人教版九年级数学下册-解直角三角形及其应用--知识讲解(包含典型例题讲解)
人教版数学九年级(下册)28.2解直角三角形及其应用(教案)
最后,课堂总结环节,我发现部分学生对今天所学知识的掌握程度并不理想。这可能是因为在课堂讲解过程中,我没有充分关注学生的反馈,导致他们对知识点的理解不够深刻。为了改善这一状况,我会在今后的教学中,更加关注学生的反应,及时调整教学方法和节奏,确保每位学生都能跟上课程进度。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“解直角三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直角三角形的基本概念、勾股定理以及正弦、余弦、正切函数的应用。同时,我们也通过实践活动和小组讨论加深了对解直角三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.增强学生的数学应用意识,使其认识到数学在生活中的广泛应用,激发学习兴趣,提高数学素养。
三、教学难点与重点1.来自学重点-核心内容:勾股定理的应用、正弦、余弦、正切函数的定义及其在解直角三角形中的应用。
-实际例子:通过实际情境引入勾股定理的应用,如测量旗杆高度、计算建筑物之间的距离等。
九年级数学下册《第二十八章 解直角三角形及其应用》练习题附答案解析-人教版
九年级数学下册《第二十八章解直角三角形及其应用》练习题附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.图,在Rt△ABC中△ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB交AC于点F,若BC=4,sin△CEF= 3,则△AEF的面积为()5A.3B.4C.5D.62.小丽在小华北偏东40°的方向,则小华在小丽的()A.南偏西50°B.北偏西50°C.南偏西40°D.北偏西40°3.如图,小明在距离地面30米的P处测得A处的俯角为15︒,B处的心角为60︒,若斜面坡度为,则斜面AB的长是()米.A.B.C.D.4.如图,某渔船正在海上P处捕鱼,先向北偏东30°的方向航行10km到A处.然后右转40°再航行到B处,在点A的正南方向,点P的正东方向的C处有一条船,也计划驶往B处,那么它的航向是()A .北偏东20°B .北偏东30°C .北偏东35°D .北偏东40°5.如图,某建筑物的顶部有一块宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°,已知斜坡AB 的坡角为30°,10AB =米,15AE =米,则宣传牌CD 的高度是( )米A .20-B .20+C .15+D .56.如图,已知正六边形ABCDEF 内接于半径为r 的O ,随机地往O 内投一粒米,落在正六边形内的概率为( )A B C D .以上答案都不对7.如图,小明利用标杆BE 测量建筑物DC 的高度,已知标杆BE 的长为1.2米,测得AB =85米,BC =425米,则楼高CD 是( )A .6.3米B .7.5米C .8米D .68.如图,点E 是⊥ABCD 的边AB 上一点,过点E 作EF ∥BC ,交CD 于F ,点P 为EF 上一点,连接PB 、PD .下列说法不正确的是( )A .若⊥ABP =⊥CDP ,则点P 在⊥ABCD 的对角线BD 上B .若AE :EB =2:3,EP :PF =1:2,则S △BEP :S △DFP =3:4C .若S △BEP =S △DFP ,则点P 在AC 上D .若点P 在BD 上,则S △BEP =S △DFP9.如图,一棵大树被台风拦腰刮断,树根A 到刮断点P 的距离是4米,折断部分PB 与地面成40︒的夹角,那么原来这棵树的高度是( )A .44cos 40+︒⎛⎫ ⎪⎝⎭米B .44sin 40+︒⎛⎫ ⎪⎝⎭米C .()44sin 40+︒米D .()44tan 40+︒米10.如图,等腰Rt △ABC 中⊥A =90°,AB =AC ,BD 为△ABC 的角平分线,若2CD =,则AB 的长为( )A.3 B .2 C .4 D 2+二、填空题11.在Rt ABC 中90C ∠=︒,有一个锐角为60︒,6AB =若点P 在直线..AB 上(不与点A ,B 重合),且30PCB ∠=︒,则AP 的长为_______.12.如图,将扇形AOB 沿OB 方向平移,使点O 移到OB 的中点O '处,得到扇形A O B '''.若⊥O =90°,OA =2,则阴影部分的面积为______.13.如图,在一次数学实践活动中小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点处前行30m 到达斜坡CE 的底部点C 处,然后沿斜坡CE 前行20m 到达最佳测量点D 处,在点D 处测得塔顶A的仰角为30︒,已知斜坡的斜面坡度i =A ,B ,C ,D ,在同一平面内,小明同学测得古塔AB 的高度是___________.14.如图,在直角坐标系中点A 的坐标为(0,点B 为x 轴的正半轴上一动点,作直线AB ,⊥ABO 与⊥ABC 关于直线AB 对称,点D ,E 分别为AO ,AB 的中点,连接DE 并延长交BC 所在直线于点F ,连接CE ,当⊥CEF 为直角时,则直线AB 的函数表达式为__.15.如图,平行四边形OABC 的顶点O 是坐标原点,A 在x 轴的正半轴上,B ,C 在第一象限,反比例函数1y x =的图象经过点C ,()0k y k x=≠的图象经过点B .若OC AC =,则k =________.16.在⊥ABC 中AB =6AC =且45B ∠=,则BC =______________.17.如图,大坝横截面的迎水坡AB 的坡比为1:2,(即BC :AC=1:2),若坡面AB 的水平宽度AC 为12米,则斜坡AB 的长为________米.18.如图,等边ABC 中115,125AOB BOC ∠=︒∠=︒,则以线段,,OA OB OC 为边构成的三角形的各角的度数分别为______________________________.三、解答题19.实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN 的距离皆为100cm .