卡方检验应用

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卡方检验应用

第八章记数数据统计法—卡方检验法

知识引入

在各个研究领域中,有些研究问题只能划分为不同性质的类别,各类别没有量的联系。例如,性别分男女,职业分为公务员、教师、工人、……,教师职称又分为教授、副教授、……。有时虽有量的关系,因研究需要将其按一定的标准分为不同的类别,例如,学习成绩、能力水平、态度等都是连续数据,只是研究者依一定标准将其划分为优良中差,喜欢与不喜欢等少数几个等级。对这些非连续等距性数据,要判别这些分类间的差异或者多个变量间的相关性方法称为计数数据

统计方法。

卡方检验是专用于解决计数数据统计分析

的假设检验法。本章主要介绍卡方检验的两个应用:拟合性检验和独立性检验。拟合性检验是用于分析实际次数与理论次数是否相同,适用于单个因素分类的计数数据。独立性检验用于分析各有多项分类的两个或两个以上的因素之间是否

有关联或是否独立的问题。

在计数数据进行统计分析时要特别注意取样的代表性。我们知道,统计分析就是依据样本所提供的信息,正确推论总体的情况。在这一过程中,最根本的一环是确保样本的代表性及对实验的良好控制。在心理与教育研究中,所搜集到的有些数据属于定性资料,它们常常是通过调查、访问或问卷获得,除了少数实验可以事先计划外,大部分收集数据的过程是难于控制的。例如,某研究者关于某项教育措施的问卷调查,由于有一部分教师和学生对该项措施存有意见,或对问卷本身有偏见,根本就不填写问卷。这样该研究所能收回的问卷只能代表一部分观点,所以它是一个有偏样本,若据此对总体进行推论,就会产生一定的偏差,势必不能真实地反映出教师与学生对这项教育措施的意见。因此应用计数资料进行统计推断时,要特别小心谨慎,防止样本的偏倚性,只有具有代表性的样本才能作出正确的推论。

第一节卡方拟合性检验

一、卡方检验的一般问题

卡方检验应用于计数数据的分析,对于总体的分布不作任何假设,因此它又是非参数检验法中的一种。它由统计学家皮尔逊推导。理论证明,实际观察次数(f o)与理论次数(f e),又称期望次数)之差的平方再除以理论次数所得的统计量,近似服从卡方分布,可表示为:

这是卡方检验的原始公式,其中当f e越大(f e≥5),近似得越好。显然f o与f e相差越大,卡方值就越大;f o与f e相差越小,卡方值就越小;因此它能够用来表示f o与f e相差的程度。根据这个公式,可认为卡方检验的一般问题是要检验名义型变量的实际观测次数和理论次数分布之间

是否存在显著差异。它主要应用于两种情况:

卡方检验能检验单个多项分类名义型变量

各分类间的实际观测次数与理论次数之间是否

一致的问题,这里的观测次数是根据样本数据得多的实计数,理论次数则是根据理论或经验得到的期望次数。这一类检验称为拟合性检验。

拟合性检验的零假设是观测次数与理论次数之间无差异。其中理论次数的计算一般是根据某种理论,按一定的概率通过样本即实际观测次数来计算。这里所说的某种理论,可能是经验规律,也可能是理论分布。确定理论次数是卡方检验的关键。

拟合性检验自由度的确定与两个因素有关:一是分类的项数,二是在计算理论次数时,所用统计量或约束条件的个数,这两者之差即为自由度。由于一般情况下,计算理论次数时只用到“总数”这一统计量,所以自由度一般是分类的项数减1。但在对连续数据分布的配合度检验中,常常会用数据个数、平均数、标准差等统计量来计算理论次数,所以此时的自由度应从总分类项中减去更多的个数。按照检验中理论次数的定义不同,拟合性检验有以下集中应用。

二、检验无差假设

所谓无差假设,是指各项分类的实计数之间没有差异,也就是说各项分类之间的概率相等

(均匀分布),因此理论次数完全按概率相等的条件来计算。即任一项的理论次数都等于总数/分类项数。因此自由度也就等于分类项数减1。

【例1】随机地将麻将色子抛掷300次,检验该色子的六个面是否均匀。结果1-6点向上的次数依次是,43,49,56,45,66,41。

解:每个类的理论次数是300/6 = 50,代入公式:

因此,在0.05的显著性水平下,可以说这个色子的六面是均匀的。

【例2】随机抽取60名高一学生,问他们文理要不要分科,回答赞成的39人,反对的21人,问对分科的意见是否有显著的差异。

解:如果没有显著的差异,则赞成与反对的各占一半,因此是一个无差假设的检验,于是理论次数为60/2=30,代入公式:

所以对于文理分科,学生们的态度是有显著的差异的。

三、检验假设分布的概率

这里的假设分布可以是经验性的,也可以是某理论分布。公式中所需的理论次数则按照这里假设的分布进行计算。

【例3】国际色觉障碍讨论会宣布,每12个男子中,有一个是先天性色盲。从某校抽取的132名男生中有4人是色盲,问该校男子色盲比率与上述比例是否有显著差异?

解:按国际色觉障碍讨论会的统计结果,132人应该有132/12=11人是色盲,剩下的121人非色盲,代入公式有:

因此,在0.05和显著性水平下,该校男子色盲比率与国际色觉障碍讨论会的统计结果有显著差异,显然根据比例可知该校的色盲率小于国际色觉障碍讨论会的统计结果。

【例4】在英语四级考试中,某学生做对了80个四择一选择题中的28题,现在要判断该生是否是完全凭猜测做题。

解:假如该生完全凭猜测做题,那么平均而言每道题做对的可能性是1/4,因此80个题中平均而能做对80/4=20题,代入公式有:

因此,该生可能会做一些题。

四、连续变量分布的拟合性检验

对于一组连续数据,经常需要对其次数分布究竟服从哪种理论分布进行探讨,这一方面的主

要应用就是在前面经常所提到的总体正态性检验。首先要将测量数据整理成次数分布表和画出次分布图,并据此选择恰当的理论分布。这些理论分布是多种多样的,例如有正态分布、均匀分布等。然后根据选择的理论分布计算出理论次数,就可以计算卡方统计量并进行显著性检验了。若差异显著,说明所选择的理论分布不合适,可以再选一个理论分布进行检验,直至完全拟合。当然有时也只需检验是否与某确定的理论分布相符,如正态性检验(参见教材有关内容)。

对连续随机变量分布的吻合性检验,关键的步骤是计算理论次数与确定自由度。理论次数的计算是按所选理论分布规律,并利用观测数据的有关统计量来计算各分组(次数分布表中)理论次数。自由度则是用分组数减去计算理论次数时所用统计量的数目。

这种拟合性检验计算较为繁琐,不做要求。

五、小理论次数时的连续性校正

相关文档
最新文档