本值:x¯=110(42+65+75+78+71+59+57+68+54+55)=62.4,s2=19∑i=110(xi-x¯)2≈121.8,χ2=9×121.880≈13.7∈(0,16.919).故接受原假设H0即在α=0.05下,可认为整批保险丝的熔断时间的方差不大于80.习题8某系学生可以被允许选修3学分有实验物理课和4学分无实验物理课,11名学生选3学分的课,考试平均分数为85分,标准差为4.7分;17名学生选4学分的课,考试平均分数为79分,标准差为6.1分. 假定两总体近似服从方差相同的正态分布,试在显著性水平α=0.05下检验实验课程是否能使平均分数增加8分?解答:设有实验的课程考分X1∼N(μ1,σ12),无实验的课程考分X2∼N(μ2-σ22).假定σ12=σ22=σ2未知,检验假设H0:μ1-μ2=8,H1:μ1-μ2≠8.由题意知,选用t检验统计量,则拒绝域为W={∣x1¯-x2¯-(μ1-μ2)sw1n1+1n2∣>tα/2(n1+n2-2),其中sw2=(n1-1)s12+(n2-1)s22n1+n2-2.由x1¯=85,x2¯=79,n1=11,n2=17,s1=4.7,s2=6.1,算出sw=(11-1)×4.72+(17-1)×6.1211+17-2≈5.603.从而算出t值为t=85-79-85.603111+117≈-0.92,由α=0.05,查表得t0.025(11+17-2)=t0.025(25)=2.056,因为∣t∣=0.92<2.056,故接受H0,认为μ1-μ2=8.习题9某校从经常参加体育锻炼的男生中随机地选出50名,测得平均身高174.34厘米;从不经常参加体育锻炼的男生中随机地选50名,测得平均身高172.42厘米. 统计资料表明两种男生的身高都服从正态分布,其标准差分别为5.35厘米和6.11厘米,问该校经常参加锻炼的男生是否比不常参加锻炼的男生平均身高要高些(α=0.05)?解答:设X,Y分别表示常锻炼和不常锻炼男生的身高,由题设X∼N(μ1,5.352),Y∼N(μ2,6.112).①待检假设H0:μ1≤μ2,备择假设H1:μ1>μ2;②选取统计量U=X¯-Y¯σ12n+σ22m∼(H0成立)N(0,1);③对于α=0.05,查标准正态分布表,uα=u0.05=1.64;则拒绝域为(1.64,+∞);④计算u=174.34-172.425.35250+6.11250≈1.67>1.64,故否定原假设H0,即表明经常体育锻炼的男生平均身高比不经常体育锻炼的男生平均身高高些.习题10在漂白工艺中要改变温度对针织品断裂强力的影响,在两种不同温度下分别作了8次试验,测得断裂强力的数据如下(单位:kg):70∘C:20.818.819.820.921.519.521.021.280∘C:17.720.320.018.819.020.120.219.1判断两种温度下的强力有无差别(断裂强力可认为服从正态分布α=0.05)?解答:(1)本问题是在α=0.05下检验假设μ1=μ2,为此需要先检验σ12=σ22是否成立.H01:σ12=σ22,H11:σ12≠σ22.选取统计量F=S12S22,在H01成立的条件下,F∼F(n1-1,n2-1),且此检验问题的拒绝域为F>Fα/2(n1-1,n2-1)或F<F1-α/2(n1-1,n2-1).这里F=s12s22≈0.90550.8286≈1.0928,F0.025(7,7)=4.99,F0.975(7,7)=1F0.025(7,7)=14.99≈0.2004.显然F0.975(7,7)=0.2004<1.0928<4.99=F0.025(7,7).说明F未落在拒绝域中,从而接受H01,即认为两温度下的强力的方差没有显著变化,亦即σ12=σ22. (2)再检验假设H0ʹ:μ1=μ2,H0ʹ:μ1≠μ2,在H0ʹ成立的条件下,T=X1¯-X2¯(n1-1)S12+(n2-1)S22n1+n2-21n1+1n2∼t(n1+n2-2),且此检验问题的拒绝域为∣T∣>tα/2(n1+n2-2),这里T≈20.4-19.47×0.9055+7×0.82868+8-218+18≈2.148,显然∣T∣=2.148>2.145=t0.025(14).说明T落在拒绝域中,从而拒绝H0,即认为两种温度下的断裂强力有显著差别.习题11一出租车公司欲检验装配哪一种轮胎省油,以12部装有Ⅰ型轮胎的车辆进行预定的测试. 