王诗嬑观测到高度90cm 矮圆柱的影子落在地面上,其长为72cm ;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线MN 互相垂直,并视太阳光为平行光,测得斜坡坡度1:0.75i =,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为150cm ,且此刻她的影子完全落在地面上,则影子长为多少cm ?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为100cm ,则高圆柱的高度为多少cm ?20.八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A 处向正北方向走了450米,到达菜园B 处锄草,再从B 处沿正西方向到达果园C 处采摘水果,再向南偏东37°方向走了300米,到达手工坊D 处进行手工制作,最后从D 处回到门口A 处,手工坊在基地门口北偏西65°方向上.求菜园与果园之间的距离.(结果保留整数)参考数据:sin65°≈ 0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈ 0.60,cos37°≈ 0.80,tan37°≈0.7521.如图是某水库大坝的横截面,坝高20m CD =,背水坡BC 的坡度为11:1i =.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为2i =求背水坡新起点A 与原起点B之间的距离. 1.41 1.73≈结果精确到0.1m )参考答案与解析1.C【分析】连接BF ,由已知CE AE BE ==得到A FBA ACE ==∠∠∠,再得出CEF ∠与CBF ∠的关系,由三角函数关系求得CF 、BF 的值,通过BF AF =,用三角形面积公式计算即可.【详解】解:连接BF⊥CE 是斜边AB 上的中线 ⊥12CE AE BE AB ===(直角三角形斜边上的中线等于斜边的一半)⊥A FBA ACE ==∠∠∠又⊥90BCA BEF ==︒∠∠在⊥ABC 中180902CBF ACB A ABF A =︒-∠-∠-∠=︒-∠∠在⊥AEC 中180902CEF AEF A ACE A =︒-∠-∠-∠=︒-∠∠⊥CEF CBF ∠=∠3sin sin 5CBF CEF ∴∠=∠=4BC =,设3,5CF x BF x ==则222BC CF BF +=,即()()222435x x +=解得1x =(负值舍掉)3,5CF BF ∴== ⊥EF 是AB 的垂直平分线, ⊥5BF AF ==11·541022AFB S AF BC ∴==⨯⨯=△ 152AEF ABF S S ∴==△△故选:C .【点睛】本题综合考查了垂直平分线的性质、直角三角形和等腰三角形的性质、勾股定理及三角函数等相关知识,熟练利用相关定理和性质进行计算是解决本题的关键.2.C【分析】画出示意图,确定好小丽和小华的的方向和位置即可.【详解】解:如图所示,当小丽在小华北偏东40°的方向时,则小华在小丽的南偏西40°的方向.故选:C【点睛】本题考查了方位角的知识点,确定好物体的方向和位置是解题的关键.3.B【分析】过点A 作AF BC ⊥于点F ,根据三角函数的定义得到30ABF ∠=︒,根据已知条件得到3045HPB APB ∠∠=︒=︒,求得60HBP ∠=︒,解直角三角形即可得到结论.【详解】如图所示:过点A 作AF BC ⊥于点F斜面坡度为AF tan ABF BF ∠∴=== 30ABF ∠∴=︒在P 处进行观测,测得山坡上A 处的俯角为15︒,山脚B 处的俯角为60︒3045HPB APB ∠∠∴=︒=︒,60HBP ∠∴=︒9045PBA BAP ∠∠∴=︒=︒,PB AB ∴=303060PH PH m sin PB PB =︒===,解得:)PB m =故AB =故选:B .【点睛】此题主要考查了解直角三角形的应用-仰角俯角问题,解直角三角形的应用-坡度坡角问题,正确得出PB AB =是解题关键.4.C【分析】连接BC ,由锐角三角函数定义得AC A = km ,则AC =AB ,再由等腰三角形的性质得⊥ACB =⊥ABC =35°,即可得出结论.【详解】解:如图,连接BC由题意得:⊥ACP =⊥ACD =90°,⊥P AC =30°,P A =10km ,⊥BAE =40°,AB =⊥⊥BAC =180°—⊥P AC —⊥BAE =180°—30°—40°=110°⊥cos⊥P AC =ACPA =cos30°=⊥AC =P A =×10= km⊥AC =AB⊥⊥ACB =⊥ABC =12×(180°—⊥BAC )=12×(180°—110°)=35°即B 处在C 处的北偏东35°方向故选:C .【点睛】本题考查了解直角三角形的应用—方向角问题,等腰三角形的性质,锐角三角函数定义等知识,由锐角三角函数定义求出AC 的长是解题的关键.5.A【分析】过点B 分别作AE 、DE 的垂线,垂足分别为G 、F ,在Rt ⊥ABG 中由已知可求得BG 、AG 的长,从而可易得EF 及EG 、BF 的长度,由等腰直角三角形的性质可得CF 的长度,在Rt ⊥DAE 中由正切函数关系可求得DE 的长度,从而可求得CD 的长度.【详解】过点B 分别作AE 、DE 的垂线,垂足分别为G 、F ,如图在Rt ⊥ABG 中⊥BAG =30゜⊥152BG AB ==米,cos3010AG AB =︒==⊥15)EG AG AE =+=米⊥BG ⊥AE ,BF ⊥ED ,AE ⊥ED⊥四边形BGEF 是矩形⊥EF =BG =5米,15)BF EG ==米⊥⊥CBF =45゜,BF ⊥ED⊥⊥BCF =⊥CBF =45゜⊥15)CF BF ==米在Rt ⊥DAE 中⊥DAE =60゜,AE =15米⊥tan DE AE DAE =∠=米)⊥155(20CD CF EF DE =+-=+-=-米故选:A【点睛】本题考查了解直角三角形的实际应用,理解坡角、仰角的含义,构造辅助线得到直角三角形是解题的关键.6.A【分析】连接OB ,过点O 作OH ⊥AB 于点H ,由正六边形的特点可证得⊥OAB 是等边三角形,由特殊角的三角函数值可求出OH 的长,利用三角形的面积公式即可求出⊥OAB 的面积,进而可得出正六边形ABCDEF 的面积,即可得出结果.【详解】解:如图:连接OB ,过点O 作OH ⊥AB 于点H⊥六边形ABCDEF 是正六边形⊥⊥AOB =60°⊥OA =OB =r⊥⊥OAB 是等边三角形⊥AB =OA =OB =r ,⊥OAB =60°在Rt OAH △中sin OH OA OAB r =⋅∠==⊥21122OAB S AB OH r =⋅==△⊥正六边形的面积226== ⊥⊥O 的面积=πr 2⊥米粒落在正六边形内的概率为:222rπ 故选:A .【点睛】本题考查了正多边形和圆、正六边形的性质、等边三角形的判定与性质、解直角三角形;熟练掌握正六边形的性质,通过作辅助线求出⊥OAB 的面积是解决问题的关键.7.B【分析】先判断出⊥ABE ⊥⊥ACD ,再根据相似三角形对应边成比例解答.【详解】⊥AB =85,BC =425 ⊥AC =AB +BC =10⊥BE ⊥AC ,CD ⊥AC⊥BE ⊥CD⊥AB :AC =BE :CD ⊥85:10=1.2:CD⊥CD =7.5米.故选:B .【点睛】本题只要是把实际问题抽象到相似三角形中利用相似三角形的相似比,列出方程,通过解方程求出建筑物的高度,体现了方程的思想.8.D【分析】根据平行四边形的性质和判定进行判断即可.【详解】解:A 、若⊥ABP =⊥CDP ,则点P 在⊥ABCD 的对角线BD 上,说法正确;B 、若AE :EB =2:3,EP :PF =1:2则S △BEP :S △DFP =3:4,说法正确;C 、过点P 作GH AB ∥,分别交AD ,BC 于G ,H⊥GH AB ∥ GA HB ∥⊥四边形ABHG 是平行四边形同理:四边形CDGH 、四边形BHPE ,四边形DGPE 都是平行四边形 ⊥12BEP BHPE S S =△ 12DFP DGPF S S =△又BEP DFP S S =△△⊥BEPH DGPF SS = ⊥ABHG ADFE S S =同理:BCFE CDGH S S =⊥点P 在AC 上,C 说法正确;D 、若点P 在BD 上,不能得出EP =PF ,所以S △BEP 不一定等于S △DFP ,说法错误;故选:D .【点睛】此题考查平行四边形的判定和性质,掌握平行四边形的性质是解题的关键.9.B【分析】通过解直角三角形即可求得.【详解】解:在Rt ABP △中4==sin sin 40AP BP ABP ∠︒ 故原来这棵树的高度为:4=4sin 40AP BP ⎛⎫++ ⎪︒⎝⎭(米) 故选:B .【点睛】本题考查了解直角三角形的应用,熟练掌握和运用解直角三角形的方法是解决本题的关键.10.D【分析】过点D 作DE ⊥BC 于点E ,设AB =AC =x ,则AD =x -2,根据等腰Rt △ABC 中90,A AB AC ∠=︒= 得到⊥C =45°,根据BD 为△ABC 的角平分线,⊥A =90°,DE ⊥BC ,推出DE =AD =x -2,运用⊥C 的正弦即可求得.【详解】解:过点D 作DE ⊥BC 于点E ,则⊥DEB =⊥DEC =90°设AB =AC =x ,则AD =x -2⊥等腰Rt △ABC 中,⊥A =90°,AB =AC ,⊥⊥C =(180°-⊥A )=45°⊥BD 为△ABC 的角平分线⊥DE =AD =x -2⊥sin sin 452DE C CD ︒===⊥22x -⊥2x ,即2AB =.故选D .【点睛】本题主要考查了等腰直角三角形,角平分线,解直角三角形,熟练掌握等腰直角三角形的性质,角平分线的性质,正弦的定义和45°的正弦值,是解决问题的关键.11.92或9或3 【分析】分⊥ABC =60、⊥ABC =30°两种情况,利用数形结合的方法,分别求解即可.【详解】解:当⊥ABC =60°时,则⊥BAC =30°⊥132BC AB ==⊥AC ==当点P 在线段AB 上时,如图⊥30PCB ∠=︒⊥⊥BPC =90°,即PC ⊥AB⊥9cos 2AP AC BAC =⋅∠==;当点P 在AB 的延长线上时⊥30PCB ∠=︒,⊥PBC =⊥PCB +⊥CPB⊥⊥CPB =30°⊥⊥CPB =⊥PCB⊥PB =BC =3⊥AP =AB +PB =9;当⊥ABC =30°时,则⊥BAC =60°,如图⊥132AC AB ==⊥30PCB ∠=︒⊥⊥APC =60°⊥⊥ACP =60°⊥⊥APC =⊥P AC =⊥ACP⊥⊥APC 为等边三角形⊥P A =AC =3.综上所述,AP 的长为92或9或3. 故答案为:92或9或3 【点睛】本题是解直角三角形综合题,主要考查了含30度角的直角三角形、解直角三角形,等边三角形的判定和性质等,分类求解是本题解题的关键.12.3π【分析】设A O '与扇形AOB 交于点C ,连接OC ,解Rt OCO ',求得60O C COB '=∠=︒,根据阴影部分的面积为()OCO A O B OCB S S S ''''--扇形扇形,即可求解.【详解】如图,设A O '与扇形AOB 交于点C ,连接OC ,如图O '是OB 的中点11122OO OB OA '∴===, OA =2 AOB ∠=90°,将扇形AOB 沿OB 方向平移90A O O ''∴∠=︒1cos 2OO COB OC '∴∠== 60COB ∴∠=︒sin 60O C OC '∴=︒=∴阴影部分的面积为()OCO A O B OCB S S S''''--扇形扇形 OCO AOB OCB S S S ''=-+扇形扇形22906012213603602ππ=⨯-⨯+⨯3π=故答案为:3π+【点睛】本题考查了解直角三角形,求扇形面积,平移的性质,求得60COB ∠=︒是解题的关键.13.(20m +【分析】过D 作DF ⊥BC 于F ,DH ⊥AB 于H ,设DF =x m ,CF m ,求出x =10,则BH =DF =,CF =,DH =BF ,再求出AH DH ,即可求解. 【详解】解:过D 作DF ⊥BC 于F ,DH ⊥AB 于H⊥DH =BF ,BH =DF⊥斜坡的斜面坡度i =1⊥:DF CF =设DF =x m ,CFm⊥CD 220x ==⊥x =10⊥BH =DF =10m ,CF =⊥DH =BF =(m )⊥⊥ADH =30°⊥AH 10=+m ) ⊥AB =AH +BH =20103(m )故答案为:(20m +【点睛】本题考查了解直角三角形的应用-仰角俯角问题、坡角坡度问题,正确的作出辅助线构造直角三角形是解题的关键.14.y【分析】证明⊥ABO ⊥⊥ABC ,于是可知⊥CBA =⊥ABO =30°,得出OB =3即可求出直线AB 的函数表达式.