在不变换驾驶员的情况下,将这12部车辆换装Ⅱ型轮并重复测试,其汽油耗量如下表所示(单位:km/L).汽车编号i123456789101112Ⅰ型胎(xi)4.24.76.67.06.74.55.76.07.44.96.15.2Ⅱ型胎(yi)4.14.96.26.96.84.45.75.86.94.76.04.9假定两总体均服从正态分布,试在α=0.025的显著性水平下,检验安装Ⅰ型轮胎是否要双安装Ⅱ型轮胎省油?解答:设两种轮胎汽油消耗量之差为随机变量D,则取值为zi=xi-yi=0.1,-0.2,0.4,0.1,-0.1,0.1,0,0.2,0.5,0.2,0.1,0.3.设Z∼N(μz,σz2),σz2未知. 若消耗油相同,则μz=0;若Ⅰ型比Ⅱ型轮胎省油,则μz>0,于是检验假设H0:μz=0,H1:μz>0.由题意知z¯≈0.142,s≈0.198,n-1=12-1=11.α=0.025,查t分布表得t0.025(11)=2.201.所以,拒绝域为W={t>2.201}.由于样本值t=z¯-0s/n=0.142-00.198/12≈2.48>2.201,故拒绝H0:μz=0,即说明Ⅰ型轮胎省油.习题12有两台机器生产金属部件,分别在两台机器所生产的部件中各取一容量n1=60,n2=40的样本,测得部件重量(以kg计)的样本方差分别为s12=15.46,s22=9.66. 设两样本相互独立,两总体分别服从分布N(μ1,σ12),N(μ2,σ22).μi,σi2(i=1,2)均未知,试在α=0.05水平下检验假设H0:σ12≤σ22,H1:σ12>σ22.解答:在α=0.05下,检验假设H0:σ12≤σ22,H1:σ12>σ22,经计算p=1100×10(45+2×17+3×4+4×1+5×1)=1/10,故检验假设为H0:X∼B(10,1/10),即p =P{X=i}=C10i(1/10)i(9/10)10-i,i=0,1,2,⋯,10.为了使np ≥5,将xi≥3合并,于是k=4,r=1.计算χ2的观察值,计算结果如下表:[200,300) [300,+∞)435843.466.9-0.4-8.90.0041.184∑300300 1.8631其中理论概率pi=p{ti≤T≤ti+1}=∫titi+1f(t)dt(i=1,2,3),p4=1-∑i=13pi,例如p1=P{T<100}=∫01000.005e-0.005tdt=1-e-0.5≈0.393.由k=4,未知参数个数r=0,查表知χα2(k-r-1)=χ0.052(3)=7.815.因χ2=1.8631<χ0.052(3)=7.815.故接受H0,即可认为灯泡的寿命服从该指数分布.习题16关于正态总体X∼N(μ,1)的数学期望有如下二者必居其一的假设,H0:μ=0,H1:μ=1.考虑检验规则:当X¯≥0.98时否定假设H0接受H1,其中X¯=(X1+⋯+X4)/4,而X1,⋯,X4是来自总体X的简单随机样本,试求检验的两类错误概率α和β.解答:易见,在假设“H0:μ=0”成立的条件下,X¯∼N(0,1/4),2X¯∼N(0,1);在假设“H1:μ=1”成立的条件下,X¯∼N(1,1/4),2(X¯-1)∼N(0,1).因此,由定义得α=P{X¯≥0.98∣μ=0}=P{2X¯≥1.96∣μ=0}=0.025,β=P{X¯<0.98∣μ=1}=P{2(X¯-1)<-0.04∣μ=1}=0.4840.习题17考察某城市购买A公司牛奶的比例,作假设H0:p=0.6,H1:p<0.6,随机抽取50个家属,设x为其中购买A公司牛奶的家庭数,拒绝域W={x≤24}.(1)H0成立时,求第一类错误的α;(2)H1成立且p=0.4时,求第二类错误的β(0.4);又当p=0.5时,求第二类错误的β(0.5).解答:由定义知(1)α=P{x≤24∣p=0.6}=Φ(24-50×0.650×0.6×0.4)≈Φ(-1.73)=1-Φ(1.73)=1-0.9528=0.0418.(2)β(0.4)=P{x>24∣p=0.4}=1-Φ(24-50×0.450×0.4×0.6)≈1-Φ(1.15)=1-0.8749=0.1251;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其它结果见表7.4.6
表7.4.6 诸npˆij的计算结果
<80
8090 9099 100
pˆ i.
营养良好 384.1677 346.8724 259.7631 313.3588 0.9081
营养不良 38.8779 35.1036 26.2881 31.7120 0.0919
表7.4.3 rc列联表
A\B 1
j
c和
1 n11
n1 j
n1c n1
i ni1
nij
nic ni
r nr1
nrj
nrc nr
和 n1
n j
nc n
列联表分析的基本问题是: 考察各属性之间有无
关联,即判别两属性是否独立。如在前例中,问
题是:一个人是否色盲与其性别是否有关?在 rc表中,若以 pi, p j 和pij 分别表示总体中的个体
参数 ,采用极大似然估计,
=
1 1 203 2383 ... 11 6 3.870
2608
将ˆ 代入可以估计出诸 pˆi 。
于是可计算出 2
列表如下。
i
ni
0
57
1
203
2
383
3
525
4
532
5
408
6
273
7
139
8
45
9
27
10
10
11
6
合计 2608
pˆ i
p. j 0.2946 0.2660 0.1992 0.2403
由表7.4.5和表7.4.6可以计算检验统计量的值
2 (367 384.1677)2 (342 346.8724)2
384.1677
346.8724
19.2785
(16 31.7120)2 31.7120
二、诸 pi 不完全已知
若诸 即
pi
,i 1, pi
pi
, k由r
(1,
(r<k)个未知参数
,r ), i 1, ,k.
1,...,确r 定,
首然pˆi先 后给 给pi (出 出1诸, 1,p,i,ˆr,i).r的1,F极is,大hke似的r证然极明估大了计似然ˆ1,估计,ˆr,
§7.4 分布拟合检验
7.4.1 总体分布只取有限个值的情况
设总体X 可以分成k 类,记为A1, , Ak,现对该总
体作了n 次观测,k 个类出现的频数分别为:
k
n1,…,nk, 且 ni n. i 1
检验如下假设: H0 : P( Ai ) pi , i 1, 2, , k.
k
其中诸 pi 0 且 pi 1.
在正态概率纸上作图步骤如下:
(1) 首先将数据排序: 7.2 8.2 8.6 8.8 9.4 9.6 9.8 10.1 10.2 11.1;
(2) 对每一个i,计算修正频率 (i-0.375)/(n+0.25), i=1,2,…,n,
(3) 将点 (x(i), (i 0.375)/(n 0.25)), i 1, 2, , n 逐一点在正态概率纸上,
i 0 1 2 3 4 5 6 7 8 9 10 11
ni 57 203 383 525 532 408 273 139 45 27 10 6
试利用该组数据检验该放射物质在单位时间内放 射出的粒子数是否服从泊松分布。
解:本例中,要检验总体是否服从泊松分布。
观测到 0, 1, …, 11 共 12 个不同取值,这 相当于把总体分成12类。这里有一个未知
它有四个水平,B1, B2, B3, B分4 别表示表中四种
情况。沿用前面的记号,首先建立假设 H0:营养状况与智商无关联,即A与B独立的。 统计表示如下:
H0 : pij pi. p. j , i 1, 2, j 1, 2,3, 4.
在原假设H0成立下,我们可以计算诸参数的极 大似然估计值:
仅属于 Ai ,仅属于B j 和同时属于 Ai 与 B j的概率,可
得一个二维离散分布表(表7.4.4),则“A、B两
属性独立”的假设可以表述为
H0 : pij pi p j ,
i 1, , r, j 1, , c
表7.4.4 二维离散分布表
A\B 1
j
c 行和
1 p11
p1 j
p1c p1
其表达式为
pij
pi p j
ni n
n j n
对给定的显著性水平 ,检验的拒绝域为:
W
{ 2
2 1
((
r
1)(c
1))}.