【详解】解:⊥⊥ABO 与⊥ABC 关于直线AB 对称⊥⊥ACB =⊥AOB =90°⊥点E 是AB 的中点⊥CE =BE =EA⊥⊥EAC =⊥ECA⊥⊥ECA +⊥ECF =90°,⊥ECF +⊥CFE =90°⊥⊥CFE =⊥BAC而点D ,E 分别为AO ,AB 的中点⊥DF ∥OB⊥⊥CFE =⊥CBO =2⊥CBA =2⊥ABO⊥⊥ABO 与⊥ABC 关于直线AB 对称⊥⊥ABO ⊥⊥ABC⊥⊥OAB =⊥CAB =2⊥ABO⊥⊥ABO =30°而点A 的坐标为(0,即OAAB ∴=⊥OB =3即点B 的坐标为(3,0)于是可设直线AB 的函数表达式为y =kx +b ,代入A 、B 两点坐标得30b k b ⎧=⎪⎨+=⎪⎩解得kb故答案为y【点睛】本题考查的是三角形的全等,并考查了用待定系数法求函数解析式,找到两个已知点的坐标是解决本题的关键.15.3【分析】过点C 作CD ⊥OA 于D ,过点B 作BE ⊥x 轴于E ,先证四边形CDEB 为矩形,得出CD =BE ,再证Rt △COD ⊥Rt △BAE (HL ),根据S 平行四边形OCBA =4S △OCD =2,再求S △OBA =112OCBA S =平行四边形即可. 【详解】解:过点C 作CD ⊥OA 于D ,过点B 作BE ⊥x 轴于E⊥CD ⊥BE⊥四边形ABCO 为平行四边形⊥CB OA ∥ ,即CB DE ∥,OC =AB⊥四边形CDEB 为平行四边形⊥CD ⊥OA⊥四边形CDEB 为矩形⊥CD =BE⊥在Rt △COD 和Rt △BAE 中OC AB CD EB =⎧⎨=⎩⊥Rt △COD ⊥Rt △BAE (HL )⊥S △OCD =S △ABE⊥OC =AC ,CD ⊥OA⊥OD =AD⊥反比例函数1yx=的图象经过点C⊥S△OCD=S△CAD=12⊥S平行四边形OCBA=4S△OCD=2⊥S△OBA=11 2OCBAS=平行四边形⊥S△OBE=S△OBA+S△ABE=13 122 +=⊥3232k=⨯=.故答案为3.【点睛】本题考查反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质,掌握反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质.16.3或3【分析】画出图形,分⊥ABC为锐角三角形和钝角三角形两种情况讨论即可.【详解】解:情况一:当⊥ABC为锐角三角形时,如图1所示:过A点作AH⊥BC于H⊥⊥B=45°⊥⊥ABH为等腰直角三角形⊥363322ABAH BH在Rt⊥ACH中由勾股定理可知:2236273CH AC AH⊥333BC BH CH.情况二:当⊥ABC为钝角三角形时,如图2所示:由情况一知:363322ABAH BH2236273CH AC AH⊥333BC BH CH .故答案为:3或3.【点睛】本题考察了等腰直角三角形的性质及勾股定理的应用,本题的关键是能将⊥ABC 分成锐角三角形或钝角三角形分类讨论.17.【分析】根据坡面AB 的坡比以及AC 的值,求出BC ,再利用勾股定理即可求出斜面AB 的长.【详解】解:⊥大坝横截面的迎水坡AB 的坡比为1:2,AC=12米⊥1212BC BC AC == ⊥BC=6⊥AB =故答案为:【点睛】本题主要考查学生对坡度坡角的掌握及三角函数的运用能力,能根据坡度求出BC 是解题关键. 18.55°,60°,65°.【分析】通过旋转AOB 至CDB △,可得BOD 是等边三角形,将,,OA OB OC 放在一个三角形中进而求出各角大小。
人教版数学九年级下册《 解直角三角形》PPT课件
∴ AB的长为
巩固练习
在Rt△ABC中,∠C=90°,sinA = 0.8 ,BC=8,则
AC的值为( B )
A.4
B.6
C.8
D.10
如图,在菱形ABCD中,AE⊥BC于点E,EC=4,
sin B 4 ,则菱形的周长是 ( C )
5
A.10
B.20
C.40
D.28
链接中考
如图,在△ABC中,BC=12,tan A 3 ,B=30°;求
已知一边及一锐角解直角三角形
例2 如图,在 Rt△ABC 中,∠C = 90°,∠B = 35°, b = 20,解这个直角三角形 (结果保留小数点后一位).
解:∠A 90 ∠B=90 35 =55 .
tan B b ,
a
c
a b 20 28.6.
tan B tan 35
B
35° a
sin B b,c b 20 34.9.
探究新知
A
在Rt△ABC中,
一角
(1)根据∠A= 60°,你能求出这个三角形
的其他元素吗?
不能
两角
C
B (2)根据∠A=60°,∠B=30°, 你能求出这个
你发现了
三角形的其他元素吗?
不能
一角
什么? (3)根据∠A= 60°,斜边AB=4,你能求出这个三角形的其 一边
他元素吗?
∠B
AC BC
两边
(4)根据 BC 2 3,AC= 2 , 你能求出这个三角形的
AC和AB的长.
4
解:如图作CH⊥AB于H.
在Rt△BCH中,∵BC=12,∠B=30°,
H
∴CH 1 BC 6 ,BH BC2 CH 2 6 3 ,
人教版九年级下册数学课件《解直角三角形及其应用》
6
1.解直角三角形
在解直角三角形的过程中,一般要用到下面一些关系:
(1)三边之间的关系:
(勾股定理)
(2)两锐角之间的关系:∠A+∠B=90°
(3)边角之间的关系:
A
b
c
Ca
B
2021/3/20
7
1.解直角三角形
2021/3/20
A
2
C
6
B
8
解析:
2021/3/20
A
2
C
6
B
9
1.解直角三角形
2
C
6B
2021/3/20
∠B , AC , BC ∠A , ∠B , AB AB, AC, BC
5
1.解直角三角形
总结:在直角三角形的六个元素中,除直角外,如果知道两个元素(其中至少有一个是边),就可
以求出其余三个元素.
定义:在直角三角形中,由已知元素求未知元素的过程,叫解直角三角形.
2021/3/20
2021/3/20
19
解析:
【练4-2】如图,某幼儿园为加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑板 AB的长为5m,点D、B、C在同一直线上,求改善后滑滑板会加长多少?(精确到0.01m)(参考数 据:2≈1.414,3≈1.732,6≈2.449)
即会加长2.07m.
太阳光线 A
30° B 30
60°
C
D
地面
2021/3/20
18
2.三角函数的应用
【练4-2】如图,某幼儿园为加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑板AB 的长为5m,点D、B、C在同一直线上,求改善后滑滑板会加长多少?(精确到0.01m)(参考数 据:2≈1.414,3≈1.732,6≈2.449)
人教版初三数学下册解直角三角形应用举例公开课.doc
解直角三角形应用举例教案
复习引入,知识储备
1.什么叫解直角三角形?
在直角三角形中,由已知元素求出其余未知元素的过程,叫做解直角三角形。
2.直角三角形的边角关系:
(1)三边之间关系:
(2)锐角之间关系:
(3)边角之间关系:
3.已知哪些元素直角三角形可解?即解直角三角形的条件是什么? 已知一边一锐角或者两边
应用知识,解决问题
仰角和俯角
在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;
从上往下看,视线与水平线的夹角叫做俯角.
例如图,某地有一座移动信号塔CD,铁信号塔旁边有一座楼房AB.为了测量信号塔CD的高度,准备了如下测量工具:
1.皮尺
2.测角仪
3.长木杆一根
4.镜子
(1)在你设计的方案中,选用的测量工具是();
(2)画出你的测量方案示意图;
B D
应用解直角三角形的方法解决实际问题的一般步骤:
)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);。
人教版九年级下册数学:解直角三角形及其应用
1. 认识锐角三角函数(sinA cosA tanA),知道30°,45°,60°角的三角函 数值。
2. 能用锐角三角函数解直角三角形,能 用相 关知识解决一些简单的实际问题。
考点一 锐角三角函数的定义
如图,在 Rt△ABC 中,∠C=90°,∠A,∠B,
∠C 的对边分别为 a,b,c,则 sin A=
回头一看,我想说
通过本节课你学到了什么?
布置作业
经典回顾
考点一 锐角三角函数
例1(2016•广东)如图,在平面直角坐标系中,点A的坐
标为(4,3),那么cosα的值是( )
A.3
B.4
4
3
C.3
5
4
D.5
【变式1】(2016•龙岩)如图,若点A的坐标为(1, 3),
则sin∠1=
.
考点二 特殊角的三角函数值
例2(2018•沈阳)sin60°的值等于( )
图﹣5
中考冲刺
1.如图,某渔船在海面上朝正西方向以20海里/ 时匀速航行,在A处观测到灯塔C在北偏西60°方 向上,航行1小时到达B处,此时观察到灯塔C在北 偏西30°方向上,若该船继续向西航行至离灯塔 距离最近的位置,求此时渔船到灯塔的距离(结果 精确到1海里,参考数据: 3 ≈1.732)
2.如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同 一条直线上,小明在地面D处观测旗杆顶端B的仰角为 30°,然后他正对建筑物的方向前进了20米到达地面的E 处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度 AC=12m,求旗杆AB的高度?
=1.41)
一、选择题
1.已知tanA=1,则锐角A的度数是( B )
A.30°
B.45°
解直角三角形及其应用--知识讲解
解直角三角形及其应用—知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,一角,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】 类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,3b =. 【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知,tan 4tan6043b a B ==⨯=°. 由cos a B c =知,48cos cos 60a c B ===°. (2)由tan 3bB a==得∠B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2242c a b =+==.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值. 举一反三:【高清课程名称:解直角三角形及其应用 高清ID 号:395952 关联的位置名称(播放点名称):例1(1)-(3)】【变式】(1)已知∠C=90°,a=23,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ; 【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=252.(2015•湖北)如图,AD 是△ABC 的中线,tanB=,cosC=,AC=.求:(1)BC 的长;(2)sin ∠ADC 的值.【答案与解析】解:过点A 作AE ⊥BC 于点E , ∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【总结升华】正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.类型二、解直角三角形在解决几何图形计算问题中的应用3.如图所示,BC是半圆⊙O的直径,D是AC的中点,四边形ABCD的对角线AC、BD交于点E,(1)求证:△ABE∽△DBC;(2)已知BC=52,CD=52sin∠AEB的值;(3)在(2)的条件下,求弦AB的长.【答案与解析】(1)∵AD CD,∴∠1=∠2,又BC是⊙O的直径,∴∠BAC=∠BDC=90°.∴△ABE∽△DBC.(2)由△ABE∽△DBC,∴∠AEB=∠DCB.在Rt△BDC中,BC=52,CD=5∴ BD =225BC CD -=, ∴ sin ∠AEB =sin ∠DCB=52552BD BC ==. (3)在Rt △BDC 中,BD =5,又∠1=∠2=∠3,∠ADE =∠BDA ,∴ △AED ∽△BAD . ∴AD DEDB AD=,∴ 2AD DE DB =. 又∵ 5CD AD ==,∴ CD 2=(BD -BE)·BD , 即25(5)5BE ⎛⎫=- ⎪ ⎪⎝⎭,∴ 35BE =. 在Rt △ABE 中,AB =BEsin ∠AEB =32355452⨯=. 【总结升华】本题综合了三角函数、相似三角形、勾股定理、圆等方面知识,尤其涉及三角函数问题,都是通过找出或构造直角三角形来解决问题. (1)根据圆周角定理易证△ABE ∽△DBC .(2)利用(1)的结论,将∠AEB 转化为Rt △BCD 中的DCB ∠.(3)在Rt △ABE 中求AB .举一反三:【高清课程名称:解直角三角形及其应用 高清ID 号:395952 关联的位置名称(播放点名称):例2】【变式】 (2015•河南模拟)如图,在等腰Rt △ABC 中,∠C=90°,AC=6,D 是AC 上一点,若tan ∠DBA=,则AD 的长为多少?【答案与解析】解:作DE ⊥AB 于E ,如图, ∵∠C=90°,AC=BC=6,∴△ACB 为等腰直角三角形,AB=AC=6, ∴∠A=45°,在Rt △ADE 中,设AE=x ,则DE=x ,AD=x , 在Rt △BED 中,tan ∠DBE==,∴BE=5x ,∴x+5x=6,解得x=,∴AD=×=2.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为1:3i =(i =1:3是指铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==. (2)在Rt △DEC 中,∵ 3tan DE C EC ∠==,∴ ∠C =30°. 又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AG AFG FG ∠=,即355FB =+,解得535 3.66(m)FB =-=. 答:改建后需占路面的宽度FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3=1.73).【答案与解析】过点C作CE⊥AB于E.∵∠D=90°-60°=30°,∠ACD=90°-30°=60°,∴∠CAD=180°-30°-60°=90°.∵ CD=10,∴ AC=12CD=5.在Rt△ACE中,AE=AC·sin∠ACE=5×sin 30°=52,CE=AC·cos ∠ACE=5×cos 30°=53 2,在Rt△BCE中,∵∠BCE=45°,∴5553(31)222AB AE BE=+=+=+≈6.8(米).∴雕塑AB的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.。
人教版初中数学九年级下册 28.2 解直角三角形及其应用课件2 【经典初中数学课件】
合作与探究
【例1】如图,直升飞机在跨江大桥AB的上方P 点处,此时飞机离地面的高度PO=450米,且A、 B、O三点在一条直线上,测得大桥两端的俯角 分别为α=30°,β=45°,求大桥的长AB .