例7.4.3 为研究儿童智力发展与营养的关系,某 研究机构调查了1436名儿童,得到如表7.4.5的 数据,试在显著性水平0.05下判断智力发展与 营养有无关系。
3.75
2
4
6
4
2
2
由于 2 3未.75落入拒绝域,故接受原假设,
没有理由认为转盘不均匀。
在分布拟合检验中使用p 值也是方便的。 本例中,以T 记服从 2(5)的随机变量,则使用 统计软件可以算出
p P T 3.75 0.5859.
这个p 值就反映了数据与假设的分布拟合程度的 高低,p 值越大,拟合越好。
i 1
一、诸 pi 均已知
如果H0 成立,则对每一类Ai,其频率ni /n与概 率pi 应较接近。即观测频数ni 与理论频数npi 应 相差不大。据此,英国统计学家K.Pearson提出
如下检验统计量:
k
2
ni npi 2
i 1
npi
(7.4.2)
并证明在H0 成立时对充分大的n, (7.4.2) 给出的 检验统计量近似服从自由度为k-1的 分2 布。
额度 5万 10万 20万 30万 50万 100万
概率 0.1 0.2 0.3 0.2 0.1 0.1
现20人参加摇奖,摇得5万、10万、20万、30万、 50万和100万的人数分别为2、6、6、3、3、0, 由于没有一个人摇到100万,于是有人怀疑大转 盘是不均匀的,那么该怀疑是否成立呢?这就需 要对转盘的均匀性作检验。
10
18.307.
本例中 2=12.8967<18.307,故接受
原假设。使用统计软件可以计算出
此处检验的p 值是0.2295。
7.4.2 列联表的独立性检验
列联表是将观测数据按两个或更多属性 (定性变量) 分类时所列出的频数表。例 如,对随机抽取的1000人按性别(男或 女)及色觉(正常或色盲) 两个属性分类, 得到如下二维列联表,又称2×2表或四 格表。
约束条件:
r
c
pi 1,
p j 1
i 1
j 1
所以,此时 pij实际上由r+c-2个独立参数所确定。 据此,检验统计量为
r
2
c (nij npˆij )2
i1 j1
npˆ ij
在H2分0成布立。时,上式服从自由度为rc-(r+c-2)-1的
其中诸 pˆij是在H0成立下得到的pij 的极大似然估计,
一、 正态概率纸
正态概率纸可用来作正态性检验,方法如下: 利用样本数据在概率纸上描点,用目测方法看 这些点是否在一条直线附近,若是的话,可以 认为该数据来自正态总体,若明显不在一条直 线附近,则认为该数据来自非正态总体。
例7.4.4 随机选取10个零件,测得其直径与标 准尺寸的偏差如下:(单位:丝) 9.4 8.8 9.6 10.2 10.1 7.2 11.1 8.2 8.6 9.6
pˆ1 1304 /1436 0.9081, pˆ2 132 /1436 0.0919, pˆ1 423/1436 0.2946, pˆ2 382 /1436 0.2660, pˆ3 286 /1436 0.1992, pˆ4 345/1436 0.2403, 进而可给出诸 npˆij npˆi pˆ j ,如
拒绝域为:
W
2
2 1
k
1
例7.4.1 为募集社会福利基金,某地方政府发 行福利彩票,中彩者用摇大转盘的方法确定 最后中奖金额。大转盘均分为20份,其中金 额为5万、10万、20万、30万、50万、100万 的分别占2份、4份、6份、4份、2份、2份。 假定大转盘是均匀的,则每一点朝下是等可 能的,于是摇出各个奖项的概率如下:
此处r=2,c=4,(r-1)(c-1)=3,若取 =0.05 ,查表
有 2 0.95
(3)
7.815,由于19.2785>7.815,故拒绝原
假设,认为营养状况对智商有影响。
本例中检验的p 值为0.0002。
7.4.3 正态性检验
正态分布是最常用的分布,用来判断总体分布 是否为正态分布的检验方法称为正态性检验, 它在实际问题中大量使用。
换 y ln x、倒数变换 y 1/ x和根号变换
y x。
例7.4.5 随机抽取某种电子元件10个,测得其寿 命数据如下: 110.47, 99.16, 97.04, 77.60, 4269.82, 539.35, 179.49, 782.93, 561.10, 286.80.
图7.4.3 给出这10个点在正态概率纸上的图形, 这10个点明显不在一条直线附近,所以可以认 为该电子元件的寿命的分布不是正态分布。
5.7
2068
ni npˆi 2 / npˆi