解:由题意得,在Rt△PAO与Rt△PBO中
P A O 3 0 , P B O 4 5
POtan30,POtan45P
3.如图3,从地面上的C,D两点测得树顶A仰角分别是 45°和30°,已知CD=200m,点C在BD上,则树高
AB等于 100( 31)m(根号保留).
图3
图4
4.如图4,将宽为1cm的纸条沿BC折叠,使∠CAB=45°
,则折叠后重叠部分的面积为
2 2
cm
2
(根号保留).
思考:有一块三形场地ABC,测得其中AB边长为 60米,AC边长50米,∠ABC=30°,试求出这个 三角形场地的面积.
Rt△ABC中,a =30°,AD=120,
仰角 B
αD Aβ
所以利用解直角三角形的知识求出
俯角
BD;类似地可以求出CD,进而求出BC.
C
水平线
解:如图,a = 30°,β= 60°, AD=120.
taanBD ,tanCD
AD AD
B A D tD a a 1 n 2 ta 3 0 n 0
(2)若∠B=60°,AC=3,则BC= 3
(3)若∠A=α°,AC=3,则BC= 3tan
m
(4)若∠A=α°,BC=m,则AC=
tan
B
┌
A
C
例3: 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变 轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地 球表面上P点的正上方时,从飞船上最远能直接看到地球上的点在什么位置? 这样的最远点与P点的距离是多少?(地球半径约为6 400km,结果精确到 0.1km)
新人教版九年级下册数学 28.2 解直角三角形及其应用参考课件(共30张PPT)
2.如图,沿AC方向开山修路,为了加快施工进度,要在小山的 另一边同时施工,从AC上的一点B取∠ABD=140°,BD=520m, ∠d=50°,那么开挖点E离D多远正好能A,C,E使成一直线,(精 确到0.1m)?
例5.如图,一般海轮位于灯塔P的北偏东65°方向,距离灯 塔80海里的A处,它沿正南方向航行一段时间后,到达位于 灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距 离灯塔P有多远(结果取整数)?
问题 要想使人平安地攀上斜靠在墙面上的梯子的顶 端,梯子与地面所成的角α,一般要满足50°≤α≤75°. 现有一个长6m的梯子.问
(1)使用这个梯子最高可以平安攀上多高的墙(精确到0.1m)
对于问题(1),当梯子与地面成的角α为75°时,梯子顶 端与地面的距离是使用这个梯子所以攀到的最大高度.
问题(1)可以归结为:在Rt△ABC中,己知∠A=75°,斜边 AB=6,求∠A的对边BC的长.
(1)坡度α和β; (2)坝顶宽AD和斜坡AB的长(精确到0.1m)
利用解直角三角形的知识解决实际问题的一般过程是: (1)将实际问题抽象为数学问题(画出平面图形,转化为解直角 三角形问题); (2)根据条件的特点,适中选用锐角三角函数等去解直角三角形; (3)得到数学问题的答案; (4)得到实际问题的答案.
例3 2022年6月18日,“神舟〞九号载人航天飞船与“天宫〞 一号目标飞行器成功实现交会对接.“神舟〞九号与“天宫〞一 号的组合体当在离地球外表343km的圆形轨道上运行.如图,当组 合体运行到地球外表上P点的正上方时,从中能直接看到的地球 外表最远的点在什么位置?最远点与P点的距离是多少?(地球半 径约为6 400 km,π取3.142,结果取整数)?
解 : 如图在RtAPC中
九年级数学下册28.2 《解直角三角形及其应用》PPT课件
解:设登到B处,视线BC在C点与地球相切,也就是 看C点,AB就是“楼”的高度,
在Rt△OCB中,∠O
AC OC
180
4.5 ,
OB
OC cos∠O
6370 cos 4.5
6389km,
∴ AB=OB-OA=6389-6370=19(km). 即这层楼至少要高19km,即1900m. 这是不存在 的.
例1 2012年6月18日,“神州”九号载人航天飞船与“天宫”一号
目标飞行器成功实现交会对接. “神州”九号与“天宫”一号的
组合体在离地球表面343km的圆形轨道上运行. 如图,当组
合体运行到离地球表面P点的正上方时,从中能直接看到的
地球表面最远的点在什么位置?最远点与P点的距离是多少
(地球半径约为6 400km,取3.142,结果取整数)?
个角), 其中∠C=90°.
B
(1) 三边之间的关系:a2+b2=__c_2__;
c a
(2) 锐角之间的关系: ∠A+∠B=__9_0_°_;
A
a
bC
b
(3) 边角之间的关系:sinA=__c___,cosA=__c___,
a
tanA=___b__.
讲授新课
一 已知两边解直角三角形
合作探究
在图中的Rt△ABC中,
三 已知一锐角三角函数值解直角三角形
例3 如图,在Rt△ABC 中,∠C=90°,cosA = 1,
3
BC = 5, 试求AB的长.
解: C 90,cos A 1, AC 1 . 3 AB 3
设 AB x, AC 1 x,
B
28.2.1 解直角三角形 课件 2024-2025学年数学九年级下册人教版
知1-讲
图示
感悟新知
知1-练
例 1 根据下列所给条件解直角三角形,不能求解的是( )
①已知一直角边及其对角;②已知两锐角;③已知两
直角边;④已知斜边和一锐角;⑤已知一直角边和
斜边.
A. ②③
B. ②④
C. 只有②
D. ②④⑤
感悟新知
知1-练
解题秘方:紧扣解直角三角形中“知二求三”的特征进行 解答. 解:①③④⑤能够求解,②不能求解. 答案:C
知2-练
解:在 Rt△ ABC 中,∠C=90°,AC=2 3,BC=6, ∴AB= AC2+BC2=4 3, tan B=ABCC=263= 33, ∴∠B=30°.∴∠A=90°-30°=60°.
感悟新知
例 3 根据下列条件,解直角三角形:
知2-练
(1)在Rt△ABC中,∠C=90 °,∠A,∠B,∠C所对的边
对乘正切.
“有斜求对乘正弦”的意思是:在一个直角三角形中,
对一个锐角而言,如果已知斜边长,要求该锐角的对边长,
那么就用斜边长乘该锐角的正弦值,其他的意思可类推.
感悟新知
例 2 根据下列条件,解直角三角形:
知2-练
(1)在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边
分别为a,b,c,a=20,c=20 2;
续表 图形
Rt△ABC
知2-讲
已知条件
解法
一 边 和 一
一直 角边 和一 锐角
一锐角与邻边 (如∠A,b)
一锐角与对边 (如∠A,a)
∠ B = 90° - ∠ A ; a =
b·tan A;c=cosb A
∠ B = 90° - ∠ A ; b =
数学人教版九年级下册解直角三角形及其应用——方位角
解直角三角形及其应用——方位角和坡度问题在前面我们学习了直角三角形及其应用关于仰角和俯角的问题,我们在解决这类实际问题的时候,首先是要画出平面图形,然后转化为解直角三角形。
那我们今天继续进行解直角三角形及其应用的学习。
现在请看问题1:问题1:一艘轮船在大海上航行,当航行到A处时,观测到小岛B的方向是北偏西35°,那么同时从B处观测到轮船在什么方向?若轮船从A处继续往正西方向航行到C处,此时,C 处位于小岛B 的南偏西40°方向,你能确定C的位置吗?试画图说明.1当航行到A处时,观测到小岛B的方向是北偏西35°。
由这句话知谁是坐标原点?怎样建立直角坐标系?生:A是坐标原点。
上北下南左西又东。
2那么同时从B处观测到轮船在什么方向?由这句话你想到什么呢?谁是坐标原点?B还需满足什么条件?在同一图形中怎样建立直角坐标系?生:需另建立直角坐标系。
以B是坐标原点。
在A的北偏西35°3若轮船从A处继续往正西方向航行到C处,此时,C 处位于小岛 B 的南偏西40°方向,师:由这句话知轮船现在的航行路线?你能确定C的方向吗?你能确定C的具体位置吗?你是怎样想到的?生:往正西方向航行。
B是坐标原点。
正西方向与小岛B的南偏西40方向的交点,就是C点的位置。
我们经过这几个步骤,就把图形画出来了,也把这个问题解决了。
我们回过头来看看,从这个问题中我们学到了什么?生:将实际问题抽象为数学问题:画出平面图形,转化为解直角三角形的问题。
师:解决这个问题的关键就是能画出平面图形。
平面图形一经画出,所有问题就迎刃而解了。
如何画出这样的平面图形呢?生:1 找准坐标原点。
2 能准确地确定问题中提出的各个方位。
刚才同学们总结得很好,这就是今天我们要研究的第一个问题:解直角三角形的应用——方位角的问题。
出示课题。
刚才同学们都表现得非常不错,那我们再来继续下一个问题,看能不能解决呢?问题2 一艘海轮位于灯塔P 的北偏东65°方向,距离灯塔80 n mile 的 A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东34°方向上的 B 处,这时, B 处距离灯塔P 有多远(结果取整数)?(1)根据题意,你能画出示意图吗?画出图形后,你想到什么呢?(用哪个知识点解决这个问题呢?)生:可以用解直角三角形的知识解决问题(2)结合题目的条件,你能确定图中哪些线段和角?求什么?怎样求?师:在图上标出已知条件,需要求的量.怎样求?抽学生回答解题思路生:AP=80n mile; ∠APC=90-65=25; ∠A=65 ; ∠B=34;AB⊥PC。
人教部初三九年级数学下册 解直角三角形的应用举例 名师教学PPT课件
这个问题就是求BC的长度;而在直 角三角形中,已知一锐角和一直角边, 可以利用解直角三角形的知识解这个直 角三角形。
1
2
3
4
精典例题: 解法一:在构造的两个直角三角形中分
别 求出BD、CD,再相加
例4:热气球的探测器显示,从热气球看一栋楼顶部的仰角
因此,这栋楼高约为277米.
∵ 如图,a=30°,β=60° AD=120m, AD⊥BC
由于此题的 数字较大,不太 建议用勾股定理 计算.
因此,这栋楼高约为277米.
小试牛刀:
如图, 建筑物BC上有一旗杆AB,由距BC40m的D处观察旗杆 顶部A的仰角为50°,观察底部的仰角为45°,求旗杆的高度(结
为30°,看这栋楼底部的俯角为60°,热气球与楼的水平
距离为120 m,这栋楼有多高(结果取整数) ?
解:如图,a=30°,β=60° AD=120m, AD⊥BC
tan a BD , tan CD .
AD
AD
BD AD tan a 120 tan 30
120 3 40 3(m). 3
果保留小数点后一位).( sin 50 0.77 cos50 0.64 tan50 1.20 )
归纳总结: A B
B
A
D
C
这种类型的特点是:有公共 直角顶点和一条公共直角边
D
C
这种类型的特点是,公共直角和 一条公共直角边
关键点:这条公共直角边是沟通两直角三角形关系桥梁.
中考链接:
2016年中考 19题:如图,某校数学兴趣小组为测得校园里 旗杆AB的高度,在操场的平地上选择一点C,测得旗杆顶端A的仰 角为30°再向旗杆的方向前进16米,到达点D处(C、D、B三点在 同一直线上),又测得旗杆顶端A的仰角为45°,请计算旗杆AB的 高度(结果保留根号)
人教版九年级下册数学 28. 2 解直角三角形及应用 (共15张PPT)
作业:
如右下图,海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C 处,发现此时灯塔B在海船的北偏西45方向,求此时灯塔B 到C处的距离. 解:如图,过B点作BD⊥AC于D ∴∠ABD=60°,∠DCB=90°-45°=45° 设BD=x,则CD=BD=x 在Rt△ABD中,AD=x·tan60°= x 在Rt△BDC中, BC= BD= X 又AC=5×2=10,AD+CD=AC ∴ x +x=10 ,得x=5( -1) ∴BC= •5( -1)=5( - ) (海里), 答:灯塔B距C处5( - ) 海里。
28.2.2 解直角三角形的应用
一、创设情景,导入新课
画出方位角(表示东南西北四个方向的)并依次画出表示东南 方向、西北方向、北偏东60度、南偏东30度方向的射线.
西
北
北
东 西
东
南
南
合作探究 达成目标
例5 如图,一艘海轮位于灯塔P的北偏 东65 方向,距离灯塔80海里的A处,它
65°
A
沿正南方向航行一段时间后,到达位于 灯塔P的南偏东34 方向上的B处.这时, P
练习: 1、如图:一艘轮船由海平面上A地出发 向南偏西400的方向行驶40海里到达B地, 再由B地向北偏西200的方向行驶40海里 到达C地,则A,C两地的距离为 ___ _ 。
北
C A
北
D
B
2、如图,一艘海轮位于灯塔P的东北方向, 距离灯塔40 2 海里的 A处,它沿正南方向航行 一段时间后,到达位于灯塔P 的南偏东3 0 ° 方 向上的 B处,则海轮行驶的路程 AB 为多少海 里(结果保留根号).
解:在Rt△APC中, ∵AP=40 ,∠APC=45° ∴AC=PC=40 在Rt△BPC中, ∵∠PBC=30°,∴∠BPC=60° ∴BC=PC•tan60°=40× =40 ∴AB=AC+BC=40+40 (海里) 答:海轮行驶的路程AB为 (40+40
人教版九年级数学下册解直角三角形ppt课件
∴∠ADC=45°, ∴∠ADB=180°-45°=135°.
5.(2018黑龙江大庆龙凤月考)在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边 分别为a,b,c.根据下列条件解直角三角形. (1)已知a=5,∠B=60°; (2)已知a=5 2 ,b=5 6 .
解析 (1)∵∠C=90°,∠B=60°, ∴∠A=30°, ∵cos B=cos 60°= a = 1 ,a=5,∴c=10,
5
(1)求AB的长; (2)求cos∠BAD的值.
图28-2-1-6
解析 (1)在Rt△ADC中,∵∠C=90°,sin∠ADC= AC = 4,AD=5,∴AC=4.
AD 5
由勾股定理得CD= AD2 -AC2 =3, ∴BC=CD+DB=3+5=8, 在Rt△ABC中,∠C=90°, 由勾股定理得AB= AC2 BC2 = 42 82 =4 5 . (2)∵AD=BD, ∴∠BAD=∠ABD.
知识点一 解直角三角形 1.解直角三角形的定义与边角关系
2.解直角三角形的类型
在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c.
已知条件
解法
两直角边 斜边、一直角边(如c,a) 一锐角与邻边(如∠A,b) 一锐角与对边(如∠A,a) 斜边与一锐角(如c,∠A)
由tan A= a,求∠A;∠B=90°-∠A;c= a2 b2
点O,AB⊥AC.若AB=8,tan∠ACB= 2,则BD的长是
.
3
图28-2-1-3
答案 20
解析 ∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB
⊥AC,AB=8,tan∠ACB= 2= AB ,∴AC= 3AB=12,∴OA=6,∴BO= OA2 AB2=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形及其应用—知识讲解(包含典型例题讲解)【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.要点二、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,一角锐角、对边(如∠A,a) ∠B=90°-∠A,,斜边、锐角(如c,∠A) ∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、解直角三角形1.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,根据下列条件,解这个直角三角形.b(1)∠B=60°,a=4; (2)a=1,3【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知,tan 4tan 6043b a B ==⨯=°. 由cos a B c =知,48cos cos 60a c B ===°.(2)由tan 3bB a==得∠B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2242c a b =+==.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值. 举一反三:解直角三角形及其应用【变式】(1)已知∠C=90°,a=23,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ; 【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=252.如图,AD 是△ABC 的中线,tanB=,cosC=,AC=.求:(1)BC 的长;(2)sin ∠ADC 的值.【答案与解析】解:过点A 作AE ⊥BC 于点E , ∵cosC=,∴∠C=45°,在Rt △ACE 中,CE=AC •cosC=1, ∴AE=CE=1,在Rt △ABE 中,tanB=,即=,∴BE=3AE=3, ∴BC=BE+CE=4;(2)∵AD 是△ABC 的中线, ∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【总结升华】正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.类型二、解直角三角形在解决几何图形计算问题中的应用3.已知△ABC中,tanB=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC面积的所有可能值为.【思路点拨】分两种情况,根据已知条件确定高AD的长,然后根据三角形面积公式即可求得.【答案】8或24.【解析】解:如图1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tanB=,∴=,∴AD=BD=,∴S△ABC=BC•AD=×6×=8;如图2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tanB=,∴=,∴AD=BD=8,∴S△ABC=BC•AD=×6×8=24;综上,△ABC面积的所有可能值为8或24,故答案为8或24.【总结升华】本题考查了解直角三角形,以及三角函数的定义,三角形面积,分类讨论思想的运用是本题的关键.举一反三:解直角三角形及其应用【变式】如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为多少?【答案与解析】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为1:3i =(i =1:3是指铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==. (2)在Rt △DEC 中,∵ 3tan 3DE C EC ∠==,∴ ∠C =30°. 又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AGAFG FG∠=,即3535FB =+,解得535 3.66(m)FB =-=. 答:改建后需占路面的宽度FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3=1.73).【答案与解析】过点C作CE⊥AB于E.∵∠D=90°-60°=30°,∠ACD=90°-30°=60°,∴∠CAD=180°-30°-60°=90°.∵ CD=10,∴ AC=12CD=5.在Rt△ACE中,AE=AC·sin∠ACE=5×sin 30°=52,CE=AC·cos ∠ACE=5×cos 30°=53 2,在Rt△BCE中,∵∠BCE=45°,∴5553(31)222AB AE BE=+=+=+≈6.8(米).∴雕塑AB的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.。